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Summary 

 

This project presents a successful algorithm to filter out moving objects, based on 

their orientation and speed, based on sliding block matching and dynamic thresholding. 

Different experiments were carried out in order to prove its efficiency and an objective 

measure of its efficiency was computed. 



Contents 
 

1. Introduction ...............................................................................................1 

2. Problem Definition ....................................................................................9 

3. Methodology and Implementation ..........................................................9 

4. Experimental Results ................................................................................11 

5. Speed Filtering ..........................................................................................11 

6. Conclusions and Future Work .................................................................11 

7. Appendix ....................................................................................................12 

8. References ..................................................................................................14 



 



List of Figures 

 

Fig. 1 Algorithm Flow Chart           4  

Fig. 2 Sliding Block Method           5 

Fig. 3 Background Edge Flow           6 

Fig. 4 Dynamic Thresholding without Edge Flow Information    7 

Fig. 5 Dynamic Thresholding using Background Edge Flow     8 

Fig. 6 Motion Filtering            9 

Fig. 7 Results after Noise Reduction          9 

Fig. 8 (a): Ideal Horizontal Vector Field    (b): Extracted Horizontal, Vertical and 

Diagonal Motion              10 

Fig. 9 (a): Ideal Vertical Vector Field    (b): Extracted Horizontal, Vertical and 

Diagonal Motion              10 

Fig. 10 (a) Ideal Diagonal Vector Field    (b): Extracted Horizontal, Vertical and 

Diagonal Motion              11 

Fig. 11 (a) Ideal Mixed Orientations Vector Field    (b): Extracted Horizontal, Vertical 

and Diagonal Motion             11 

Fig. 12 (a) Ideal Flower-Like Vector Field    (b): Extracted Horizontal, Vertical and 

Diagonal Motion              11 

Fig. 13 Horizontal video filtered with (a) fixed thresholding (b) dynamic thresholding 

                 12 

Fig. 14 Diagonal video filtered with (a) fixed thresholding (b) dynamic thresholding 

                 13 

Fig. 15 Speed Filtering Thresholding          15 

Fig. 16 (a) Ideal Flower-Like Vector Field    (b): Extracted Fast and Slow Motion 15 



 



List of Tables 

 

Table 1: Percentage of moving pixels per category       14 



 



1  Jiaxu Fu, Virginia Ruiz Albacete 

1 Introduction 
 

 Since its origins, video recording has become an essential technology in different 

fields, such as surveillance or data capturing, due to its efficiency in analyzing different 

environments and situations. These video sequences require human check, whether they 

are used for security purposes or information analysis. As a result of dramatic decreases 

in the cost of both cameras and storage devices, the amount of video data stored has 

significantly grown, and with this growth comes the need to for automatic data analysis. 

Motion detection is no longer the optimal solution for general examination of a video. 

Thus, it is necessary to develop a technique that allows for the interpretation of a video or 

the filtering out of noteworthy data from a sequence without having to sift through the 

entire thing. This can also be valuable for compression purposes and data storage, where 

only the data of interest would be extracted and used. 
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2 Problem Definition 

  

 The goal is to develop an algorithm to filter out certain motions (direction, speed) in 

a video sequence. Thus, only objects moving with certain velocities or orientation would 

be extracted and displayed. The algorithm sequence can be seen in Figure 1.  

 

2.1 Literature Review 

While performing our initial research, we discovered a number of ways that motion 

filtering can be achieved. The most important ones can be summarized as follows: 

 

�  Object tracking:  

Its goal is to detect a certain known object and follow its trajectory by finding its 

shape in consecutive frames. However, this method is not appropriate for the purpose of 

this study because the goal is to filter out any object moving in certain directions. 

 

�  Frequency Domain: 

One of the implementations that uses this approach of motion detection is described 

in Heeger’s paper [2] based on Gabor Filters in the spatiotemporal-frequency domain. It 

shows how the power spectrum of a moving signal occupies a plane that can be filtered 

out to extract different motions. A discussion on this technique can be found in Loya 

Zorn and Amarnat’s EC720 Final Project.  

 

�  Optical Flow: 

Optical flow can be defined as the pattern of apparent motion of objects caused by 

the relative motion between an observer and the scene. Although this idea does not fully 

solve our problem, it will be the inspiration of our project [3]. 

 

  

2.2 Assumptions 

In order to simplify the problem, some assumptions must be taken into 

consideration: 
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� The objective is to obtain two filters: one will segment the images by orientation 

and the other one by relative velocity. In this project, the filters will be applied 

separately. 

 

� Only three different motion orientations will be taken into account. For each 

image sequence, the horizontal, vertical and diagonal movements will be 

extracted. This means that orientations are normalized between [0º, 90º]; for 

example, no distinction will be made between a car moving from left to right 

versus right to left; they will both be considered to be moving horizontally. 

 

� When talking about speed segmentation, no absolute value will be computed. The 

velocity filtering will be relative to the different motions in the image. Therefore, 

objects will be extracted based on whether they are faster or slower than one 

another. 

 

� The algorithm will be used to analyze mainly street scenes. This assumption will 

be used in order to improve the method, based on the previous information that 

these videos contain (straight simple movement). It can be useful to separate 

different flows of traffic that occur in an intersection in order to analyze a 

highway and a secondary road separately.  

 

� Two different cameras will be used to test the algorithm:  

1. ISS network cameras: Used for the horizontal and diagonal sequences. 250 

frames will be captured and processed from these cameras. Each picture has a resolution 

of 240 x 320 pixels. These cameras present some inconveniences such as missed frames 

(which will cause the image to jump) or hard shakes when zooming to far-away 

locations. 

2. Sony DSC-H1 camera: Camera used to record complex scenes (such as 

intersections where more than one movement is present). Since the resolution of this 

camera is of 480 x 640 pixels, a smaller number of frames were captured.  
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3 Methodology and Implementation

 
Figure 1: Algorithm Flow Chart 
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3.1 Vector Field Extraction

The method develop

accurately describe the displacement of moving objects, i

vector to every pixel in the image. This is achieved through the sliding

(Figure 2), where the image is divided in

backward block is applied to it. The computed 

the center pixel of the block. Then this block will be moved over by one pixel to repeat 

the same process.  

The main idea behind block matching is to create a block big enough to avoid large, 

flat, constant areas that would disrupt its

to avoid containing 

compromise between 

different block size has been assigned

been taken into consideration for the search window since some of the m

more displacement than others (e.g. far away areas seem to move slower than closer 

movements).  

 

3.2 Background Edge Flow

As previously mentioned, the main goal of this algorithm is to analyze street videos. 

These scenes contain some informa

algorithm. For example, it would be possible for someone to tell the direction in which 

Figure 2: Sliding Block Method
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The main idea behind block matching is to create a block big enough to avoid large, 

that would disrupt its tracking in successive frames, but small enough 

containing more than one object (such as two cars fo

compromise between these two objectives has been performed by 

different block size has been assigned for each video sequence. 

been taken into consideration for the search window since some of the m

more displacement than others (e.g. far away areas seem to move slower than closer 
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ed in this project is based on vector field motion estimation. To 

necessary to assign a motion 

vector to every pixel in the image. This is achieved through the sliding block method 

blocks with fixed sizes and a matching 

vector will be assigned to 

the center pixel of the block. Then this block will be moved over by one pixel to repeat 

The main idea behind block matching is to create a block big enough to avoid large, 

frames, but small enough 

more than one object (such as two cars for example). The 

by manual inspection. A 

. A similar process has 

been taken into consideration for the search window since some of the motions present 

more displacement than others (e.g. far away areas seem to move slower than closer 

mentioned, the main goal of this algorithm is to analyze street videos. 

tion that can improve the performance of the 

algorithm. For example, it would be possible for someone to tell the direction in which 
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cars will move without seeing any object passing by simply by looking at the orientation 

of the lines of the lanes or the guard rails. To make use of this information, a background 

edge flow detection algorithm has been implemented. After converting a frame into a 

white and black image and applying 

some morphological operations to it, the 

intensity gradient is computed. This 

essentially captures the rate of change. 

Thus, in the ideal case, detection of zero-

crossings in the second derivative 

captures local maxima in the gradient, as 

it can be seen in Figure 3. 

 

This step will return an angle with 

the strongest orientation of the 

background edge flow. In the case that 

this orientation is not strong enough or doesn’t exist (e.g. in an intersection), no specific 

angle will be obtained. 

 

 

3.3 Dynamic Threshold 

Based on the vector field and the background edge flow angle obtained from the 

previous steps, our goal is to separate the motions captured in a video in three different 

directions: vertical, horizontal and diagonal. 

Since there is a vector defining each pixel in the image, it is possible to obtain the 

angle Θ of each moving pixel through basic trigonometry:  

Θ = arctg (Y/X) 

Where Y is the vertical displacement and X is the horizontal displacement. 

 

In order to classify the motions, it is necessary to set a threshold angle that will 

decide which motion falls under which orientation. If a fixed threshold is used, a manual 

Figure 3: Background Edge Flow 
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inspection of the images will be needed in order to adjust this parameter to different 

sequences. However, our goal is to create an automatic algorithm to filter out the motion. 

This can be achieved by using the previous information obtained through the background 

edge flow.  

The solution implemented in this project uses 

Gaussian distributions as thresholds. Gaussian 

functions (Equation 1) can be defined by 2 

parameters: the mean and the variance. Three 

different Gaussian distributions are created to 

represent a horizontal, diagonal and vertical threshold. These distributions will be 

centered at 0°, 45° and 90°, respectively (through their means), and their variances will 

depend on the background edge flow, where the previous knowledge will be applied.  

 

If we represented all the angles of the 

vector field in a histogram like the one 

showed in Figure 4, when applying the three 

Gaussian functions, the angles will be scaled 

by each of them, producing three weighted 

values. The highest of these values will 

determine which orientation the angle falls 

under (if the highest value is the result of the 

scaling by the horizontal Gaussian, then the 

angle will be classified as horizontal, and so 

on). Assume that no previous information is obtained, that is, either there is not a strong 

edge flow orientation or no background analysis method has been applied. In this case, 

the three Gaussians will have the same variance, and they will act as fixed thresholds, 

separating the angles at 30º and 60º. 

However, if the background edge has a significant value for a specific angle, for 

example, it has a higher horizontal component, it seems reasonable to allow the variation 

of the Gaussian distribution centered at 0º (horizontal) to be greater than the variations of 

Equation 1: Gaussian Function 

Figure 4: Dynamic Thresholding without Edge 

Flow Information 
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the other two Gaussians. This will have no 

impact for the pixels close to the Gaussian 

means, since their highest value will be given 

when being scaled by the closer Gaussian. 

However, more of the intermediate angles will 

fall under the Gaussian with a larger variance. 

In Figure 5 this can be seen as raising the 

threshold of one of the functions. For the first 

graph, the horizontal Gaussian (centered at 0º) 

has a larger variance than the other two. Thus, 

the crossing point with the diagonal Gaussian 

(centered at 45º) is greater than the crossing 

point of the two functions for fixed threshold. 

This means that all the pixels that fall under this 

function before the crossing point will be 

considered as horizontal, because their greater 

value will be obtained when scaling them by 

this Gaussian. This remains true for the other orientations as well. 

 

3.4 Motion Filtering 

Once the moving pixels have been assigned a certain motion, they must be displayed 

separately. To do so, three different masks are created: horizontal, diagonal and vertical. 

By applying these masks to the original frame, one can successfully extract the moving 

pixels of the image. As it can be seen in Figure 6, for each frame, three different images 

will be obtained containing the horizontally, diagonally and vertically moving pixels. 

Successive motion-extracted frames will form a video of the filtered objects. 

 

 

 

 

Figure 5: Dynamic Thresholding using Background 

Edge Flow 
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3.5 Noise Reduction

The use of sliding block matching methods to extract the vec

mismatches and other errors that produce noise at the output of the algorithm. However, 

these incorrect vector fields can be considered as uncorrelated noise (noise and pepper) 

and can therefore be reduced by applying a median filter.

will be smoothed out, the results will be improved, as it can be seen in Figure 7.

 

Figure 7: Results after Noise Reduction

 

Figure 6: Motion Filtering
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The use of sliding block matching methods to extract the vector field can lead to 

mismatches and other errors that produce noise at the output of the algorithm. However, 

vector fields can be considered as uncorrelated noise (noise and pepper) 

Although the filtered image 

t, the results will be improved, as it can be seen in Figure 7. 
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4 Experimental Results 

In order to show our method works, three experiments are conducted: apply the 

method to a simulated ideal vector field; test it on frame pairs captured by cameras; and 

apply the algorithm to different video sequences.  

 

4.1 Synthetic Results: Experiments on Simulated Ideal Vector 

Field 

 

Five ideal vector fields are generated to prove whether our method can extract 

motions along horizontal, vertical and diagonal directions, respectively. The results will 

be displayed in three windows, each showing the extracted horizontal, diagonal and 

vertical extracted pixels. A moving pixel will create a white dot in the corresponding 

output. Black pixels correspond to non-moving areas for that orientation.  Results are 

shown from Figures 8 – 12.  

(a)          (b) 

 

                        

(a)          (b) 

 

  

                  

 

 

Figure 8: (a): Ideal Horizontal Vector Field    (b): Extracted Horizontal, Vertical and Diagonal 

Motion 

Figure 9: (a): Ideal Vertical Vector Field    (b): Extracted Horizontal, Vertical and Diagonal Motion 
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Figure 10: (a) Ideal Diagonal

Figure 11: (a) Ideal Mixed Orientations

Motion 

Figure 12: (a) Ideal Flower-Like
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(a)         (b) 
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(a)         (b) 

iagonal Vector Field    (b): Extracted Horizontal, Vertical and 

Mixed Orientations Vector Field    (b): Extracted Horizontal, 

Like Vector Field    (b): Extracted Horizontal, Vertical and Diagonal Motion

Jiaxu Fu, Virginia Ruiz Albacete 

       

 

 

 

 

 

(b)                                    

 

 

 

 

 

 

 

 

ertical and Diagonal Motion 

orizontal, Vertical and Diagonal 

ted Horizontal, Vertical and Diagonal Motion 



12  Jiaxu Fu, Virginia Ruiz Albacete 

4.2 Image comparison: Experiment on image pairs captured by 

cameras. 

The procedure explained above has been implemented and tested in two different 

pairs of images: one with mainly diagonal components and another with mainly 

horizontal components. When trying to explore the vertical motion, we realized that a 

helicopter view would be required to record it; frontally captured image sequences would 

involve an object size change when moving toward or away from the camera that would 

make the block matching method fail. To prove the efficiency of this method, the results 

obtained by applying the background information are compared to those obtained without 

its application. 

 

 

 

 

(a) (b)                                    

 

 

 

 

 

Figure 13: Horizontal video filtered with (a) fixed thresholding (b) dynamic thresholding 
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(a)          (b) 

                                    

 

 

As we can see from the results in Figures 13 and 14, the background orientation 

implementation affects to the results positively. The incorrect assignation of moving 

pixels is mainly due to erroneous vector field extraction, and not dubious vectors. 

 

 

4.3 Video Results: Experiment on image sequences 

In the stage of experiments, our motion filter is applied for three image sequences 

which contain horizontal motion, diagonal motion and complex motion respectively. And 

the results show that our algorithm can successfully extract motions alone in three 

directions. 

 

4.4 Objective Measure 

When dealing with images, the subjective impression of the results is the main 

concern. However, an objective measure is also needed in order to analyze and compare 

the performance of this algorithm. Since to obtain a true answer for this problem, a 

manual adjustment of all the image sequences would be needed, another measure is 

Figure 14: Diagonal video filtered with (a) fixed thresholding (b) dynamic thresholding 
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developed. Assuming a horizontal image sequence, the percentage of pixels that are 

filtered out as horizontally moving is computed. A comparison with the other percentages 

(% vertical and % diagonal moving pixels) will estimate the behavior of this method. 

 

 

Image Sequence  
Horizontal 

moving pixels (%)  

Vertical 

moving pixels (%)  

Diagonal 

moving pixels (%) 

Horizontal Road 63.2047  20.4748  16.3205  

Diagonal Road  2.1460  5.1495  92.4345  

Intersection Road 9.4373  30.0656  60.4917  

Table 1: Percentage of moving pixels per category 

 

As it can be seen in Table 1, the best performance is given for the diagonal road 

where over 92% of the pixels are correctly classified. The horizontal road has a higher 

error due to optical effects of the recorded data (the camera deviates the image slightly on 

the edge, creating a diagonal effect). The intersection road simulates a more complex 

scenario, where two different motions can be seen: horizontal and diagonal. The most 

abundant one is the diagonal direction. However, the high percentage of vertically 

moving pixels is due to the shaking of the camera and the zoom.  
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5 Speed Filtering

5.1 Methodology

 

The second part of this project focuses on filtering the images in a video

to different speeds. The process followed for this task is basically the same as the one 

used to filter out orientations, but this time

discriminator of the process.

computed as half the length of the average vector obtained from the 4 longer vectors of 

the vector field (Figure 15)

measure we aim to obtain some resiliency against errors, since a long mismatched vector 

could derive to wrong speed filtering. 

 

 

5.2 Experimental Results

As explained for orientation filtering, a previous analysis of our method was carried 

out using ideal vector fields. 

 

 

 

 

 

 

Figure 16: (a) Ideal Flower-Like Vector F

Figure 15: Speed Filtering Threshold
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used to filter out orientations, but this time the length of the vectors will be

discriminator of the process. 

In order to generalize the 

method for any set of images, 

the filtered speed is going to 

be relative to the other speeds 

in the image avoiding

more 

Therefore, the threshold is 

f the length of the average vector obtained from the 4 longer vectors of 

(Figure 15), without taking into account the largest one. With this 

measure we aim to obtain some resiliency against errors, since a long mismatched vector 

wrong speed filtering.  

Experimental Results 

As explained for orientation filtering, a previous analysis of our method was carried 

out using ideal vector fields.  

Like Vector Field    (b): Extracted Fast and Slow Motion

: Speed Filtering Thresholding 
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The second part of this project focuses on filtering the images in a video according 

The process followed for this task is basically the same as the one 

the length of the vectors will be the main 

In order to generalize the 

method for any set of images, 

the filtered speed is going to 

be relative to the other speeds 

in the image avoiding once 

 a fixed threshold. 

Therefore, the threshold is 

f the length of the average vector obtained from the 4 longer vectors of 

, without taking into account the largest one. With this 

measure we aim to obtain some resiliency against errors, since a long mismatched vector 

As explained for orientation filtering, a previous analysis of our method was carried 

Motion 
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In Figure 16, the successful results of this algorithm can be seen: when extracting 

fast motions, the vectors with vector of length greater than the threshold will have an 

output of one (white) and vice versa for slow motions. However, when applying this 

method to real video sequences, the outcome is acceptable only for videos with much 

differentiated speed objects. This is due to the fact that the block matching method used 

to obtain the vector field performs poorly for uniform moving areas. While the 

orientation of the displacement vectors may be more or less accurate, they can point at 

any pixel in the uniform area. Therefore, for some video sequences the fast filter will 

show the outline of the cars, while the slow filter will obtain the inside of the objects.  
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6 Conclusions and Future Work 

This project presents a successful algorithm to filter out moving objects, based on 

their orientation and speed, based on sliding block matching and dynamic thresholding. 

Different experiments were carried out in order to prove its efficiency and an objective 

measure of its efficiency was computed.  

After these experiments, the sliding block matching method has been found to 

perform acceptably well in obtaining the pixels’ orientation, but poorly in uniform 

moving areas. Another source of outcome noise is due to mismatching and luminance and 

focal lens changes. 

For future work, it would be necessary to improve video segmentation based on 

speed, with morphological techniques or object tracking methods that would mitigate the 

mismatching produced through sliding block matching.  

Also, a simultaneous orientation and speed filtering would be desirable, in order to 

simplify security tasks and others. 

 Apply simultaneous [orientation and speed] segmentation. 
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7 Appendix: Matlab Codes 

 

% Project EC720% Project EC720% Project EC720% Project EC720    

%main%main%main%main    
 
close all 
clear all 
clc 
 
%load video_hor.mat 
%load video_diag.mat 
%load video_road36.mat % Vertical 
load video_road34.mat % intersection 
 
%video = video_hor; 
%video = video_diag; 
%video = video_road36; 
video = video_road34; 
 

 
%% Sizes 
% Diagonal: BS = 22; WS = 20; NF = 251; 
% Horizontal: BS = 30; WS = 22; NF = 251; 
% Vertical: BS = 45; WS = 15; NF = 143 
% Intersection: BS = 22; WS = 15; NF = 170 
 
BS = 22; % Block Size 
WS = 15; % Window size (#pixels we are going to move up&down) 
%INC = BS; % Disjoint block matching 
INC = 1; % Sliding block matching 
 
NF = 169; %Number frames 
 
 
%% Compute the Vector field of the frame 



19  Jiaxu Fu, Virginia Ruiz Albacete 

a = double(rgb2gray(video.frames(1).cdata)); 
[ma,na]= size(a); 
 

 
% Structure to save results 
Frames = struct('VF', zeros(ma,na,2),'Horizontal',zeros(ma,na), 'Vertical',zeros(ma,na), 'Diagonal', 
zeros(ma,na)); 
Frames(1,1:NF) = Frames; 
 
 
for i = 1:NF 
    b = double(rgb2gray(video.frames(i).cdata));     
 
    [d_sq, e_sq] = VectorField2 (a, b, BS, WS, INC); 
 
 
    % Obtain frame's motion 
    [H_frame, V_frame, D_frame] = MotionSepPlot (b, d_sq, BS); 
     
    % Save values in a struct 
    Frames(1,i).VF = d_sq; 
    Frames(1,i).Horizontal = H_frame; 
    Frames(1,i).Vertical = V_frame; 
    Frames(1,i).Diagonal = D_frame; 
     
    a = b; 
end 
 
%save 'FramesHorizontal.mat' Framessave 'FramesIntersection.mat' Frames 
 

 

 
function [d_sq, e_sq] = VectorField2 (a, b, BS, WS, INC)function [d_sq, e_sq] = VectorField2 (a, b, BS, WS, INC)function [d_sq, e_sq] = VectorField2 (a, b, BS, WS, INC)function [d_sq, e_sq] = VectorField2 (a, b, BS, WS, INC)    
 
% load video_hor.mat 
% a = double(rgb2gray(video_hor.frames(1).cdata)); 
% b = double(rgb2gray(video_hor.frames(3).cdata)); 
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% BS = 16; % Block Size 
% WS = 20; % Window size (#pixels we are going to move up&down) 
 

 
[ma,na]= size(a); 
 
 
% To avoid boundary problems, we create a boundary of "infinite" (255) 
% values 
%brep = padarray(b,[1 1], 'replicate','post'); 
bp = padarray(b,[WS WS],inf); 
% [mbp nbp]= size(bp); 
 
% displacement matrix: [y,x,i], where x & y are coord of the block being 
% evaluated and i=1 is the amount of displacemente in y direction and i=2 
% the displacement on x direction 
d_sq = zeros(ma,na,2);  
 
 
for k = 1:INC:ma-(BS-1) 
    for q = 1:INC:na-(BS-1) 
        % Coord for reference image 
        error_sq1 = inf; 
        af = a(k:k+(BS-1),q:q+(BS-1)); % selection of block 
         
        for i = k:k+(2*WS-1) % We move a WS to both sides through the PADDED image 
            for j = q:q+(2*WS-1) 
                % Coord for search image 
                bf=bp(i:i+(BS-1), j:j+(BS-1)); 
                error_sq2 = sum(sum((af-bf).^2)); 
                if error_sq2 < error_sq1 
                    % Gives DISPLACEMENT no new coords 
                    d_sq(k,q,1) = i-(k+WS); % The displacement characterizes the middle point of the 
block 
                    d_sq(k,q,2) = j-(q+WS); 
                    error_sq1 = error_sq2; 
                end 
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            end 
        end        
    end 

end 
%save 'd_sqHor.mat' d_sq 
 
 
% Create the displaced image by the sq error 
Im_sq = zeros(ma,na); 
for i = 1:BS:(ma-BS+1) 
    for j = 1:BS:(na-BS+1) 
        Im_sq(i:(i+BS-1),j:(j+BS-1)) = b((i+d_sq(i,j,1)):(i+d_sq(i,j,1)+BS-
1),(j+d_sq(i,j,2)):(j+d_sq(i,j,2)+BS-1)); 
    end 
end 
e_sq = b-Im_sq; 
 
 
 
 
 
%function OrExtration %function OrExtration %function OrExtration %function OrExtration     
% EC720 PROJECT 
% orientation.m 
% Input: Original image, OrMatrix 
% Output:  
 
 
a = double(rgb2gray(video.frames(1).cdata)); 
b = double(rgb2gray(video.frames(3).cdata)); 
 
d = d_sq; 
 
OrMatrix = orientation (d); 
[mOM,nOM] = size(OrMatrix); 
 
% Masks for different motions 
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Hor = zeros(mOM, nOM); 
Hor(find(OrMatrix) == 0) = 1; 
 

Ver = zeros(mOM, nOM); 
Ver(find(OrMatrix) == 1) = 1; 
 
 
Diag = zeros(mOM, nOM); 
Diag(find(OrMatrix) == 2) = 1; 
 
% Obtaining the moving regions of the first frame 
HorMotion = b.*Hor; 
VerMotion = b.*Ver; 
DiagMotion = b.*Diag; 
 
figure 
imshow(HorMotion,[]); 
 
 
% Display the moving "blocks" by the displacement vector 
 
 
function OrMatrix = FrameOr (d,im)function OrMatrix = FrameOr (d,im)function OrMatrix = FrameOr (d,im)function OrMatrix = FrameOr (d,im)    
% EC720 PROJECT 
% orientation.m 
% Input: d= displacement 
% Output: orientation Matrix 
 
% displacement matrix: [y,x,i], where x & y are coord of the block being 
% evaluated and i=1 is the amount of displacemente in y direction and i=2 
% the displacement on x direction 
%d = d_sq; 
[md, nd, kd] = size(d); 
 
 
% Multiplication by a very small number to avoid NaN 
s = ones(md,nd); 
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s = s.*eps; 
d(:,:,2) = d(:,:,2)+s; 
theta = atan(d(:,:,1)./d(:,:,2)); 

 
[mz,nz] = size(theta); 
 
% Reshape: Matrix -> vector 
vectorTheta = abs(reshape(theta,1,mz*nz)); 
 
angle = BackOr(im); 
 
    [g_hor, g_ver, g_diag] = GaussFilter(vectorTheta, angle);[g_hor, g_ver, g_diag] = GaussFilter(vectorTheta, angle);[g_hor, g_ver, g_diag] = GaussFilter(vectorTheta, angle);[g_hor, g_ver, g_diag] = GaussFilter(vectorTheta, angle);    
% Gaussian functions at each point 
 
% Scaling 
horMult = g_hor.*vectorTheta; 
verMult = g_ver.*vectorTheta; 
diagMult = g_diag.*vectorTheta; 
 
OrientationTheta = zeros(1,mz*nz); 
 
for i = 1:mz*nz 
        temp = max(horMult(i), verMult(i)); 
        maximum = max(temp, diagMult(i)); 
         
        if maximum ~= 0 && maximum == diagMult(i) 
            OrientationTheta(i) = 3; % 3 = flag for diagonal movements 
        elseif maximum ~= 0 && maximum == verMult(i) 
            OrientationTheta(i) = 2; % 2 = flag for vertical movements 
        elseif  maximum ~= 0 
            OrientationTheta(i) = 1; % 1 = flag for horizontal movements 
        end 
end 
 
OrMatrix = reshape(OrientationTheta,mz,nz);        
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function [g_hor, g_ver, g_diag] = GaussFilter(Theta, bck_Or)function [g_hor, g_ver, g_diag] = GaussFilter(Theta, bck_Or)function [g_hor, g_ver, g_diag] = GaussFilter(Theta, bck_Or)function [g_hor, g_ver, g_diag] = GaussFilter(Theta, bck_Or)    
% EC720 PROJECT 

% gauss_funct.m 
% Input: Th = Theta 
% Output: 3 gaussian functions 
 
Mhor = 0; 
Mver = pi/2; 
Mdiag = pi/4; 
sigma1 = 0.6; 
sigma2 = 0.3; 
 
if bck_Or < 30 % horizontal 
    sigmaX = sigma1; 
    sigmaY = sigma2; 
    sigmaD = sigma2; 
     
elseif bck_Or > 60 % vertical 
    sigmaX = sigma2; 
    sigmaY = sigma1; 
    sigmaD = sigma2; 
     
else  % diagonal 
    sigmaX = sigma2; 
    sigmaY = sigma2; 
    sigmaD = sigma1; 
end 
     
 
 
%ang = (0:0.01:pi); 
 
 
g_hor = (1/(sqrt(2*pi*0.5)))*exp(-((Theta-Mhor).^2)./(2*sigmaX^2)); 
g_ver = (1/(sqrt(2*pi*0.5)))*exp(-((Theta-Mver).^2)./(2*sigmaY^2)); 
g_diag = (1/(sqrt(2*pi*0.5)))*exp(-((Theta-Mdiag).^2)./(2*sigmaD^2)); 
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function [Fast_frame, Slow_frame] = SpeedSeg (b, d, BS)function [Fast_frame, Slow_frame] = SpeedSeg (b, d, BS)function [Fast_frame, Slow_frame] = SpeedSeg (b, d, BS)function [Fast_frame, Slow_frame] = SpeedSeg (b, d, BS)    
% EC720 PROJECT 

% Speed Segmentation 
% Input: b = input frame; d = vector field; BS= Block Size 
% Output: [Fast_frame, Slow_frame, D_frame] = motion from diferent directions 
 
 
%b = double(rgb2gray(video_hor.frames(1).cdata)); 
[ma,na] = size(b); 
 
 
%d = d_sq; 
%BS = 16; 
 
% number of samples used to compute the threshold 
samp = 4; 
 
length = sqrt(d(:,:,2).^2+ d(:,:,1).^2); 
 
% Find the average "long" length  
a = reshape(length, 1, ma*na); 
a = sort(a,2,'descend'); 
 
average = sum(a(2:samp+1))/samp; 
average = average/2; 
 
% Create a mask on the image 
maskFast = zeros(ma,na); 
temp1 = zeros(ma,na); 
temp2 = zeros(ma,na); 
%maskSlow = zeros(ma,na); 
 
maskFast((length>average)==1) = 1; 
temp1((length <= average)==1) = 1;  
temp2((length > 0)==1) = 1; 
maskSlow = temp1.*temp2; 
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% Extract the fast/slow moving areas 

Fast_frame = maskFast.*b; 
Slow_frame = maskSlow.*b; 
 
 

 
function angle =function angle =function angle =function angle =    BackOr (I)BackOr (I)BackOr (I)BackOr (I)    
% EC720 PROJECT 
% or_background.m 
% Input: w = image 
% Output: angle of main orientation 
 
% read the image into MATLAB and convert it to grayscale 
%I = video_diag.frames(1).cdata; 
%Igray = rgb2gray(I); 
Igray = uint8(I); 
%figure, imshow(I,[]); 
 
% We can see that the image is noisy. We will clean it up with a few 
% morphological operations 
Ibw = im2bw(Igray,graythresh(Igray)); 
se = strel('line',3,90);  
cleanI = imdilate(~Ibw,se); 
%figure, imshow(cleanI,[]); 
 
% Perform a Hough Transform on the image 
% The Hough Transform identifies lines in an image 
[H,theta,rho] = hough(cleanI); 
peaks = houghpeaks(H,10); 
lines = houghlines(Ibw,theta,rho,peaks); 
%figure, imshow(cleanI,[]) 
 
% Transform 
result = 0; 
for k = 1:numel(lines) 
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    result = result + abs(lines(k).theta); 
end 
 

angle = 90 - abs(result/numel(lines)); 
 
 
function [H_frame, V_frame, D_frame] = MotionSepPlot (b, d, BS)function [H_frame, V_frame, D_frame] = MotionSepPlot (b, d, BS)function [H_frame, V_frame, D_frame] = MotionSepPlot (b, d, BS)function [H_frame, V_frame, D_frame] = MotionSepPlot (b, d, BS)    
% EC720 PROJECT 
%    orientation.morientation.morientation.morientation.m 
% Input: a = input frame; d = vector field; BS= Block Size 
% Output: [H_frame, V_frame, D_frame] = motion from diferent directions 
 
% load video_hor.mat 
% load d_sqHor.mat 
%  
% a = double(rgb2gray(video_hor.frames(1).cdata)); 
% b = double(rgb2gray(video_hor.frames(3).cdata)); 
%  
% d = d_sq; 
% BS = 16; 
 
OrMatrix = FrameOr (d,b); 
[mOM,nOM] = size(OrMatrix); 
 
% Masks for different motions 
Hor = zeros(mOM, nOM); 
Hor(find((OrMatrix) == 1))= 1; 
 
Ver = zeros(mOM, nOM); 
Ver(find((OrMatrix) == 2)) = 1; 
 
 
Diag = zeros(mOM, nOM); 
Diag(find((OrMatrix) == 3)) = 1; 
 
% Obtaining the moving regions of the second (moved) frame 
HorMotion = b.*Hor; 
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VerMotion = b.*Ver; 
DiagMotion = b.*Diag; 
 

[mh,nh] = find(HorMotion ~= 0); 
[mv,nv] = find(VerMotion ~= 0); 
[md,nd] = find(DiagMotion ~= 0); 
 

 

% Project EC720 
%%%%    Median FilterMedian FilterMedian FilterMedian Filter    
 
close all 
%clear all 
clc 
 
% %load video_hor.mat 
%load video_diag.mat 
% %load video_road36.mat % Vertical 
% load video_road34.mat % intersection 
video = video_hor; 
 
 
%load FramesHor.mat 
f = FramesHor; 
 
 
% %% Sizes 
% % Diagonal: BS = 22; WS = 20; NF = 251; 
% % Horizontal: BS = 30; WS = 22; NF = 251; 
% % Vertical: BS = 45; WS = 15; NF = 143 
% % Intersection: BS = 22; WS = 15; NF = 170 
  
NF = 250; %Number frames 
%  
%  
%% Compute the Vector field of the frame 
a = double(rgb2gray(video.frames(1).cdata)); 
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[ma,na]= size(a); 
 
 

%load FramesDiag.mat 
 
% Structure to save results 
FramesClean = struct('VF', zeros(ma,na,2),'Horizontal',zeros(ma,na), 'Vertical',zeros(ma,na), 
'Diagonal', zeros(ma,na)); 
FramesClean(1,1:NF) = FramesClean; 
 
 
for i = 1:NF 
    
    % Save values in a struct 
    FramesClean(1,i).VF = f(i).VF; 
    FramesClean(1,i).Horizontal = medfilt2(f(i).Horizontal, [3 3]); 
    FramesClean(1,i).Vertical = medfilt2(f(i).Vertical, [4 4]); 
    FramesClean(1,i).Diagonal = medfilt2(f(i).Diagonal, [5 5]); 
     
    %a = b; 
end 
 
%save 'FramesHorizontal.mat' Frames 
save 'FramesCleanDiagonal.mat' FramesClean 
%save 'FramesVertical.mat' Frames 
%save 'FramesIntersection.mat' FramesClean 
 
 
 
for i = 1:NF 
     
    imshow(FramesClean(1,i).Horizontal,[]); title('Clean Diagonal motion'); 
     
    MovDiagClean(i)=getframe; 
     
end 
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for i = 1:NF 
     
    imshow(FramesHor(1,i).Horizontal,[]); title('Diagonal motion'); 

     
    MovDiag(i)=getframe; 
     
end 
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