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1 Introduction

Video has become prevalent in modern society, with years of content accessible
through the web. With such widespread availability, tools to monitor these videos
become necessary to prevent malicious behavior (copyright infringement, inappropri-
ate materials), or in live video, protecting safety. The focus of this work is aimed
towards a subset of these videos - primarily those dealing with surveillance.

In surveillance applications, it would be useful to automatically annotate abnormal
behavior in video. In many cases, a handful of people need to monitor hundreds of
monitors (Fig. 1). Practically, this is inefficient, as it is hard to focus on so many
cameras at once. Thus, an automated system (that lacks this limitation) could be
built to be faster and more responsive than any operator.

Figure 1: Modern department of transportation traffic monitoring rooms

The general challenge of this work is to determine what is abnormal or suspi-
cious. Abnormalities can generally be put into two categories: objects and behaviors.
Objects are abnormal by having different photo-metric properties (looks different).
Behaviors are abnormal by having different motion (moves differently). The focus
of this work is the latter, i.e., determining events of note (saliency) through varying
motion.

It is important to note that these abnormal behaviors are generally not known
beforehand - only normal behavior is known. Thus, this can become hard to solve.

2 Related Work

Techniques involving object recognition, action recognition, tracking, and behavior
subtraction[1] have all been proposed as ways to detect abnormality. Object and
action recognition techniques identify anomalies by noting deviations from normally
detected objects and actions. However, these techniques are vulnerable to occlusions
and high computational costs (due to feature extraction, and multiple objects in a
scene). Behavior subtraction uses background information to calculate changes in
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scene dynamics (changes from the foreground) to determine abnormalities. Wang et
al.[6] uses block-based image warping and k-nearest-neighbor (KNN) matching from
a dictionary to determine still image saliency.

(a) Behavior subtraction [1] (b) Image saliency [6]

Figure 2: Results of related works

The goal of this work is aimed at expanding the last approach to video using
similar ideas but applied to motion vectors.

3 Problem Statement

The goal of this project is to annotate salient events (defined earlier as abnormalities
in motion) in any particular video sequence. Salient events are shown as a binary
black/white mask, where white denotes an abnormality in the sequence. An overview
of the method is presented in Figure 3.

The method presented in this report uses KNN optical flow matching of 3D blocks
to generate a saliency map. This map is then segmented using Markov Random
Fields (MRF). The resulting saliency mask is evaluated against a known ground
truth to generate receiver operating characteristic (ROC) curves using various MRF
parameters. These steps are described in more detail in later sections.

3.1 Input Sequences

To generate a saliency block, a sequence containing non-salient information has to be
known. For a generic sequence, we can buffer the initial frames of a sequence and use
the initial period as our dictionary (assuming it does not contain anomalies). The
rest of the sequence can be the ”query” sequence. For the dataset used in this work,
the training and testing ”query” sets were given - with training sets containing no
anomalies.
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Figure 3: Overview of saliency detection method
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Figure 4: Splitting a generic sequence into training and testing parts using buffering

3.2 Dense Optical Flow

Optical flow can be computed using the Lucas-Kanade method[3] on every pixel in
the sequence. Generally, this is the largest computational sink in the method and is
pre-computed across all the sequences. This method is described below.

Following the image constraint equation, let I denote a grayscale video frame :

I(x, y, t) = I(x+∆x, y +∆y, t+∆t)

dI

dx
Vx +

dI

dy
Vy +

dI

dt
= 0 (Taylor series expansion)

where Ix = dI
dx
, Iy = dI

dy
, It =

dI
dt

are the directional partial derivatives and Vx and Vy

are the motion vectors that need to be found.
Lucas Kanade assumes that motion has small displacements, and that the nearby

neighborhood of a pixel has similar motion. Using this assumption, windows of nearby
pixels are taken (assumed to have the same motion vectors), and solved using linear
least squares for the image constraint equation.
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Figure 5: A 16x16x12 query block is compared against to its closest K blocks. Com-
pared blocks share the same spatial location, where Qm,n,k and Dm,n,K denote the
separated block indicies.

3.3 K-nearest-neighbors of matching 3D blocks

Every 3D optical flow block (designated query block) from the testing sequence is
compared using KNN to 3D optical flow blocks from the training sequence. Blocks
are only compared to those that share its same spatial location - thus, every spatial
block location can be thought to have its own dictionary that consists of blocks from
along its time axis. Furthermore, events that are not frequent in a particular spatial
location can become anomalous. This is done so that events that are frequent in
one spatial location, such as a car on a road would become anomalous if it were to
appear in a nearby spatial location such as a sidewalk. K = 10 blocks was used in
this project.

The metrics used for KNN are as follows:

distance between two blocks =
∑

x,y,t
‖ ~Qm,n,k(x, y, t)− ~Dm,n,l(x, y, t)‖

where ~Qm,n,k(x, y, t) and ~Dm,n,l(x, y, t), denote the motion vectors at pixel location

x, y, t in an indexed query and dictionary block. The indicies for ~Qm,n,k and ~Dm,n,l

denote blocks with the same spatial locations (m,n) in the sequence.
Once the KNN blocks were found, a saliency map is produced for each block (at

every pixel location) as follows:

Sm,n,k(x, y, t) =
1

K

∑K

k=1

‖ ~Qm,n,k(x, y, t)− ~Dm,n,k(x, y, t)‖

where Sm,n,k(x, y, t) denotes the saliency value at pixel location x,y,t in the block
S.

This step yields a video sequence with a real-valued scalar saliency map.

3.4 Markov Random Fields

Markov modeling was applied to segment salient regions from the generated saliency
map. The model used incorporates second-order spatial neighborhood information in
its Gibbs model to yield the following binary hypothesis test:
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Ψ2

k[x]
Salient

≷
NotSalient

2σNSln(θ
σS

σNS

) +
NNS −NS

T

where Ψk[x] is an observation from the saliency map modeled as a Gaussian ran-
dom variable with standard deviation σS in salient regions, and standard deviation
σNS in non-salient regions. T is the natural temperature of the Gibbs distribution,
and NNS and NS are the number of non-salient/salient labels in the neighborhood.

This method is described in more detail in[4]. A few of the results are shown
below in Figure 6.

(a) (b)

(c) (d)

Figure 6: Results of MRF: (a) Original video frame, (b) Corresponding Saliency Map,
(c) Fixed threshold, (d) Variable threshold MRF segmentation

3.5 Assumptions

A few assumptions were made beforehand about the proposed method. The first is
that the video sequence is from a static camera (no pan-tilt-zoom). This assumes
that blocks with the same spatial location are related (that they are at the same
location throughout the video). If the camera was moving, global motion would need
to be calculated, and corresponding blocks would have to be warped (if the planar
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view of the scene changed) and compared with their predicted spatial locations. The
second assumption is that spatial scale is constant throughout. If this assumption
is broken, motion vectors of an object towards the horizon are smaller and become
more sensitive to the selected detection threshold. With additional scene information
(type of scene/view) different thresholding could be applied throughout the sequence
to improve results. Furthermore, the K-Nearest Neighbors search assumes that the
training set is rich and diverse. This way, if an event were salient, it would find very
few common neighbors yielding a high saliency value, and if it were normal, a very
low saliency value would result.

4 Implementation

This method was implemented in MATLAB, using Liu’s[2] optical flow library to
compute motion vectors. Computation was done a desktop with an i7-2600K CPU
@ 3.40 GHz with 16GB of DRAM.

4.1 Dataset

The UCSD Anomaly Dataset[5], contains video sequences captured by two fixed cam-
eras overlooking a sidewalk. The dataset provides training sequences (no salient
events) and testing sequences (with salient events). Furthermore, the testing set pro-
vides a few sequences with ground truths (binary masks) which mark out anomalous
events. Typical anomalous events are due to unusual motion coming from vehicles,
skateboarders, the handicapped, and cyclists. Figure 7 shows some sample images
from the dataset.

5 Results

The novel method proposed above results in decent saliency detections (as shown
in Figure 8). When evaluated as an ROC curve (in Figure 9) the 2nd order MRF
has improved results over purely thresholded saliency. However, these results were
obtained when assumptions are satisfied. In scenes where assumptions in Section 3.5
do not hold, results tend to fair much worse. For example, when motion scale is not
spatially constant, motion that gets smaller due to perspective may not be detected
properly.

6 Conclusions and Future Work

When assumptions hold, the proposed method performs fairly well. However, for
future work, it may be useful to be able to relax some of these assumptions. As
this model only incorporates motion, photometric information is not used. This
allows visually abnormal objects to be potentially detected as normal behavior if
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(a) Sample test video frames (b) Ground truths

Figure 7: UCSD dataset – anomalies are the vehicle and cyclists

their motion is similar. An extension to this work may find it useful to include
additional photometric, texture, and edge information into the model. The static
camera assumption can also be removed in future work if a global motion model is
included as well. Additional work into the distance metric can be looked into to
improve saliency detection while being robust to scene scale.
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(a) (b) (c) (d)

Figure 8: Results of the proposed method across various sequences. (a) Original
Frame, (b) Saliency Map, (c) Segmented Saliency Map, (d) Ground Truths Map
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Figure 9: ROC curve


