
EC520 FINAL PROJECT REPORT: EXAMPLE-BASED
IMAGE RETRIEVAL

Joshua Rapp, Sarah Welch, Srilalitha Kumaresan

Boston University

Department of Electrical and Computer Engineering

8 Saint Mary’s Street

Boston, MA 02215

www.bu.edu/ece

June 18, 2015

Technical Report No. ECE-2015-02

Contents

1 Introduction 1

2 Literature Review 1

3 Problem Statement 2
3.1 Covariance Matrix Representation . 2
3.2 Feature Selection . 2
3.3 Classifiers . 4
3.4 Distance Metrics . 4

4 Implementation 5
4.1 Datasets . 5
4.2 Feature Sets . 5
4.3 Distance Metrics . 7
4.4 Classifiers . 8

5 Experimental Results 8
5.1 Leave-One-Out Cross Validation . 8
5.2 Application Results . 11

6 Conclusions 12
6.1 Future Work . 12

A Example Images 16

B MATLAB Code 18
B.1 Scripts . 18
B.2 Feature Extraction Functions . 20
B.3 Classification and Distance Metric Functions 24
B.4 K Nearest Neighbor Functions . 26
B.5 Utility Functions . 29

i

List of Figures

1 First Derivative Filter Frequency Response 6
2 Second Derivative Filter Frequency Response 6
3 Frequency Response Plots of 24 Gabor Filters 7
4 Example Result from LOOCV with Standard Features and log-Euclidean

Distance Metric . 9
5 Average Performance Over All Classes 10
6 Comparing application performance 11

iii

List of Tables

1 Distance Metric Definitions . 4
2 Best Distance Metric and Feature Set for Each Class 9

v

Example-Based Image Retrieval 1

1 Introduction

The goal of this project was to develop an example-based image retrieval system,
which sorts through a large database of images by using image characteristics rather
than previously added metadata. Given a query image, the system returns images
from the database that are similar to the query. Potential applications of example-
based image retrieval today include quick personal photo organization, surveillance,
and medical diagnosis.

The first step in example-based image retrieval is to represent the database and
the query images in a useful format for comparison. When searching for images
similar to a query, not all image information is necessary or relevant. Important
aspects of a query image can be enhanced or extracted to perform a search using
only essential information. Once an image representation method is chosen, the next
task is to determine which images in the database are similar to the example image,
with similarity measured by a distance metric. A classifier uses this metric to select
database images based on their close distance to the query image. Assuming that the
images in the database are preclassified based on metadata, the results of example-
based image retrieval can be validated against ground truth.

2 Literature Review

Historically, a variety of image characteristics have been used as the basis for example-
based image retrieval. Early computer vision techniques used the raw pixel values as
region descriptors, however, changes in illumination and non-rigid motion were prob-
lematic with this technique. Extensive normalization can resolve these problems at
the cost of computational complexity [1] [2]. Another representation originally used
by Swain and Ballard in [3] is the histogram method, which estimates the probability
densities of raw pixel values. This technique resolves the problems associated with
using raw pixel values but is computationally complex even with fast methods, since
exhaustive search must be used to find the best match of the example image [4].
Furthermore, joint distributions need to be computed in order to represent the rela-
tionships between multiple features, which leads to exponential complexity [2].

Another class of algorithms use scale-space representations of an image to extract
strong local features. In a scale-space representation, one image is represented by a
parametrized set of smoothed images. The size of the smoothing kernel parametrizes
each image in the scale-space representation. The smoothing kernels will suppress
fine-scale features and enhance the image structures that are present at different
scales [5]. The Scale Invariant Feature Transform (SIFT) and its derivatives such
as Speeded Up Robust Features (SURF) are robust to illumination changes, clutter,
partial occlusion, rotation, affine projections, and scale [6] [7]. However, since these
algorithms are so well suited to detecting strong features, they are best at identifying
particular objects and recognizing the same scene from different view points or under
partial occlusion [7]. SIFT is less suited to recognizing similar images of different

2 Joshua Rapp, Sarah Welch, Srilalitha Kumaresan

scenes, such as images of different beaches or different buildings.

3 Problem Statement

The example-based image retrieval system presented in this report was designed to
match images with similar scenes, rather than to detect specific objects within images.
Our system has three core components: covariance matrix representation, feature
selection, and classification.

3.1 Covariance Matrix Representation

The covariance of image features is a descriptor that can represent the overall scene
in an image more generally and with much lower dimensionality than histograms.
Specifically, a feature vector is computed at each pixel, where each component of
the vector represents a particular feature such as pixel position or color. Then, the
sample covariance of all of the feature vectors is computed, which forms a compact
second-order characterization of the features. The dimensionality of the covariance
matrix is determined by the dimensionality of the feature vector rather than by the
size of the image region. For example, if there are n features, then the covariance
matrix is n × n, regardless of the size of the considered region. The covariance is
robust to illumination changes since it is mean centered; it is also scale and rotation
invariant, and does not require normalization [2] [8] [9]. As our goal was to describe
general image scenery, we chose to compute the covariance of features over the entire
image rather than over image subregions.

3.2 Feature Selection

We investigated three distinct feature sets which were each described in previous
research and adapted them to our covariance of features framework.

3.2.1 Standard Features

The first feature set was termed the “Standard” set because of its use in the related
object-detection work in [2]. Following that work, a feature vector calculated at each
pixel (x, y) is given by

F (x, y) = [x, y, R(x, y), G(x, y), B(x, y),∣∣∣∣∂I(x, y)

∂x

∣∣∣∣ , ∣∣∣∣∂I(x, y)

∂y

∣∣∣∣ , ∣∣∣∣∂2I(x, y)

∂x2

∣∣∣∣ , ∣∣∣∣∂2I(x, y)

∂y2

∣∣∣∣] . (1)

The elements of F (x, y) represent the pixel location, followed by the red, green, and
blue intensities and the first and second partial derivatives in each direction at that
pixel location.

Example-Based Image Retrieval 3

3.2.2 Histogram of Oriented Gradients

Our second feature set is based on the Histogram of Oriented Gradients (HOG) fea-
ture vector proposed in [10]. The main idea of the HOG feature set is to describe
local shapes encoded in the luminance pattern. The HOG feature vector is com-
puted by dividing the image into cells and calculating the local gradient at each pixel
within the cell. The gradients are then quantized to several pre-determined directions.
The magnitudes of the quantized gradients within each cell are accumulated into a
“weighted” histogram, rather than simply accumulating counts of each orientation.
The original work in [10] combined the HOGs from every image cell into one long
vector and used it directly in their classification algorithm. Our adaptation fits the
HOG feature vectors into the covariance matrix representation as described in section
4.2.2 below.

3.2.3 Gabor wavelet based filter bank

The third feature set takes a Gabor wavelet approach motivated by the properties of
the human visual system. According to [11], Gabor functions can model the response
to spatial frequency patterns of simple cells in the visual cortex, the portion of the
brain which processes visual information. Each simple cell responds to a particular
frequency band, with a Gabor-like response. This model motivated the work of
Manjunath et al. in [12], where a Gabor wavelet filter bank was used to extract
texture features from an image. This filter bank represents the responses of many
simple cells in the visual cortex over a range of frequencies.

The Gabor function is given by a two-dimensional Gaussian function multiplied
by a complex sinusoid:

g(x, y) =

(
1

2πσxσy

)
exp

[
−1

2

(
x2

σ2
x

+
y2

σ2
y

)
+ 2πjWx

]
. (2)

The function g(x, y) is used as a mother wavelet to create scaled and rotated Ga-
bor wavelets, which form a complete, non-orthogonal basis. The complex sinusoid in
g(x, y) causes a shift in the frequency response based on W, which leads to the po-
sitioning of the filters. This parameter along with the choices of σx and σy from [12]
leaves little spectral gap between filters. The parameter a is chosen to adjust the
scales between filters such that they span the entire frequency range.

To calculate the feature values, Manjunath et al. convolve each image with each
of the Gabor impulse responses. From each filter output, Wmn(x, y), two features
µmn and σmn are calculated by finding the energy of each filter’s output:

µmn =

∑
y

∑
x |Wmn(x, y)|
N

(3)

σmn =
1

N

√∑
y

∑
x

(|Wmn(x, y)| − µmn)2, (4)

4 Joshua Rapp, Sarah Welch, Srilalitha Kumaresan

Table 1: Distance Metric Definitions

Name Form

Euclidean ‖K1 −K2‖
Log-Euclidean ‖ log(K1)− log(K2)‖
Riemannian ‖ log(K

−1/2
1 K2K

−1/2
1)‖

Cholesky ‖chol(K1)− chol(K2)‖
Root Euclidean ‖K1/2

1 −K1/2
2 ‖

Power Euclidean 1
α
‖Kα

1 −Kα
2 ‖

where N is the total number of x and y values being summed over. For 24 Gabor
filters, the 48 dimensional feature vector for each image is then given by

F = [µ00, σ00, . . . , µ24, σ24]. (5)

Section 4.2.3 describes how this method was extended to fit into the covariance of
features image descriptor by dividing an image into subregions and computing feature
vectors by independently filtering those regions.

3.3 Classifiers

There are a number of standard machine learning methods that can be used for
query classification, such as nearest neighbor (NN) used in [9] for action recognition
or k -nearest neighbors (kNN) used in [2] for texture classification. Given an example
image, the algorithm will find the single image (in the case of NN) or the k images
(for kNN) whose covariance matrices are closest to the covariance matrix of the query.
Both the NN and kNN classifiers operate on a distance metric, which describes the
similarity of two images on the covariance matrix manifold.

3.4 Distance Metrics

Since a covariance matrix is positive semi-definite, the set of all covariance matrices
does not form a vector space, so the Euclidean distance is not a useful measure of
similarity between covariance matrices [9]. However, a number of techniques exist to
map the space of covariance matrices to a vector space, upon which the Euclidean
metric can be used. Tuzel et al. introduce an affine invariant Riemannian metric in [2],
in addition to which a log-Euclidean metric is used in [9]. Other available metrics
include those described in [13] or the Power-Euclidean metric introduced in [14].
Table 1 shows the six distance metrics presented in [13] that were implemented for
this project.

Example-Based Image Retrieval 5

4 Implementation

4.1 Datasets

We created a database containing 800 images in order to test our algorithms. The
database has eight pre-defined image classes with 100 images per class. We obtained
the images from Creative Commons licensed images on the Internet, from a research
database originally created and used in [15], and from our personal collections. The
images are of varying aspect ratios, but we resized each to be 300 pixels in its largest
dimension. The eight image classes are Buses, Flowers, Cities, Quadrupeds, Moun-
tains, Beaches, Crowds, and Underwater. Each image was manually verified to ensure
that it was assigned to the correct class. Since our goal was to identify database im-
ages similar to a query, we were willing to accept a small amount of crossover in
the defined image classes. For example, images with horses in the foreground were
assigned to the quadruped class even if they had water or mountains in the distance.
There are also crowd images that contain building structures in the background. We
believe these classes realistically represent the types of images that would likely be
encountered in an example-based image retrieval application.

4.2 Feature Sets

4.2.1 Standard Features

Ideally the frequency responses of first- and second-derivative filters should have mag-
nitudes given by |H1(e

jω)| = ω and |H2(e
jω)| = ω2, respectively. One problem in

designing practical filters for these applications is that high frequency noise can be en-
hanced. One-dimensional filters with impulse responses given by h1 = −δ[n]+δ[n+2]
and h2 = −δ[n] + 2δ[n + 1] − δ[n + 2] were used in [2]. Figures 1 and 2 show that
these filters have near-ideal frequency responses at low frequencies but attenuated
responses at high frequencies, avoiding the high-frequency noise problem.

We adapted the filters from [2] by repeating the impulse responses as rows in

a 2D filter, such as h1 = 1√
6

[−1 0 1
−1 0 1
−1 0 1

]
. For this horizontal filter example, the 2D

response has the same horizontal performance as the 1D case, but the repetition of
rows of the matrix allows for smoothing in the vertical dimension, further reducing
high-frequency noise.

The nine dimensional feature vector from Equation 1 is calculated at each pixel
of the query image. From these vectors, a 9 × 9 covariance matrix is calculated. To
ensure no single feature dominates the covariance matrix, each feature is normalized
to the range [0, 1] according to [16]. This allows us to determine which features
contributions are more important for image classification.

6 Joshua Rapp, Sarah Welch, Srilalitha Kumaresan

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Magnitude Response of First Derivative Filter

Frequency in Radians

Filter Response

Ideal Linear Response

Figure 1: First Derivative Filter
Frequency Response

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

4

Frequency in Radians

Magnitude Response of Second Derivative Filter

Filter Response

Ideal Quadratic Response

Figure 2: Second Derivative Filter
Frequency Response

4.2.2 Histogram of Oriented Gradients Features

Rather than compute a feature vector at each pixel, we divided each image into
a 10×10 grid of cells to compute feature vectors for one hundred cells per image.
The cells contained roughly 600 pixels a piece, though their exact size and aspect
ratio depended on the size of the original image. We transformed the images into
YCBCR space and considered only the luminance component. Within each cell we
computed the horizontal and vertical gradients with the same first-derivative filters
as in Section 4.2.1. The gradient orientations were quantized to eight directions
uniformly distributed on the unit circle. Finally, rather than use the HOG vectors
directly, we computed the sample covariance from all of the cells’ feature vectors.
While this does obfuscate the location origin of each HOG vector from within the
original image, our hypothesis was that the correlation between orientations would
still form a unique image fingerprint. For example, in natural images like beaches,
there may be little correlation among orientations since any “edges” in water or sand
are essentially random, but in cities there may be strong correlations between vertical
and horizontal components.

4.2.3 Gabor Features

The MATLAB implementation of the Gabor filters was based on the work of Man-
junath et al. in [12] and Haghighat et al. in [17]. Based off the mother wavelet in
Equation 2, a generating function is used to create scaled and rotated Gabor wavelets.
For S scales and K rotations, the generating function is given by

gmn(x, y) = a−mg(x′, y′), (6)

where x′ = a−m(x cos θ+y sin θ); y′ = a−m(−x sin θ+y cos θ); θ = nπ
K

; m = 0, . . . , S−1;
and n = 0, . . . , K − 1.

Based on the example in [12], the parameters were chosen to be K = 6 and S = 4,
which generates 24 filters, and W = 0.4, which set the center frequency of the smallest
scale impulse response.

Example-Based Image Retrieval 7

(a) Gabor Filter contours at 3dB (b) Gabor filter magnitude reponses

Figure 3: Frequency Response Plots of 24 Gabor Filters

Filters centered at higher frequencies have a larger bandwidth while filters at lower
frequencies have smaller bandwidth, which enables the detection of edges and high
frequency changes. Figure 3a shows the contours of the 3dB point of the magnitude
of the 24 filters, while the magnitude response of these filters is shown in Figure 3b.
The σx and σy values are chosen such that the filters are touching at the 3dB point
and therefore covering the entire frequency range with little spectral gap.

Instead of convolving an entire image with the filters, the image was first divided
into 100 cells, as in the HOG implementation. Each filtered cell produces a 48 element
feature vector from which the 48×48 covariance matrix is calculated. In the retrieval
system described in [12], the query image consisted of a small textured region of an
image rather than a full sized image. In place of this, the filtering of the image cell by
cell allows filtering of small textured regions rather than using a smaller query image.

4.3 Distance Metrics

All six distance metrics listed in Table 1 were implemented in order to compare their
performance. The Euclidean metric was expected to perform poorly compared to
the log-Euclidean and Riemannian metrics used in related applications and the other
three metrics from unrelated work also involving covariance matrices. Note that the
norm used is the Euclidean or Frobenius norm, defined as ‖X‖ =

√
trace(XTX). For

the purpose of comparison in the implementation, the square root was left out to save
on computation time.

Given that the distance metrics are simply the Frobenius norm applied to trans-
formations of the feature covariance matrices, the metrics were easy to implement in
MATLAB. One important note in terms of computational complexity is the definition
of the matrix logarithm, which is log(K) = U log(Λ)UT , where K = UΛUT is the
spectral decomposition of the matrix K. For large feature covariance matrices, com-
puting the spectral decomposition was a time-consuming process. The computation

8 Joshua Rapp, Sarah Welch, Srilalitha Kumaresan

duration was especially noticeable when the process is repeated many times for the
validation procedure. As a result, it was found that precomputing the covariance ma-
trix logarithm and storing it as Klog along with the covariance matrix K during the
preprocessing stage allowed the log-Euclidean metric to simply operate the Euclidean
metric on the precomputed log-covariance matrices.

4.4 Classifiers

4.4.1 Nearest Neighbor

For the application of an example-based image retrieval system, it is most likely that
a user would want to return several images similar to the query and then choose
some subset of the returned images. It is less likely that the user would want to
return the single most-similar image to the query. Still, it is useful to implement the
single-most-similar algorithm for baseline validation of the image retrieval system.
When using the feature covariance matrix image descriptor, this translates simply to
finding the nearest neighbor to the query on the covariance matrix manifold. To find
the nearest neighbor for a given distance metric, the system exhaustively computed
the distance between the query and each image in the database, keeping track of the
database entry with the smallest distance from the query.

4.4.2 k Nearest Neighbors

Implementation of the k nearest neighbors (kNN) algorithm was similar to that for
the NN algorithm, with the main difference being that the algorithm kept track of
k database entries rather than a single one. This involves maintaining an array of
distances of the k nearest neighbors and then determining where in the array a new
entry belongs if it is closer to the query than the kth entry.

5 Experimental Results

5.1 Leave-One-Out Cross Validation

The image-retrieval system’s performance was evaluated using the Leave-One-Out
Cross-Validation (LOOCV) technique. This process entails removing one database
entry at a time and using it as the query to the algorithm. If the class of the query
matched the class of its nearest neighbor, the test was considered a success. Other-
wise, the test was considered a failure, and the class of the nearest neighbor to the
query was noted. The test was then repeated for each of the 800 images in the test
database, and the results of the LOOCV tests were tabulated in confusion matri-
ces, such as the example in Figure 4. The matrix diagonal shows successes, while
off-diagonal elements show the actual class of the nearest neighbor in the case of a
mismatch.

Example-Based Image Retrieval 9

Nearest Neighbor Class!
 ! Beach! Bus! City! Crowd! Flowers! Mountains! Quadruped! Underwater!

Qu
er

y
Cl

as
s!

Beach! 71%! 3%! 4%! 1%! 0%! 12%! 6%! 3%!
Bus! 0%! 92%! 4%! 3%! 0%! 0%! 1%! 0%!
City! 4%! 11%! 53%! 18%! 0%! 7%! 6%! 1%!

Crowd! 0%! 1%! 11%! 79%! 3%! 2%! 3%! 1%!
Flowers! 0%! 0%! 0%! 1%! 98%! 0%! 1%! 0%!

Mountains! 9%! 3%! 6%! 5%! 0%! 65%! 12%! 0%!
Quadruped! 2%! 2%! 8%! 12%! 2%! 18%! 53%! 3%!
Underwater! 2%! 0%! 2%! 2%! 1%! 0%! 3%! 90%!

Figure 4: Example Result from LOOCV with Standard Features and log-Euclidean
Distance Metric

The process of LOOCV was repeated for each combination of the 3 feature sets
and all 6 distance metrics for a total of 18 confusion matrices. The next step was to
further digest the data to determine the feature set/distance metric pair for the best
performance of each class and the best performance across all classes. Table 2 shows
each class, the highest successful classification rate for that class, and the metric and
feature set leading to the highest success rate.

Table 2: Best Distance Metric and Feature Set for Each Class

Class Rate Metric Features

Buses 100% Riemann Gabor
Flowers 98% Log/Riemann Standard/Gabor
Underwater 94% Riemann Standard
Crowds 79% Log Standard
Beaches 75% Cholesky Gabor
Mountains 65% Log/Riemann Standard
Quadrupeds 60% Riemann Standard
Cities 56% Root HOG

One of the most noticeable aspects of the table is the large variation in the best
performance rates. While over 90% of the nearest neighbors of the bus, flower, and
underwater classes were images of the same class, almost half of the city images had
nearest neighbors of a different class. The most likely cause of this difference is the
origin and nature of these images. For instance, the bus and flower classes were
derived from the research database in [15], and thus had relatively little variation in
images within the class. On the other hand, the worst-performing class was the city
class, composed of a diverse set of images that may have included too much variation
in illumination (both night and day scenes) and scale (both close-ups and distant
views).

10 Joshua Rapp, Sarah Welch, Srilalitha Kumaresan

0!
10!
20!
30!
40!
50!
60!
70!
80!

Euclid! Log! Riemann! Chol! Root! Power!Co
rr

ec
t

Cl
as

sifi
ca

tio
n

(%
)!

Distance Metric!

Performance over all classes by
distance metric and feature set!

Standard! Gabor! HOG!

Figure 5: Average Performance Over All Classes

Another important observation from the table is the frequency of the feature
sets’ appearance. Of the feature sets, the most frequently occurring is the Standard
set. Looking at the classes that performed best with the Standard set, one likely
explanation of its good performance is the use of color. For instance, both the flower
and underwater classes tend to have strong color components, such as the green
background and red center common to the flowers or the overall blue-green color
that dominates the underwater images. The Gabor feature set performs best when
texture dominates rather than color, which makes sense, given the original purpose
of the Gabor features. Finally, histogram of oriented gradients perform best only for
the cities, which might be because the HOG features encapsulate the strong edges of
the manmade scenes but discard the nonuniform color and texture of that class.

Finally, it is important to observe the most frequently occurring distance metric
in the table. Clearly, the Riemannian metric dominates, appearing as the best metric
for the majority of classes. The log-Euclidean metric also appears as the best for
several classes, often tied in performance with the Riemannian metric. This abil-
ity to represent the geometry of the covariance matrix manifold is likely why the
logarithm-based methods have been used in related applications. It is important to
note, however, that the comparison metrics of the Cholesky decomposition and the
root-Euclidean metric also appear in the table. While these metrics might not be as
useful overall, they still have the potential to be the most effective metric depending
on the class definition.

It is interesting to look at differences in performance by class for the image retrieval
algorithm, but for a database with different classes or no labeled classes at all, the
information in Table 2 is irrelevant. What is more important is to look at the average
performance of a feature set/distance metric combination over all classes in the test
database. Figure 5 shows the average correct classification rate over all classes using
the NN classifier. As expected, the top metrics in Table 2 are also the best over all
classes, although in this case, the log-Euclidean metric on Standard features is the

Example-Based Image Retrieval 11

1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

80

90

100

Best Metric and Best Feature Set for each Class

P
e
rc

e
n
t
o
f
T

im
e

M

bus flower underwater beach crowd mountain quadruped city

1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

80

90

100

Log−Euclidean Metric and Standard Feature Set for each Class

P
e
rc

e
n
t
o
f
T

im
e

M

(a) (b)

Figure 6: Comparing application performance using (a) best distance metric/feature
set pair for each class and (b) the best average metric/features (log-Euclidean metric,
Standard features) over all classes

winner at 75.12% correct classification. Remarkably, the log/Standard pair performs
almost as well as the mean performance using the best metric/features for each class,
which averages to 78.4%.

5.2 Application Results

For the purpose of the image retrieval application, an important metric of success for
the algorithm is to determine how many of the returned images were actually similar
to the query, i.e., belong to the same class. For each class, the best metric/feature
pair was selected to return the five nearest neighbors of each image in that class. The
results were tabulated to find how often all five of the five returned images were of
the same class, how often four out of five were correct, etc. Figure 6a shows that
for the four best-performing classes, all five nearest neighbors are of the same class
in a majority of instances, providing highly useful results in the application setting.
Even for the worse-performing classes, a large majority of instances return at least
one neighbor of the correct class.

As previously mentioned, the results using the best distance metric and feature set
are dependent on the classes used and how well-defined the classes are. In order to get
a more general sense of the application performance for the image retrieval system,
the same data collection was performed using the best overall distance metric (log-
Euclidean) and feature set (Standard). Figure 6b shows the results for all classes
using this same metric/feature set pair. For many classes, the probability of having
most or all of the nearest five neighbors from the same class is diminished when using
log/Standard versus the best metric/features for each class. However, as in Figure 6a,
a large majority of instances return at least one neighbor of the correct class in all

12 Joshua Rapp, Sarah Welch, Srilalitha Kumaresan

cases.

6 Conclusions

The example-based image retrieval system was designed using feature covariance ma-
trices to represent entire image scenes while exploiting the covariance matrices’ low
dimensionality. System performance was exhaustively validated over 800 images to
find the best feature sets and distance metrics to describe the similarity of images.
The results indicate that the Riemannian metric and Standard features would be
the best choice for the algorithm for several classes. However, as noted in Section
4.3, the spectral decomposition used to calculate the matrix-logarithm was a rela-
tively slow process. Unlike the log-Euclidean metric, which can operate quickly on
the precomputed log-covariance matrices, the Riemannian metric involves the loga-
rithm of contributions from both matrices being compared, which must be computed
in real time. Since the log-Euclidean metric performance yielded the best average
performance over all classes, when speed is of importance, the log-Euclidean metric
is likely the most practical option. Indeed, the final results show that, while per-
formance may be optimized by using the best parameters for a class, selecting the
log-Euclidean metric and Standard features will likely still result in useful retrieved
images.

6.1 Future Work

There are many possible directions for future work in example-based image retrieval.
One possible area for major progress would be determining how to combine features
into better-performing feature sets. Specifically, one of the reasons that the Standard
feature set worked well was the use of the RGB color components, while the Gabor
and HOG features operated only on the luminance of the images. If color could
be incorporated into the Gabor or HOG features, they might perform better than
operating on luminance alone. Another possible direction of research would be to
identify significant features in a query image. For example, for the underwater image,
an application would identify the significant blue values, especially with respect to
the green and red values. Then, the application would know to choose a feature
set that includes color, because this identifies underwater images better than the
edge directions. On the other hand, manmade scenes may be less identifiable by
their colors than by their many horizontal and vertical edges. One possible method
of determining the important features could be implementing a version of Principal
Component Analysis that determines the most important features, such as in [18]
or [19].

The algorithm described in this report is aimed at comparing entire images, which
means the classes were primarily chosen to describe scenes. However, when an object
within the scene is of interest, such as one of the quadrupeds, the algorithm is not as
adept at finding other four-legged animals. One way to extend the algorithm would be

Example-Based Image Retrieval 13

to continue the work in [2], which looks at subregions of the image and calculates the
covariance over the features in the subregion. This would allow the algorithm to elim-
inate the background of a horse, for example, so that the horse is compared to other
regions that may contain horses instead of comparing the mountainous background
to other mountains.

There are other features, classifiers, and distance metrics that could be explored.
For example, the Power-Euclidean distance metric was implemented with the power
value α set to a constant of 1

3
. Dryden et al. discuss how the metric approaches the

log-Euclidean metric as α approaches zero and discuss how to choose an optimal α
for diffusion tensor imaging [14]. It could be worthwhile to explore whether α = 0 is
the optimal value for the Power-Euclidean metric, or if another value surpasses the
log-Euclidean performance.

Finally, the problem of estimating population covariance matrices from small sam-
ple sizes came to our attention after the initial submission of this report. In [20],
Raudys and Jain describe feature selection for pattern recognition systems and state
that, while using more features initially helps discriminate among pattern classes,
adding features beyond the most representative ones can actually increase classifica-
tion error. It is also essential for the sample size to be large enough for the sample
covariance matrix to be reliable. The necessary sample size depends on the complex-
ity of a pattern recognition decision rule (such as the number of neighbors used for
kNN) and the number of features used. For our project, we extended the Gabor filter
work done by Manjunath et al. by generating 48 features from 24 Gabor filters over
100 cells within each image. Because the 48 by 48 covariance matrix has over 1000
unique entries, the 100 cells likely did not provide enough samples to be reliable for
classification. An important future extension of the project would use only the most
representative filters to produce a smaller covariance matrix for which the 100 image
blocks provide a sufficient number of samples.

References

[1] R. Brunelli and T. Poggio, “Face recognition: features versus templates,” IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 15, pp. 1042–1052,
Oct 1993.

[2] O. Tuzel, F. Porikli, and P. Meer, “Region covariance: A fast descriptor for detec-
tion and classification,” in Computer Vision–ECCV 2006, pp. 589–600, Springer,
2006.

[3] M. Swain and D. Ballard, “Color indexing,” International Journal of Computer
Vision, vol. 7, pp. 11–32, November 1991.

[4] F. Porikli, “Integral histogram: a fast way to extract histograms in cartesian
spaces,” in Proc. IEEE Computer Society Conf. on Computer Vision and Pattern
Recognition, vol. 1, pp. 829–836, Jun. 2005.

14 Joshua Rapp, Sarah Welch, Srilalitha Kumaresan

[5] T. Lindeberg, “Scale Invariant Feature Transform,” Scholarpedia, vol. 7, no. 5,
p. 10491, 2012. revision 149777.

[6] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-up robust features
(surf),” Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346 –
359, 2008. Similarity Matching in Computer Vision and Multimedia.

[7] D. Lowe, “Object recognition from local scale-invariant features,” in Proc. of the
Seventh IEEE Int. Conf. on Computer Vision, vol. 2, pp. 1150–1157 vol.2, Sept
1999.

[8] F. Porikli, O. Tuzel, and P. Meer, “Covariance tracking using model update
based on lie algebra,” in Computer Vision and Pattern Recognition, 2006 IEEE
Computer Society Conference on, vol. 1, pp. 728–735, IEEE, 2006.

[9] K. Guo, P. Ishwar, and J. Konrad, “Action recognition from video using fea-
ture covariance matrices,” Image Processing, IEEE Transactions on, vol. 22,
pp. 2479–2494, June 2013.

[10] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”
in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Com-
puter Society Conference on, vol. 1, pp. 886–893 vol. 1, June 2005.

[11] M. S., “Mathematical description of the responses of simple cortical cells,” Jour-
nal of the Optical Society of America, vol. 70, no. 11, pp. 1297–1300, 1980.

[12] M. W. Manjunath B.S., “Texture features for browsing and retrieval of im-
age data,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 18,
pp. 837–842, August 1996.

[13] I. L. Dryden, A. Koloydenko, and D. Zhou, “Non-euclidean statistics for co-
variance matrices, with applications to diffusion tensor imaging,” The Annals of
Applied Statistics, vol. 3, no. 3, pp. pp. 1102–1123, 2009.

[14] I. L. Dryden, X. Pennec, and J.-M. Peyrat, “Power euclidean metrics for covari-
ance matrices with application to diffusion tensor imaging,” 09 2010.

[15] J. Wang, J. Li, and G. Wiederhold, “Simplicity: semantics-sensitive integrated
matching for picture libraries,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 23, pp. 947–963, Sep 2001.

[16] S. Aksoy and R. M. Haralick, “Feature normalization and likelihood-based sim-
ilarity measures for image retrieval,” Pattern Recognition Letters, vol. 22, no. 5,
pp. 563–582, 2001.

[17] M. A.-M. M. Haghighat, S. Zonouz, “Identification using encrypted biometrics,”
Computer Analysis of Images and Patterns, Springer Berlin Heidelberg, pp. 440–
448, 2013.

Example-Based Image Retrieval 15

[18] Y. Lu, I. Cohen, X. S. Zhou, and Q. Tian, “Feature selection using principal fea-
ture analysis,” in Proceedings of the 15th international conference on Multimedia,
pp. 301–304, ACM, 2007.

[19] Y. Cui and J. G. Dy, “Orthogonal principal feature selection,” 2008.

[20] S. J. Raudys and A. K. Jain, “Small sample-size effects in statistical pattern-
recognition - recommendations for practitioners,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 13, no. 3, pp. 252–264, 1991.

16 Joshua Rapp, Sarah Welch, Srilalitha Kumaresan

A Example Images

Example-Based Image Retrieval 17

