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Summary 
Our task is to develop an algorithm to decide if several cameras are looking at the same 

scene or not.  In other words, we determine if the two images taken from camera(s) either 

fully share a view, have disjoint fields of view, or partially share a view (top, bottom, left, 

and right periphery). Our solution involves choosing one of two algorithms (see full report 

for more details), the Mean Squared Error technique and Covariance Matrix technique; the 

first technique performs much faster when it comes to run-time, while the second is more 

robust. 
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1 Introduction 
Our goal is to determine if two images, A and B, (taken from one or a few cameras) 

belong to one of three categories: they share the same view, their fields of views are 

disjoint, or they partially share a view (which we further divide into whether A is the left, 

right, above, or below B). 

 
To better understand the meaning of this, below is an explanation of two basic cases. 
 

 
Figure 1: Basic Case 1 

 
Here, we have an example where one camera is looking at two different scenes (one is to 

the left of the other).  Our goal is to accurately detect this topology by stating that Image 

A is to the left of B. 
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Figure 2: Basic Case 2 

 
This case describes what happens when two cameras are looking at one particular scene.  

Here we assume that the cameras are looking a distant scene so that we can consider the 

cameras are parallel.  Our goal is to detect that their field of views are the same. 

 

Now that the purpose has been explained briefly, succeeding sections will be much easier 

to comprehend. 
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2 Literature Review 
Since this topic is fairly new, it has not received much attention in literature; however, 

the notion of looking for “similarities” or “dissimilarities” between images/frames has 

been discussed in Porikli, Tuzel, and Meer’s paper [1].  Basically, these authors were 

able to detect objects using a covariance based object description by capturing both 

spatial and statistical properties.  The covariance matrix effectively combines multiple 

features while maintaining a small dimensionality.  As a result, this matrix will be 

sufficient in matching regions of different views and poses, different image gradients, and 

different orientations.  In addition to the high detection rate that this method yields, the 

authors explained each step of this process quite clearly, making it easier for a reader to 

understand it and implement it. 

 

Therefore, this approach will be beneficial in solving a problem like ours.  Details of 

this method will be explained in the “Implementation” section.
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3 Problem Statement 

Here are a total of three steps to accomplish the purpose we mentioned above: 

 

Step 1: Divide up each image into N x N blocks 

  

 
Figure 3: N = 128 

 
Figure 4: N = 64 (Default) 

 

As shown in the figures above, the first step is to divide up each image into N x N blocks, 

so we can compare one block in Image A with those in Image B. The default number of 

N is 64. Note: if two images are of different size (i.e. they come different cameras) there 

exists a preliminary step before step 1 to expand the size of smaller image (via 

interpolation) so that they are the same size before applying it to our algorithm. 

 

Step 2: Find Evidence 

Figure 5: Image A Figure 6: Image B 
 

Evidence_Left 

Evidence_ Below 

Evidence_ Above 

Evidence_ Right 
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For each block in Image A, we compare it with blocks directly above, below, to the left, 

and right of that corresponding block in Image B for dissimilarity. If the blocks have a 

small enough dissimilarity value, we can consider this as evidence in that direction. Thus, 

when we go through all the blocks in image A, all the evidence will be accumulated in 

every direction.  See the Implementation section for the methods we used to define the 

dissimilarity criterion (formulas and algorithms will be described there as well). 

 

Step 3: Decision Making 

 
Figure 7: Block Diagram of Decision Maker 

 

Once we accumulate all the evidence for all the blocks, we choose the largest of them and 

see if the majority of the evidence lies within in (>50% of the total evidence). If this is 

true, we have found adjacent images and their relative position; otherwise, we have found 

two very disjoint images. In the special case where all four evidences are above >20% 

(very uniformly distributed), we judge that the two images share the same field of view. 



6  Jason Lin, Xuanming Lu 

4 Implementation 
Designing the method to compute the dissimilarity criterion for two blocks is the most 

crucial part of our project.  As explained below, we have used two methods to 

accomplish this task. 

 

4.1 Method1: Mean Squared Error Technique 
The method here is rather typical and commonly used for basic comparison of blocks.   

Equation 1: MSE Technique 

 
In the MSE Technique, we simply take the average squared difference between each 

pixel in the blocks.  If the value is sufficiently small, we consider the images as 

dissimilar.  Here, we found the term, small, to be less than an error of 1000, which was 

optimal for the various cases of images we used. 

 

Although this method is fast and simple, it may run into problems if the two images are 

taken from different cameras (meaning that they are slightly rotated or angled).  Such 

rotations will generate a large MSE value and may lead to false detections.  As a result, 

we found a much more robust technique from [1], as explained in the following section. 

 

4.2 Method 2: Covariance Matrix Technique 
Basically, what this particular method does is to try to extract all the important features of 

each particular pixel in a block before we compare it with other blocks.  

 

For example, let us say we have an N x N block.  For each pixel inside of it, there are 

actually a few statistics that we may find useful.  Some things that probably come to 

mind immediately are the X and Y coordinates of the pixel, and the R/G/B values.  

Also, we apply the edge detection (Canny) to the image so that we can distinguish the 

boundaries of objects more clearly; we can see either a value or 0 or 1 in the pixel which 
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signifies that the edge is either not present or present respectively.  We place the 

features of pixel into a vector (as seen below): 

 
Equation 2: Feature Vector for Each Pixel 

 
Now we have 6 features (x, y, R, G, B, and edge detection).  Then, we simply apply the 

covariance matrix formula (an average of the difference between feature vector and the 

mean of the feature vectors) to obtain a 6 x 6 matrix to represent all the important 

features of our block. 
Equation 3: Covariance Matrix of Features 

 
To compute the dissimilarity between two blocks now, we find the sum of the squared 

logarithms of generalized eigenvalues between their covariance matrices (similar to that 

of the MSE approach) 
Equation 4: Dissimilarity Criterion 

 
If the dissimilarity is sufficiently small, this is our method of accumulating evidence.  

Here, we define the term, small, to be less than a dissimilarity value of 1, which was also 

the optimal value for the cases of images we used.  Note: all MATLAB code for these 

algorithms can be found in the Appendix. 
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5 Experimental Results 
We can separate results into two categories: those that are taken from the same camera 

and those that are taken from two cameras.  Each category will cover a part of the 

decisions that we must make. 

 

5.1 Case 1: Single Camera 

 

  
Image A Image B Image C Image D 

Figure 8: Detecting Left and Right 
 

MSE                               Covariance Matrix 

 A B C D 

A S L L L 

B R S L L 

C R R S L 

D R R R S 

    
Table 1: Detecting Left and Right 

 
 
Note: S – same field of view   L – row is to the left of column 
 
Here, what you see are four separate images, A-D, showing the CAS building and Marsh 

Plaza of BU.  Below it are the results we obtained from using both of our techniques, 

along with a legend to describe what each symbol means.  If you look along the 

 A B C D 

A S L L L 

B R S L L 

C R R S L 

D R R R S 
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diagonal of each of these images, we are obviously detecting the same field of view 

(since we’re comparing an image with itself).  What is important is that when we 

compare for example Image A with B, C, or D, we correctly detect that A is the left of 

them.  This works in the opposite direction when we compare B, C, and D with Image A 

to find that it is to the right.   

 

 

Image 1 Image 2 Image 3 

Figure 9: Detecting Above and Below 
 

 

MSE                                Covariance Matrix 

 

 

 

 

 

 

Table 2: Detecting Above and Below 
 

Note:  A – row is located above the column B– row is located below the column  

S – same field of view 

 

Here, we have three adjacent images 1, 2, and 3 which were taken using the PTZ2 

camera.  Again, we’ve found that both techniques have correctly found that Image 1 and 

 1 2 3 

1 S B B 

2 A S B 

3 A A S 

 1 2 3 

1 S B B 

2 A S B 

3 A A S 
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below Image 2 and 3, while Image 2 and 3 are above Image 1.  These examples show 

that both the MSE technique and Covariance work well under these circumstances.   

MSE Technique 

 
Covariance Matrix Technique 

 

Figure 10: Detecting Above and Below (with Luminance Differences) 
 

MSE                             Covariance Matrix 

 A1 B1 

A1 S D 

B1 D S 

 

Table 3: Detecting Above and Below (with luminance Differences) 

 

Note:  S – same field of view D – field of view is disjoint  

A – row is located above the column B– row is located below the column 

 A1 B1 

A1 S B 

B1 A S 
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Here is an example where the MSE technique fails as opposed to the covariance matrix 

technique.  The reason why MSE believes that the two images are disjoint is because of 

the large luminance differences between the images.  On the other hand, the covariance 

matrix can still correctly make the decision because the features are still well preserved in 

each block.  Therefore, we can already see that the covariance matrix is more robust, 

given this example. 

 

5.1 Case 2: Two Cameras 

  
PTZ1 PTZ2 

Figure 11: Field of View is the Same 
 

  

MSE                             Covariance Matrix 

 PTZ1 PTZ2 

PTZ 1 S D 

PTZ 2 D S 

 
Table 4: Field of View is the Same 

 
Note: S – same field of view D – field of view is disjoint  

 

 PTZ1 PTZ2 

PTZ 1 S S 

PTZ 2 S S 
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Here are two images taken from PTZ1 and 2 respectively, both of which are looking 

across the river at MIT.  To no surprise, the MSE approach again failed to detect that the 

two cameras are looking at the same scene (since the MSE is too large if the objects are 

just slightly rotated within the image).  On the other hand, the covariance matrix is more 

robust because we have again found that the features will hold in the two images, and 

we’ve correctly detected all that all the cases share the same field of view.   

 

  

PTZ1 PTZ2 

Figure 12: Adjacent Images (Left and Right) 
 

MSE                             Covariance Matrix 

 PTZ1 PTZ2 

PTZ 1 S D 

PTZ 2 D S 

 

Table 5: Adjacent Images (Left and Right) 

 

Note:  S – same field of view D – field of view is disjoint  

L – row is to the left of column R – row is to the right of column 

 

As a more complicated case, we have included one there two cameras are looking at 

adjacent scenes (PTZ1’s image is to the left of PTZ2’s image).  Again, we see the same 

problem in the MSE technique; however the covariance matrix still correctly detects it.   

 PTZ1 PTZ2 

PTZ 1 S L 

PTZ 2 R S 



13  Jason Lin, Xuanming Lu 

    
PTZ1 PTZ2 

Figure 13: Field of View is Disjoint 

 

MSE                             Covariance Matrix 

 PTZ1 PTZ2 

PTZ 1 S D 

PTZ 2 D S 

 

Table 6: Field of View is Disjoint 

 

Note:  S – same field of view D – field of view is disjoint  

L – row is to the left of column R – row is to the right of column  
 

Here is the last of our results, showing an example when the two images are completely 

disjoint.  To no surprise, both technique work correctly.  This happens primarily 

because the blocks between the images have significant differences. 

 

Therefore, we can see that from all of our results, we have accomplished the task that was 

introduced.  The next section will provide the conclusions that we have made. 

 PTZ1 PTZ2 

PTZ 1 S D 

PTZ 2 D S 
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6 Conclusions 
We find the following if we look at the advantages of the two above techniques: 

 

In terms of run-time of the actual algorithm, we see that the MSE technique completes in 

about 0.6 seconds and that the Covariance Matrix technique takes about 2.5 seconds per 

image.  Because of its simplicity, the MSE approach runs more than four times faster 

than the Covariance Matrix approach.  Although they are currently on the order of 

seconds, applying this for many images will result in much larger time differences.   

 

In terms of accuracy (correct decision making), we find that Covariance Matrix technique 

is better because it is more robust to rotations, illumination changes, and translations (as 

we have seen in the results). 

 

Overall, we’ve seen that the MSE approach works comparably well if a single camera 

looks at images, but fails miserably under multiple cameras.  Although it is considerably 

faster, we have seen that it is much too sensitive to points like small rotations.  

Therefore, it appears that the Covariance Matrix approach is our favorable method.  

Robustness comes before run-time. 

 

We believe that there still exists further room for improvements.  Rather than using 

fixed thresholds for make the decision for dissimilarity, it could be possible to make this 

value related to the entropy of the images (1000 may work only for our particular cases).  

Also, rather than just separating the images into N x N blocks with no overlap, we can 

introduce overlap between the blocks (to gain a better probability of correct detection).
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8 Appendix 

Below is listed Matlab source code developed for this project. This first section is the 

code for the Covariance Matrix Approach. 

%Xuanming Lu, Jason Lin 
%EC520 
%Final Project: Discovery of camera network topology 
  
close all 
clc 
clear all 
  
tic 
%load images 
%L_jpg = imread('Marsh_Plaza_Left.jpg'); 
%R_jpg = imread('Marsh_Plaza_Right.jpg'); 
image1 = '1'; 
image2 = '2'; 
L_jpg = imread([image1 '.jpg']); 
R_jpg = imread([image2 '.jpg']); 
L = double(L_jpg); 
R = double(R_jpg); 
  
%resize image if they are not already the same size 
ratio = prod(size(L))/prod(size(R)); 
if(ratio ~=1) 
    if(ratio>1) 
        R2 = interp(R(:),ratio); 
        R = reshape(R2,size(L)); 
    else 
        L2 = interp(L(:),1/ratio); 
        L = reshape(L2,size(R)); 
    end 
end 
  
%defines all parameters 
%N is the length and width of a block 
N = 64; 
%dissimilarity_threshold is the maximum dissimilarity you will tolerate to 
%define two blocks are similar 
dissimilarity_threshold = 1; 
%evidence_threshold is the minimum percentage of evidence you will tolerate 
%to come with a conclusion for left, right, above, or below images 
evidence_threshold = 0.50; 
%initialize all evidence 
evidence_right = 0; 
evidence_left = 0; 
evidence_above = 0; 
evidence_below = 0; 
%percentage of tolerable evidence from all directions to consider same 
%field of view 
same_fov_threshold = 0.20; 
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%divide each matrix up into N x N images 
dim_L =1; 
[m_L,n_L,o_L] = size(L); 
%number of blocks in the horizontal and vertical direction of our original 
%image 
horizontal_blocks_L = floor(n_L/N); 
vertical_blocks_L = floor(m_L/N); 
A = zeros(N,N,o_L,horizontal_blocks_L*vertical_blocks_L); 
for i = 1:N:m_L-N+1, 
    for j = 1:N:n_L-N+1,         
        A(:,:,:,dim_L) = L(i:i+N-1,j:j+N-1,1:o_L); 
        %calculates the covariance matrix of A 
        C_A(:,:,dim_L) = covariance_matrix(A(:,:,:,dim_L)); 
        dim_L = dim_L + 1; 
    end 
end 
  
dim_R =1; 
[m_R,n_R,o_R] = size(R); 
%number of blocks in the horizontal and vertical direction of our original 
%image 
horizontal_blocks_R = floor(n_R/N); 
vertical_blocks_R = floor(m_R/N); 
B = zeros(N,N,o_R,horizontal_blocks_R*vertical_blocks_R); 
for i = 1:N:m_R-N+1, 
    for j = 1:N:n_R-N+1,         
        B(:,:,:,dim_R) = R(i:i+N-1,j:j+N-1,1:o_R); 
        %calculates the covariance matrix of B 
        C_B(:,:,dim_R) = covariance_matrix(B(:,:,:,dim_R)); 
        dim_R = dim_R + 1; 
    end 
end 
  
  
%loop through each block A in L and compare it with the respective 
%blocks to the left, right, top, and bottom of it 
for loop = 1:dim_L-1, 
    %compare blocks to the left of current position in A 
    for left = loop-mod(loop-1,horizontal_blocks_R):loop, 
        D = dissimilarity(C_A(:,:,loop),C_B(:,:,left)); 
        if(D<dissimilarity_threshold) 
            evidence_left = evidence_left+1; 
        end 
    end 
    %compare blocks to the right of current position in A 
    for right = 
loop:loop+(horizontal_blocks_R-1-mod(loop-1,horizontal_blocks_R)), 
        D = dissimilarity(C_A(:,:,loop),C_B(:,:,right)); 
        if(D<dissimilarity_threshold) 
            evidence_right = evidence_right+1; 
        end 
    end 
    %compare blocks above current position in A 
    for above = loop:-horizontal_blocks_R:1, 
        D = dissimilarity(C_A(:,:,loop),C_B(:,:,above)); 
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        if(D<dissimilarity_threshold) 
            evidence_above = evidence_above+1; 
        end 
    end 
    %compare blocks below current position in A 
    for below = 
loop:horizontal_blocks_R:horizontal_blocks_R*vertical_blocks_R, 
        D = dissimilarity(C_A(:,:,loop),C_B(:,:,below)); 
        if(D<dissimilarity_threshold) 
            evidence_below = evidence_below+1; 
        end 
    end 
end 
  
%obtain conclusion 
conclusion = getconclusion(image1, image2, evidence_right, evidence_left, 
evidence_above, evidence_below, evidence_threshold, same_fov_threshold); 
%plots the results 
figure(1); 
subplot(1,2,1), 
imshow(L_jpg); 
title(['Image ' image1 ': ' conclusion]) 
subplot(1,2,2), 
imshow(R_jpg); 
title(['Image ' image2 ': ' conclusion]) 
toc 
 
 
%calculate the covariance matrix of each matrix 
function C = covariance_matrix(A) 
%takes features like x,y,R,G,B, and edge detection 
[m_A,n_A,o_A] = size(A); 
i = 1:n_A; 
j = 1:m_A; 
%gets the x and y components 
i_component = repmat(j,n_A,1)'; 
j_component = repmat(i,m_A,1); 
%gets the rgb components 
A_RGB = reshape(A,[],3); 
%gets the edge 
A_Edge = edge(rgb2gray(uint8(A)),'canny'); 
%puts all the components into a set of feature vectors 
features = cat(2, j_component(:), A_RGB); 
features = cat(2, i_component(:), features); 
features = cat(2, features, A_Edge(:)); 
%obtains the covariance matrix based on those features 
C = cov(double(features)); 
 
 
%calculates the dissimilarity between two blocks 
function D = dissimilarity(A,B) 
%generalized eigenvalues of A and B 
E = eig(A,B); 
%compute the dissimilarity between covariance matrices 
D = sqrt(sum(log(E).^2)); 
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%obtain the conclusion (relationship between images) based on our evidence 
function conclusion = getconclusion(image1, image2, evidence_right, 
evidence_left, evidence_above, evidence_below, evidence_threshold, 
same_fov_threshold) 
total_evidence = evidence_right + evidence_left + evidence_above + 
evidence_below; 
%error check for divide by zero(in case the total is equal to 0) 
if(total_evidence==0) 
    conclusion = ['Field of Views (' image1  ' and ' image2 ') are disjoint']; 
elseif (evidence_right/total_evidence > evidence_threshold) 
    conclusion = ['Field of Views are Adjacent - ' image1  ' is to the right 
of ' image2]; 
elseif (evidence_left/total_evidence > evidence_threshold) 
    conclusion = ['Field of Views are Adjacent - ' image1  ' is to the left 
of ' image2]; 
elseif (evidence_above/total_evidence > evidence_threshold) 
    conclusion = ['Field of Views are Adjacent - ' image1  ' is above ' image2]; 
elseif (evidence_below/total_evidence > evidence_threshold) 
    conclusion = ['Field of Views are Adjacent - ' image1  ' is below ' image2]; 
elseif 
((evidence_right>same_fov_threshold*total_evidence)&&(evidence_left>sam
e_fov_threshold*total_evidence)&&(evidence_above>same_fov_threshold*tot
al_evidence)&&(evidence_below>same_fov_threshold*total_evidence)) 
    conclusion = ['Field of Views (' image1  ' and ' image2 ') are the same']; 
else 
    conclusion = ['Field of Views (' image1  ' and ' image2 ') are disjoint']; 
end 
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This second section is the code for the Mean Squared Error Approach. 
 
%Xuanming Lu, Jason Lin 
%EC520 
%Final Project: Discovery of camera network topology 
  
clc 
clear all 
  
tic 
%load images 
%L_jpg = imread('Marsh_Plaza_Left.jpg'); 
%R_jpg = imread('Marsh_Plaza_Right.jpg'); 
image1 = 'A'; 
image2 = 'B'; 
L_jpg = imread([image1 '.jpg']); 
R_jpg = imread([image2 '.jpg']); 
L = double(L_jpg); 
R = double(R_jpg); 
  
%resize image if they are not already the same size 
ratio = prod(size(L))/prod(size(R)); 
if(ratio ~=1) 
    if(ratio>1) 
        R2 = interp(R(:),ratio); 
        R = reshape(R2,size(L)); 
    else 
        L2 = interp(L(:),1/ratio); 
        L = reshape(L2,size(R)); 
    end 
end 
  
%defines all parameters 
%N is the length and width of a block 
N = 64; 
%dissimilarity_threshold is the maximum dissimilarity you will tolerate to 
%define two blocks are similar 
dissimilarity_threshold = 1; 
%evidence_threshold is the minimum percentage of evidence you will tolerate 
%to come with a conclusion for left, right, above, or below images 
evidence_threshold = 0.50; 
%initialize all evidence 
evidence_right = 0; 
evidence_left = 0; 
evidence_above = 0; 
evidence_below = 0; 
%percentage of tolerable evidence from all directions to consider same 
%field of view 
same_fov_threshold = 0.20; 
  
%divide each matrix up into N x N images 
dim_L =1; 
[m_L,n_L,o_L] = size(L); 
%number of blocks in the horizontal and vertical direction of our original 
%image 
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horizontal_blocks_L = floor(n_L/N); 
vertical_blocks_L = floor(m_L/N); 
A = zeros(N,N,o_L,horizontal_blocks_L*vertical_blocks_L); 
for i = 1:N:m_L-N+1, 
    for j = 1:N:n_L-N+1,         
        A(:,:,:,dim_L) = L(i:i+N-1,j:j+N-1,1:o_L); 
        %calculates the covariance matrix of A 
        C_A(:,:,dim_L) = covariance_matrix(A(:,:,:,dim_L)); 
        dim_L = dim_L + 1; 
    end 
end 
  
dim_R =1; 
[m_R,n_R,o_R] = size(R); 
%number of blocks in the horizontal and vertical direction of our original 
%image 
horizontal_blocks_R = floor(n_R/N); 
vertical_blocks_R = floor(m_R/N); 
B = zeros(N,N,o_R,horizontal_blocks_R*vertical_blocks_R); 
for i = 1:N:m_R-N+1, 
    for j = 1:N:n_R-N+1,         
        B(:,:,:,dim_R) = R(i:i+N-1,j:j+N-1,1:o_R); 
        %calculates the covariance matrix of B 
        C_B(:,:,dim_R) = covariance_matrix(B(:,:,:,dim_R)); 
        dim_R = dim_R + 1; 
    end 
end 
  
  
%loop through each block A in L and compare it with the respective 
%blocks to the left, right, top, and bottom of it 
for loop = 1:dim_L-1, 
    %compare blocks to the left of current position in A 
    for left = loop-mod(loop-1,horizontal_blocks_R):loop, 
        D = dissimilarity(C_A(:,:,loop),C_B(:,:,left)); 
        if(D<dissimilarity_threshold) 
            evidence_left = evidence_left+1; 
        end 
    end 
    %compare blocks to the right of current position in A 
    for right = 
loop:loop+(horizontal_blocks_R-1-mod(loop-1,horizontal_blocks_R)), 
        D = dissimilarity(C_A(:,:,loop),C_B(:,:,right)); 
        if(D<dissimilarity_threshold) 
            evidence_right = evidence_right+1; 
        end 
    end 
    %compare blocks above current position in A 
    for above = loop:-horizontal_blocks_R:1, 
        D = dissimilarity(C_A(:,:,loop),C_B(:,:,above)); 
        if(D<dissimilarity_threshold) 
            evidence_above = evidence_above+1; 
        end 
    end 
    %compare blocks below current position in A 
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    for below = 
loop:horizontal_blocks_R:horizontal_blocks_R*vertical_blocks_R, 
        D = dissimilarity(C_A(:,:,loop),C_B(:,:,below)); 
        if(D<dissimilarity_threshold) 
            evidence_below = evidence_below+1; 
        end 
    end 
end 
  
%obtain conclusion 
conclusion = getconclusion(image1, image2, evidence_right, evidence_left, 
evidence_above, evidence_below, evidence_threshold, same_fov_threshold); 
%plots the results 
figure(1); 
subplot(1,2,1), 
imshow(L_jpg); 
title(['Image ' image1 ': ' conclusion]) 
subplot(1,2,2), 
imshow(R_jpg); 
title(['Image ' image2 ': ' conclusion]) 
toc 
 
 
%calculates the dissimilarity between two blocks 
function D = dissimilarity(A,B) 
%generalized eigenvalues of A and B 
E = eig(A,B); 
%compute the dissimilarity between covariance matrices 
D = sqrt(sum(log(E).^2)); 
 
 
%obtain the conclusion (relationship between images) based on our evidence 
function conclusion = getconclusion(image1, image2, evidence_right, 
evidence_left, evidence_above, evidence_below, evidence_threshold, 
same_fov_threshold) 
total_evidence = evidence_right + evidence_left + evidence_above + 
evidence_below; 
%error check for divide by zero(in case the total is equal to 0) 
if(total_evidence==0) 
    conclusion = ['Field of Views (' image1  ' and ' image2 ') are disjoint']; 
elseif (evidence_right/total_evidence > evidence_threshold) 
    conclusion = ['Field of Views are Adjacent - ' image1  ' is to the right 
of ' image2]; 
elseif (evidence_left/total_evidence > evidence_threshold) 
    conclusion = ['Field of Views are Adjacent - ' image1  ' is to the left 
of ' image2]; 
elseif (evidence_above/total_evidence > evidence_threshold) 
    conclusion = ['Field of Views are Adjacent - ' image1  ' is above ' image2]; 
elseif (evidence_below/total_evidence > evidence_threshold) 
    conclusion = ['Field of Views are Adjacent - ' image1  ' is below ' image2]; 
elseif 
((evidence_right>same_fov_threshold*total_evidence)&&(evidence_left>sam
e_fov_threshold*total_evidence)&&(evidence_above>same_fov_threshold*tot
al_evidence)&&(evidence_below>same_fov_threshold*total_evidence)) 
    conclusion = ['Field of Views (' image1  ' and ' image2 ') are the same']; 
else 
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    conclusion = ['Field of Views (' image1  ' and ' image2 ') are disjoint']; 
end 
 
 
 


