

Motion Filtering
Jiaxu Fu, Virginia Ruiz Albacete

Advisor: Prof. Konrad

May 3, 2010

Boston University

Department of Electrical and Computer Engineering

EC-720 Technical report

BOSTON

UNIVERSITY

Summary

This project presents a successful algorithm to filter out moving objects, based on

their orientation and speed, based on sliding block matching and dynamic thresholding.

Different experiments were carried out in order to prove its efficiency and an objective

measure of its efficiency was computed.

Contents

1. Introduction ...1

2. Problem Definition ..9

3. Methodology and Implementation ..9

4. Experimental Results ..11

5. Speed Filtering ..11

6. Conclusions and Future Work ...11

7. Appendix ..12

8. References ..14

List of Figures

Fig. 1 Algorithm Flow Chart 4

Fig. 2 Sliding Block Method 5

Fig. 3 Background Edge Flow 6

Fig. 4 Dynamic Thresholding without Edge Flow Information 7

Fig. 5 Dynamic Thresholding using Background Edge Flow 8

Fig. 6 Motion Filtering 9

Fig. 7 Results after Noise Reduction 9

Fig. 8 (a): Ideal Horizontal Vector Field (b): Extracted Horizontal, Vertical and

Diagonal Motion 10

Fig. 9 (a): Ideal Vertical Vector Field (b): Extracted Horizontal, Vertical and

Diagonal Motion 10

Fig. 10 (a) Ideal Diagonal Vector Field (b): Extracted Horizontal, Vertical and

Diagonal Motion 11

Fig. 11 (a) Ideal Mixed Orientations Vector Field (b): Extracted Horizontal, Vertical

and Diagonal Motion 11

Fig. 12 (a) Ideal Flower-Like Vector Field (b): Extracted Horizontal, Vertical and

Diagonal Motion 11

Fig. 13 Horizontal video filtered with (a) fixed thresholding (b) dynamic thresholding

 12

Fig. 14 Diagonal video filtered with (a) fixed thresholding (b) dynamic thresholding

 13

Fig. 15 Speed Filtering Thresholding 15

Fig. 16 (a) Ideal Flower-Like Vector Field (b): Extracted Fast and Slow Motion 15

List of Tables

Table 1: Percentage of moving pixels per category 14

1 Jiaxu Fu, Virginia Ruiz Albacete

1 Introduction

 Since its origins, video recording has become an essential technology in different

fields, such as surveillance or data capturing, due to its efficiency in analyzing different

environments and situations. These video sequences require human check, whether they

are used for security purposes or information analysis. As a result of dramatic decreases

in the cost of both cameras and storage devices, the amount of video data stored has

significantly grown, and with this growth comes the need to for automatic data analysis.

Motion detection is no longer the optimal solution for general examination of a video.

Thus, it is necessary to develop a technique that allows for the interpretation of a video or

the filtering out of noteworthy data from a sequence without having to sift through the

entire thing. This can also be valuable for compression purposes and data storage, where

only the data of interest would be extracted and used.

2 Jiaxu Fu, Virginia Ruiz Albacete

2 Problem Definition

 The goal is to develop an algorithm to filter out certain motions (direction, speed) in

a video sequence. Thus, only objects moving with certain velocities or orientation would

be extracted and displayed. The algorithm sequence can be seen in Figure 1.

2.1 Literature Review

While performing our initial research, we discovered a number of ways that motion

filtering can be achieved. The most important ones can be summarized as follows:

� Object tracking:

Its goal is to detect a certain known object and follow its trajectory by finding its

shape in consecutive frames. However, this method is not appropriate for the purpose of

this study because the goal is to filter out any object moving in certain directions.

� Frequency Domain:

One of the implementations that uses this approach of motion detection is described

in Heeger’s paper [2] based on Gabor Filters in the spatiotemporal-frequency domain. It

shows how the power spectrum of a moving signal occupies a plane that can be filtered

out to extract different motions. A discussion on this technique can be found in Loya

Zorn and Amarnat’s EC720 Final Project.

� Optical Flow:

Optical flow can be defined as the pattern of apparent motion of objects caused by

the relative motion between an observer and the scene. Although this idea does not fully

solve our problem, it will be the inspiration of our project [3].

2.2 Assumptions

In order to simplify the problem, some assumptions must be taken into

consideration:

3 Jiaxu Fu, Virginia Ruiz Albacete

� The objective is to obtain two filters: one will segment the images by orientation

and the other one by relative velocity. In this project, the filters will be applied

separately.

� Only three different motion orientations will be taken into account. For each

image sequence, the horizontal, vertical and diagonal movements will be

extracted. This means that orientations are normalized between [0º, 90º]; for

example, no distinction will be made between a car moving from left to right

versus right to left; they will both be considered to be moving horizontally.

� When talking about speed segmentation, no absolute value will be computed. The

velocity filtering will be relative to the different motions in the image. Therefore,

objects will be extracted based on whether they are faster or slower than one

another.

� The algorithm will be used to analyze mainly street scenes. This assumption will

be used in order to improve the method, based on the previous information that

these videos contain (straight simple movement). It can be useful to separate

different flows of traffic that occur in an intersection in order to analyze a

highway and a secondary road separately.

� Two different cameras will be used to test the algorithm:

1. ISS network cameras: Used for the horizontal and diagonal sequences. 250

frames will be captured and processed from these cameras. Each picture has a resolution

of 240 x 320 pixels. These cameras present some inconveniences such as missed frames

(which will cause the image to jump) or hard shakes when zooming to far-away

locations.

2. Sony DSC-H1 camera: Camera used to record complex scenes (such as

intersections where more than one movement is present). Since the resolution of this

camera is of 480 x 640 pixels, a smaller number of frames were captured.

4 Jiaxu Fu, Virginia Ruiz Albacete

3 Methodology and Implementation

Figure 1: Algorithm Flow Chart

5

3.1 Vector Field Extraction

The method develop

accurately describe the displacement of moving objects, i

vector to every pixel in the image. This is achieved through the sliding

(Figure 2), where the image is divided in

backward block is applied to it. The computed

the center pixel of the block. Then this block will be moved over by one pixel to repeat

the same process.

The main idea behind block matching is to create a block big enough to avoid large,

flat, constant areas that would disrupt its

to avoid containing

compromise between

different block size has been assigned

been taken into consideration for the search window since some of the m

more displacement than others (e.g. far away areas seem to move slower than closer

movements).

3.2 Background Edge Flow

As previously mentioned, the main goal of this algorithm is to analyze street videos.

These scenes contain some informa

algorithm. For example, it would be possible for someone to tell the direction in which

Figure 2: Sliding Block Method

 Jiaxu Fu, Virginia Ruiz Albacete

Vector Field Extraction
The method developed in this project is based on vector field motion

accurately describe the displacement of moving objects, it is necessary to assign a motion

vector to every pixel in the image. This is achieved through the sliding

here the image is divided into blocks with fixed size

backward block is applied to it. The computed displacement vector will be assigned to

the center pixel of the block. Then this block will be moved over by one pixel to repeat

The main idea behind block matching is to create a block big enough to avoid large,

that would disrupt its tracking in successive frames, but small enough

containing more than one object (such as two cars fo

compromise between these two objectives has been performed by

different block size has been assigned for each video sequence.

been taken into consideration for the search window since some of the m

more displacement than others (e.g. far away areas seem to move slower than closer

Background Edge Flow

mentioned, the main goal of this algorithm is to analyze street videos.

These scenes contain some information that can improve the performance of the

algorithm. For example, it would be possible for someone to tell the direction in which

: Sliding Block Method

Jiaxu Fu, Virginia Ruiz Albacete

ed in this project is based on vector field motion estimation. To

necessary to assign a motion

vector to every pixel in the image. This is achieved through the sliding block method

blocks with fixed sizes and a matching

vector will be assigned to

the center pixel of the block. Then this block will be moved over by one pixel to repeat

The main idea behind block matching is to create a block big enough to avoid large,

frames, but small enough

more than one object (such as two cars for example). The

by manual inspection. A

. A similar process has

been taken into consideration for the search window since some of the motions present

more displacement than others (e.g. far away areas seem to move slower than closer

mentioned, the main goal of this algorithm is to analyze street videos.

tion that can improve the performance of the

algorithm. For example, it would be possible for someone to tell the direction in which

6 Jiaxu Fu, Virginia Ruiz Albacete

cars will move without seeing any object passing by simply by looking at the orientation

of the lines of the lanes or the guard rails. To make use of this information, a background

edge flow detection algorithm has been implemented. After converting a frame into a

white and black image and applying

some morphological operations to it, the

intensity gradient is computed. This

essentially captures the rate of change.

Thus, in the ideal case, detection of zero-

crossings in the second derivative

captures local maxima in the gradient, as

it can be seen in Figure 3.

This step will return an angle with

the strongest orientation of the

background edge flow. In the case that

this orientation is not strong enough or doesn’t exist (e.g. in an intersection), no specific

angle will be obtained.

3.3 Dynamic Threshold

Based on the vector field and the background edge flow angle obtained from the

previous steps, our goal is to separate the motions captured in a video in three different

directions: vertical, horizontal and diagonal.

Since there is a vector defining each pixel in the image, it is possible to obtain the

angle Θ of each moving pixel through basic trigonometry:

Θ = arctg (Y/X)

Where Y is the vertical displacement and X is the horizontal displacement.

In order to classify the motions, it is necessary to set a threshold angle that will

decide which motion falls under which orientation. If a fixed threshold is used, a manual

Figure 3: Background Edge Flow

7 Jiaxu Fu, Virginia Ruiz Albacete

inspection of the images will be needed in order to adjust this parameter to different

sequences. However, our goal is to create an automatic algorithm to filter out the motion.

This can be achieved by using the previous information obtained through the background

edge flow.

The solution implemented in this project uses

Gaussian distributions as thresholds. Gaussian

functions (Equation 1) can be defined by 2

parameters: the mean and the variance. Three

different Gaussian distributions are created to

represent a horizontal, diagonal and vertical threshold. These distributions will be

centered at 0°, 45° and 90°, respectively (through their means), and their variances will

depend on the background edge flow, where the previous knowledge will be applied.

If we represented all the angles of the

vector field in a histogram like the one

showed in Figure 4, when applying the three

Gaussian functions, the angles will be scaled

by each of them, producing three weighted

values. The highest of these values will

determine which orientation the angle falls

under (if the highest value is the result of the

scaling by the horizontal Gaussian, then the

angle will be classified as horizontal, and so

on). Assume that no previous information is obtained, that is, either there is not a strong

edge flow orientation or no background analysis method has been applied. In this case,

the three Gaussians will have the same variance, and they will act as fixed thresholds,

separating the angles at 30º and 60º.

However, if the background edge has a significant value for a specific angle, for

example, it has a higher horizontal component, it seems reasonable to allow the variation

of the Gaussian distribution centered at 0º (horizontal) to be greater than the variations of

Equation 1: Gaussian Function

Figure 4: Dynamic Thresholding without Edge

Flow Information

8 Jiaxu Fu, Virginia Ruiz Albacete

the other two Gaussians. This will have no

impact for the pixels close to the Gaussian

means, since their highest value will be given

when being scaled by the closer Gaussian.

However, more of the intermediate angles will

fall under the Gaussian with a larger variance.

In Figure 5 this can be seen as raising the

threshold of one of the functions. For the first

graph, the horizontal Gaussian (centered at 0º)

has a larger variance than the other two. Thus,

the crossing point with the diagonal Gaussian

(centered at 45º) is greater than the crossing

point of the two functions for fixed threshold.

This means that all the pixels that fall under this

function before the crossing point will be

considered as horizontal, because their greater

value will be obtained when scaling them by

this Gaussian. This remains true for the other orientations as well.

3.4 Motion Filtering

Once the moving pixels have been assigned a certain motion, they must be displayed

separately. To do so, three different masks are created: horizontal, diagonal and vertical.

By applying these masks to the original frame, one can successfully extract the moving

pixels of the image. As it can be seen in Figure 6, for each frame, three different images

will be obtained containing the horizontally, diagonally and vertically moving pixels.

Successive motion-extracted frames will form a video of the filtered objects.

Figure 5: Dynamic Thresholding using Background

Edge Flow

9

3.5 Noise Reduction

The use of sliding block matching methods to extract the vec

mismatches and other errors that produce noise at the output of the algorithm. However,

these incorrect vector fields can be considered as uncorrelated noise (noise and pepper)

and can therefore be reduced by applying a median filter.

will be smoothed out, the results will be improved, as it can be seen in Figure 7.

Figure 7: Results after Noise Reduction

Figure 6: Motion Filtering

 Jiaxu Fu, Virginia Ruiz Albacete

Noise Reduction

The use of sliding block matching methods to extract the vec

mismatches and other errors that produce noise at the output of the algorithm. However,

vector fields can be considered as uncorrelated noise (noise and pepper)

be reduced by applying a median filter. Although the filtered image

t, the results will be improved, as it can be seen in Figure 7.

: Results after Noise Reduction

: Motion Filtering

Jiaxu Fu, Virginia Ruiz Albacete

The use of sliding block matching methods to extract the vector field can lead to

mismatches and other errors that produce noise at the output of the algorithm. However,

vector fields can be considered as uncorrelated noise (noise and pepper)

Although the filtered image

t, the results will be improved, as it can be seen in Figure 7.

10 Jiaxu Fu, Virginia Ruiz Albacete

4 Experimental Results

In order to show our method works, three experiments are conducted: apply the

method to a simulated ideal vector field; test it on frame pairs captured by cameras; and

apply the algorithm to different video sequences.

4.1 Synthetic Results: Experiments on Simulated Ideal Vector

Field

Five ideal vector fields are generated to prove whether our method can extract

motions along horizontal, vertical and diagonal directions, respectively. The results will

be displayed in three windows, each showing the extracted horizontal, diagonal and

vertical extracted pixels. A moving pixel will create a white dot in the corresponding

output. Black pixels correspond to non-moving areas for that orientation. Results are

shown from Figures 8 – 12.

(a) (b)

(a) (b)

Figure 8: (a): Ideal Horizontal Vector Field (b): Extracted Horizontal, Vertical and Diagonal

Motion

Figure 9: (a): Ideal Vertical Vector Field (b): Extracted Horizontal, Vertical and Diagonal Motion

11

Figure 10: (a) Ideal Diagonal

Figure 11: (a) Ideal Mixed Orientations

Motion

Figure 12: (a) Ideal Flower-Like

 Jiaxu Fu, Virginia Ruiz Albacete

(a) (b)

 (a) (b)

(a) (b)

iagonal Vector Field (b): Extracted Horizontal, Vertical and

Mixed Orientations Vector Field (b): Extracted Horizontal,

Like Vector Field (b): Extracted Horizontal, Vertical and Diagonal Motion

Jiaxu Fu, Virginia Ruiz Albacete

(b)

ertical and Diagonal Motion

orizontal, Vertical and Diagonal

ted Horizontal, Vertical and Diagonal Motion

12 Jiaxu Fu, Virginia Ruiz Albacete

4.2 Image comparison: Experiment on image pairs captured by

cameras.

The procedure explained above has been implemented and tested in two different

pairs of images: one with mainly diagonal components and another with mainly

horizontal components. When trying to explore the vertical motion, we realized that a

helicopter view would be required to record it; frontally captured image sequences would

involve an object size change when moving toward or away from the camera that would

make the block matching method fail. To prove the efficiency of this method, the results

obtained by applying the background information are compared to those obtained without

its application.

(a) (b)

Figure 13: Horizontal video filtered with (a) fixed thresholding (b) dynamic thresholding

13 Jiaxu Fu, Virginia Ruiz Albacete

(a) (b)

As we can see from the results in Figures 13 and 14, the background orientation

implementation affects to the results positively. The incorrect assignation of moving

pixels is mainly due to erroneous vector field extraction, and not dubious vectors.

4.3 Video Results: Experiment on image sequences

In the stage of experiments, our motion filter is applied for three image sequences

which contain horizontal motion, diagonal motion and complex motion respectively. And

the results show that our algorithm can successfully extract motions alone in three

directions.

4.4 Objective Measure

When dealing with images, the subjective impression of the results is the main

concern. However, an objective measure is also needed in order to analyze and compare

the performance of this algorithm. Since to obtain a true answer for this problem, a

manual adjustment of all the image sequences would be needed, another measure is

Figure 14: Diagonal video filtered with (a) fixed thresholding (b) dynamic thresholding

14 Jiaxu Fu, Virginia Ruiz Albacete

developed. Assuming a horizontal image sequence, the percentage of pixels that are

filtered out as horizontally moving is computed. A comparison with the other percentages

(% vertical and % diagonal moving pixels) will estimate the behavior of this method.

Image Sequence
Horizontal

moving pixels (%)

Vertical

moving pixels (%)

Diagonal

moving pixels (%)

Horizontal Road 63.2047 20.4748 16.3205

Diagonal Road 2.1460 5.1495 92.4345

Intersection Road 9.4373 30.0656 60.4917

Table 1: Percentage of moving pixels per category

As it can be seen in Table 1, the best performance is given for the diagonal road

where over 92% of the pixels are correctly classified. The horizontal road has a higher

error due to optical effects of the recorded data (the camera deviates the image slightly on

the edge, creating a diagonal effect). The intersection road simulates a more complex

scenario, where two different motions can be seen: horizontal and diagonal. The most

abundant one is the diagonal direction. However, the high percentage of vertically

moving pixels is due to the shaking of the camera and the zoom.

15

5 Speed Filtering

5.1 Methodology

The second part of this project focuses on filtering the images in a video

to different speeds. The process followed for this task is basically the same as the one

used to filter out orientations, but this time

discriminator of the process.

computed as half the length of the average vector obtained from the 4 longer vectors of

the vector field (Figure 15)

measure we aim to obtain some resiliency against errors, since a long mismatched vector

could derive to wrong speed filtering.

5.2 Experimental Results

As explained for orientation filtering, a previous analysis of our method was carried

out using ideal vector fields.

Figure 16: (a) Ideal Flower-Like Vector F

Figure 15: Speed Filtering Threshold

 Jiaxu Fu, Virginia Ruiz Albacete

Speed Filtering

Methodology

The second part of this project focuses on filtering the images in a video

The process followed for this task is basically the same as the one

used to filter out orientations, but this time the length of the vectors will be

discriminator of the process.

In order to generalize the

method for any set of images,

the filtered speed is going to

be relative to the other speeds

in the image avoiding

more

Therefore, the threshold is

f the length of the average vector obtained from the 4 longer vectors of

(Figure 15), without taking into account the largest one. With this

measure we aim to obtain some resiliency against errors, since a long mismatched vector

wrong speed filtering.

Experimental Results

As explained for orientation filtering, a previous analysis of our method was carried

out using ideal vector fields.

Like Vector Field (b): Extracted Fast and Slow Motion

: Speed Filtering Thresholding

Jiaxu Fu, Virginia Ruiz Albacete

The second part of this project focuses on filtering the images in a video according

The process followed for this task is basically the same as the one

the length of the vectors will be the main

In order to generalize the

method for any set of images,

the filtered speed is going to

be relative to the other speeds

in the image avoiding once

 a fixed threshold.

Therefore, the threshold is

f the length of the average vector obtained from the 4 longer vectors of

, without taking into account the largest one. With this

measure we aim to obtain some resiliency against errors, since a long mismatched vector

As explained for orientation filtering, a previous analysis of our method was carried

Motion

16 Jiaxu Fu, Virginia Ruiz Albacete

In Figure 16, the successful results of this algorithm can be seen: when extracting

fast motions, the vectors with vector of length greater than the threshold will have an

output of one (white) and vice versa for slow motions. However, when applying this

method to real video sequences, the outcome is acceptable only for videos with much

differentiated speed objects. This is due to the fact that the block matching method used

to obtain the vector field performs poorly for uniform moving areas. While the

orientation of the displacement vectors may be more or less accurate, they can point at

any pixel in the uniform area. Therefore, for some video sequences the fast filter will

show the outline of the cars, while the slow filter will obtain the inside of the objects.

17 Jiaxu Fu, Virginia Ruiz Albacete

6 Conclusions and Future Work

This project presents a successful algorithm to filter out moving objects, based on

their orientation and speed, based on sliding block matching and dynamic thresholding.

Different experiments were carried out in order to prove its efficiency and an objective

measure of its efficiency was computed.

After these experiments, the sliding block matching method has been found to

perform acceptably well in obtaining the pixels’ orientation, but poorly in uniform

moving areas. Another source of outcome noise is due to mismatching and luminance and

focal lens changes.

For future work, it would be necessary to improve video segmentation based on

speed, with morphological techniques or object tracking methods that would mitigate the

mismatching produced through sliding block matching.

Also, a simultaneous orientation and speed filtering would be desirable, in order to

simplify security tasks and others.

 Apply simultaneous [orientation and speed] segmentation.

18 Jiaxu Fu, Virginia Ruiz Albacete

7 Appendix: Matlab Codes

% Project EC720% Project EC720% Project EC720% Project EC720

%main%main%main%main

close all
clear all
clc

%load video_hor.mat
%load video_diag.mat
%load video_road36.mat % Vertical
load video_road34.mat % intersection

%video = video_hor;
%video = video_diag;
%video = video_road36;
video = video_road34;

%% Sizes
% Diagonal: BS = 22; WS = 20; NF = 251;
% Horizontal: BS = 30; WS = 22; NF = 251;
% Vertical: BS = 45; WS = 15; NF = 143
% Intersection: BS = 22; WS = 15; NF = 170

BS = 22; % Block Size
WS = 15; % Window size (#pixels we are going to move up&down)
%INC = BS; % Disjoint block matching
INC = 1; % Sliding block matching

NF = 169; %Number frames

%% Compute the Vector field of the frame

19 Jiaxu Fu, Virginia Ruiz Albacete

a = double(rgb2gray(video.frames(1).cdata));
[ma,na]= size(a);

% Structure to save results
Frames = struct('VF', zeros(ma,na,2),'Horizontal',zeros(ma,na), 'Vertical',zeros(ma,na), 'Diagonal',
zeros(ma,na));
Frames(1,1:NF) = Frames;

for i = 1:NF
 b = double(rgb2gray(video.frames(i).cdata));

 [d_sq, e_sq] = VectorField2 (a, b, BS, WS, INC);

 % Obtain frame's motion
 [H_frame, V_frame, D_frame] = MotionSepPlot (b, d_sq, BS);

 % Save values in a struct
 Frames(1,i).VF = d_sq;
 Frames(1,i).Horizontal = H_frame;
 Frames(1,i).Vertical = V_frame;
 Frames(1,i).Diagonal = D_frame;

 a = b;
end

%save 'FramesHorizontal.mat' Framessave 'FramesIntersection.mat' Frames

function [d_sq, e_sq] = VectorField2 (a, b, BS, WS, INC)function [d_sq, e_sq] = VectorField2 (a, b, BS, WS, INC)function [d_sq, e_sq] = VectorField2 (a, b, BS, WS, INC)function [d_sq, e_sq] = VectorField2 (a, b, BS, WS, INC)

% load video_hor.mat
% a = double(rgb2gray(video_hor.frames(1).cdata));
% b = double(rgb2gray(video_hor.frames(3).cdata));

20 Jiaxu Fu, Virginia Ruiz Albacete

% BS = 16; % Block Size
% WS = 20; % Window size (#pixels we are going to move up&down)

[ma,na]= size(a);

% To avoid boundary problems, we create a boundary of "infinite" (255)
% values
%brep = padarray(b,[1 1], 'replicate','post');
bp = padarray(b,[WS WS],inf);
% [mbp nbp]= size(bp);

% displacement matrix: [y,x,i], where x & y are coord of the block being
% evaluated and i=1 is the amount of displacemente in y direction and i=2
% the displacement on x direction
d_sq = zeros(ma,na,2);

for k = 1:INC:ma-(BS-1)
 for q = 1:INC:na-(BS-1)
 % Coord for reference image
 error_sq1 = inf;
 af = a(k:k+(BS-1),q:q+(BS-1)); % selection of block

 for i = k:k+(2*WS-1) % We move a WS to both sides through the PADDED image
 for j = q:q+(2*WS-1)
 % Coord for search image
 bf=bp(i:i+(BS-1), j:j+(BS-1));
 error_sq2 = sum(sum((af-bf).^2));
 if error_sq2 < error_sq1
 % Gives DISPLACEMENT no new coords
 d_sq(k,q,1) = i-(k+WS); % The displacement characterizes the middle point of the
block
 d_sq(k,q,2) = j-(q+WS);
 error_sq1 = error_sq2;
 end

21 Jiaxu Fu, Virginia Ruiz Albacete

 end
 end
 end

end
%save 'd_sqHor.mat' d_sq

% Create the displaced image by the sq error
Im_sq = zeros(ma,na);
for i = 1:BS:(ma-BS+1)
 for j = 1:BS:(na-BS+1)
 Im_sq(i:(i+BS-1),j:(j+BS-1)) = b((i+d_sq(i,j,1)):(i+d_sq(i,j,1)+BS-
1),(j+d_sq(i,j,2)):(j+d_sq(i,j,2)+BS-1));
 end
end
e_sq = b-Im_sq;

%function OrExtration %function OrExtration %function OrExtration %function OrExtration
% EC720 PROJECT
% orientation.m
% Input: Original image, OrMatrix
% Output:

a = double(rgb2gray(video.frames(1).cdata));
b = double(rgb2gray(video.frames(3).cdata));

d = d_sq;

OrMatrix = orientation (d);
[mOM,nOM] = size(OrMatrix);

% Masks for different motions

22 Jiaxu Fu, Virginia Ruiz Albacete

Hor = zeros(mOM, nOM);
Hor(find(OrMatrix) == 0) = 1;

Ver = zeros(mOM, nOM);
Ver(find(OrMatrix) == 1) = 1;

Diag = zeros(mOM, nOM);
Diag(find(OrMatrix) == 2) = 1;

% Obtaining the moving regions of the first frame
HorMotion = b.*Hor;
VerMotion = b.*Ver;
DiagMotion = b.*Diag;

figure
imshow(HorMotion,[]);

% Display the moving "blocks" by the displacement vector

function OrMatrix = FrameOr (d,im)function OrMatrix = FrameOr (d,im)function OrMatrix = FrameOr (d,im)function OrMatrix = FrameOr (d,im)
% EC720 PROJECT
% orientation.m
% Input: d= displacement
% Output: orientation Matrix

% displacement matrix: [y,x,i], where x & y are coord of the block being
% evaluated and i=1 is the amount of displacemente in y direction and i=2
% the displacement on x direction
%d = d_sq;
[md, nd, kd] = size(d);

% Multiplication by a very small number to avoid NaN
s = ones(md,nd);

23 Jiaxu Fu, Virginia Ruiz Albacete

s = s.*eps;
d(:,:,2) = d(:,:,2)+s;
theta = atan(d(:,:,1)./d(:,:,2));

[mz,nz] = size(theta);

% Reshape: Matrix -> vector
vectorTheta = abs(reshape(theta,1,mz*nz));

angle = BackOr(im);

 [g_hor, g_ver, g_diag] = GaussFilter(vectorTheta, angle);[g_hor, g_ver, g_diag] = GaussFilter(vectorTheta, angle);[g_hor, g_ver, g_diag] = GaussFilter(vectorTheta, angle);[g_hor, g_ver, g_diag] = GaussFilter(vectorTheta, angle);
% Gaussian functions at each point

% Scaling
horMult = g_hor.*vectorTheta;
verMult = g_ver.*vectorTheta;
diagMult = g_diag.*vectorTheta;

OrientationTheta = zeros(1,mz*nz);

for i = 1:mz*nz
 temp = max(horMult(i), verMult(i));
 maximum = max(temp, diagMult(i));

 if maximum ~= 0 && maximum == diagMult(i)
 OrientationTheta(i) = 3; % 3 = flag for diagonal movements
 elseif maximum ~= 0 && maximum == verMult(i)
 OrientationTheta(i) = 2; % 2 = flag for vertical movements
 elseif maximum ~= 0
 OrientationTheta(i) = 1; % 1 = flag for horizontal movements
 end
end

OrMatrix = reshape(OrientationTheta,mz,nz);

24 Jiaxu Fu, Virginia Ruiz Albacete

function [g_hor, g_ver, g_diag] = GaussFilter(Theta, bck_Or)function [g_hor, g_ver, g_diag] = GaussFilter(Theta, bck_Or)function [g_hor, g_ver, g_diag] = GaussFilter(Theta, bck_Or)function [g_hor, g_ver, g_diag] = GaussFilter(Theta, bck_Or)
% EC720 PROJECT

% gauss_funct.m
% Input: Th = Theta
% Output: 3 gaussian functions

Mhor = 0;
Mver = pi/2;
Mdiag = pi/4;
sigma1 = 0.6;
sigma2 = 0.3;

if bck_Or < 30 % horizontal
 sigmaX = sigma1;
 sigmaY = sigma2;
 sigmaD = sigma2;

elseif bck_Or > 60 % vertical
 sigmaX = sigma2;
 sigmaY = sigma1;
 sigmaD = sigma2;

else % diagonal
 sigmaX = sigma2;
 sigmaY = sigma2;
 sigmaD = sigma1;
end

%ang = (0:0.01:pi);

g_hor = (1/(sqrt(2*pi*0.5)))*exp(-((Theta-Mhor).^2)./(2*sigmaX^2));
g_ver = (1/(sqrt(2*pi*0.5)))*exp(-((Theta-Mver).^2)./(2*sigmaY^2));
g_diag = (1/(sqrt(2*pi*0.5)))*exp(-((Theta-Mdiag).^2)./(2*sigmaD^2));

25 Jiaxu Fu, Virginia Ruiz Albacete

function [Fast_frame, Slow_frame] = SpeedSeg (b, d, BS)function [Fast_frame, Slow_frame] = SpeedSeg (b, d, BS)function [Fast_frame, Slow_frame] = SpeedSeg (b, d, BS)function [Fast_frame, Slow_frame] = SpeedSeg (b, d, BS)
% EC720 PROJECT

% Speed Segmentation
% Input: b = input frame; d = vector field; BS= Block Size
% Output: [Fast_frame, Slow_frame, D_frame] = motion from diferent directions

%b = double(rgb2gray(video_hor.frames(1).cdata));
[ma,na] = size(b);

%d = d_sq;
%BS = 16;

% number of samples used to compute the threshold
samp = 4;

length = sqrt(d(:,:,2).^2+ d(:,:,1).^2);

% Find the average "long" length
a = reshape(length, 1, ma*na);
a = sort(a,2,'descend');

average = sum(a(2:samp+1))/samp;
average = average/2;

% Create a mask on the image
maskFast = zeros(ma,na);
temp1 = zeros(ma,na);
temp2 = zeros(ma,na);
%maskSlow = zeros(ma,na);

maskFast((length>average)==1) = 1;
temp1((length <= average)==1) = 1;
temp2((length > 0)==1) = 1;
maskSlow = temp1.*temp2;

26 Jiaxu Fu, Virginia Ruiz Albacete

% Extract the fast/slow moving areas

Fast_frame = maskFast.*b;
Slow_frame = maskSlow.*b;

function angle =function angle =function angle =function angle = BackOr (I)BackOr (I)BackOr (I)BackOr (I)
% EC720 PROJECT
% or_background.m
% Input: w = image
% Output: angle of main orientation

% read the image into MATLAB and convert it to grayscale
%I = video_diag.frames(1).cdata;
%Igray = rgb2gray(I);
Igray = uint8(I);
%figure, imshow(I,[]);

% We can see that the image is noisy. We will clean it up with a few
% morphological operations
Ibw = im2bw(Igray,graythresh(Igray));
se = strel('line',3,90);
cleanI = imdilate(~Ibw,se);
%figure, imshow(cleanI,[]);

% Perform a Hough Transform on the image
% The Hough Transform identifies lines in an image
[H,theta,rho] = hough(cleanI);
peaks = houghpeaks(H,10);
lines = houghlines(Ibw,theta,rho,peaks);
%figure, imshow(cleanI,[])

% Transform
result = 0;
for k = 1:numel(lines)

27 Jiaxu Fu, Virginia Ruiz Albacete

 result = result + abs(lines(k).theta);
end

angle = 90 - abs(result/numel(lines));

function [H_frame, V_frame, D_frame] = MotionSepPlot (b, d, BS)function [H_frame, V_frame, D_frame] = MotionSepPlot (b, d, BS)function [H_frame, V_frame, D_frame] = MotionSepPlot (b, d, BS)function [H_frame, V_frame, D_frame] = MotionSepPlot (b, d, BS)
% EC720 PROJECT
% orientation.morientation.morientation.morientation.m
% Input: a = input frame; d = vector field; BS= Block Size
% Output: [H_frame, V_frame, D_frame] = motion from diferent directions

% load video_hor.mat
% load d_sqHor.mat
%
% a = double(rgb2gray(video_hor.frames(1).cdata));
% b = double(rgb2gray(video_hor.frames(3).cdata));
%
% d = d_sq;
% BS = 16;

OrMatrix = FrameOr (d,b);
[mOM,nOM] = size(OrMatrix);

% Masks for different motions
Hor = zeros(mOM, nOM);
Hor(find((OrMatrix) == 1))= 1;

Ver = zeros(mOM, nOM);
Ver(find((OrMatrix) == 2)) = 1;

Diag = zeros(mOM, nOM);
Diag(find((OrMatrix) == 3)) = 1;

% Obtaining the moving regions of the second (moved) frame
HorMotion = b.*Hor;

28 Jiaxu Fu, Virginia Ruiz Albacete

VerMotion = b.*Ver;
DiagMotion = b.*Diag;

[mh,nh] = find(HorMotion ~= 0);
[mv,nv] = find(VerMotion ~= 0);
[md,nd] = find(DiagMotion ~= 0);

% Project EC720
%%%% Median FilterMedian FilterMedian FilterMedian Filter

close all
%clear all
clc

% %load video_hor.mat
%load video_diag.mat
% %load video_road36.mat % Vertical
% load video_road34.mat % intersection
video = video_hor;

%load FramesHor.mat
f = FramesHor;

% %% Sizes
% % Diagonal: BS = 22; WS = 20; NF = 251;
% % Horizontal: BS = 30; WS = 22; NF = 251;
% % Vertical: BS = 45; WS = 15; NF = 143
% % Intersection: BS = 22; WS = 15; NF = 170

NF = 250; %Number frames
%
%
%% Compute the Vector field of the frame
a = double(rgb2gray(video.frames(1).cdata));

29 Jiaxu Fu, Virginia Ruiz Albacete

[ma,na]= size(a);

%load FramesDiag.mat

% Structure to save results
FramesClean = struct('VF', zeros(ma,na,2),'Horizontal',zeros(ma,na), 'Vertical',zeros(ma,na),
'Diagonal', zeros(ma,na));
FramesClean(1,1:NF) = FramesClean;

for i = 1:NF

 % Save values in a struct
 FramesClean(1,i).VF = f(i).VF;
 FramesClean(1,i).Horizontal = medfilt2(f(i).Horizontal, [3 3]);
 FramesClean(1,i).Vertical = medfilt2(f(i).Vertical, [4 4]);
 FramesClean(1,i).Diagonal = medfilt2(f(i).Diagonal, [5 5]);

 %a = b;
end

%save 'FramesHorizontal.mat' Frames
save 'FramesCleanDiagonal.mat' FramesClean
%save 'FramesVertical.mat' Frames
%save 'FramesIntersection.mat' FramesClean

for i = 1:NF

 imshow(FramesClean(1,i).Horizontal,[]); title('Clean Diagonal motion');

 MovDiagClean(i)=getframe;

end

30 Jiaxu Fu, Virginia Ruiz Albacete

for i = 1:NF

 imshow(FramesHor(1,i).Horizontal,[]); title('Diagonal motion');

 MovDiag(i)=getframe;

end

31 Jiaxu Fu, Virginia Ruiz Albacete

8 References

[1] Al Bovik, “The Essential Guide to Video Processing”, Elsevier, 2009 pp. 141-220

[2] David J. Heeger, “Optical Flow Using Spatio-temporal Filters”, International

Journal of Computer Vision, vol. 1, Number4, pp.279-302, 1998.

[3] Andés Bruhn & Joachim Weickert, “Lucas/Kanade Meets Horn/Schunck:

Combining Local and Optic Flow Methods”, International Journal of Computer Vision,

vol. 62, Number3, pp.211-231, 2005.

[4] http://www.alphatecltd.com/video/pdf/MotionEstimation.pdf

[5]

http://lcni.uoregon.edu/~mark/Geek_software/Video_motion/Video_motion_estimation.h

tml#video_velocity_distribution_estimation

