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Summary

Stereoscopic vision is an important research area since 1861 when Wheatstone intro-
duced the first stereoscopic device. After his basic device many technologies have
been proposed to deliver 3D vision to audiences. Although most of these technologies
require the viewer to wear special eyewear, new technologies are emerging that do
not require glasses. These technologies, called autostereoscopic displays, are becom-
ing very popular. However their ability is limited due to their demand of multiple
high quality images. Common stereoscopic cameras shoot two images simultaneously
which is not enough for these displays. Therefore, the problem to be solved is to gen-
erate intermediate virtual views using minimum number of real world images. The
problem has two steps: correspondence estimation and view reconstruction. Cor-
respondence estimation, which can be described as matching the same features in
multiple images, is an ill-posed problem. Thus, many techniques have been proposed
for correspondence estimation. In this report, basic methods used for this problem
will be covered. The second step, intermediate view reconstruction, uses the infor-
mation extracted in the first step, and works towards creating high quality views.
Methods used for view reconstruction will also be covered in this report.
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Chapter 1

Introduction

Visual aids are vital parts of our lives. One could not imagine a life without pho-
tographs or videos. Therefore, image processing is a huge scientific area where thou-
sands of researchers are actively working. Although many of these researchers concen-
trate on two-dimensional (2D) image processing, there are many researchers in three
dimensional (3D) vision research area as well. As a result of their work, in the future,
we will be using more three dimensional visual aids than we use today. Nowadays, 3D
devices that ordinary people are exposed to are limited to specially equipped movie
theaters that require the audience to wear special kind of glasses. However, in the
future, TVs that give us depth feeling without a need of any eyewear will be common
in our homes.

It is actually very interesting that works on three dimensional images had begun
long before photography was invented. It is noted that Leonardo da Vinci (1452-
1519) studied the perception of depth [2]. His interest and appreciation for the third
dimension can be found in his notes written 500 years ago. He writes ”...the main
objective of painting is to show a raised body projecting from a plane surface. Whoever
achieves this surpasses all others and should be considered most skilled within his
profession.” [1].

However, the breakthrough happened in 1838 when physicist Charles Wheatstone
(1802-1875) invented the first stereoscopic viewer. Wheatstone, a British scientist,
explained the theory of stereoscopic vision in his address entitled ”Phenomena of
Binocular Vision” to the Royal Scottish Society of Arts in June 1838. The original
speech can be found on the internet [6]. He constructed the stereoscopic device on
the knowledge that left and right eyes view the same scene with a slightly different
angle. This knowledge constructs the basics for stereoscopy.

After the invention of photography, Wheatstone also introduced the first photo-
graphic stereoscope in 1841.

Following Wheatstone, David Brewster (1781-1868) made significant contributions
to the stereoscopic field. In 1849, he proposed his own stereoscope consisting of a pair
of half lenses and an opening to a slot where the pair of images can be mounted side by
side [8]. The new design was more compact than that of Wheatstone’s. One year later
he succeeded in interesting the French optics company Soleil and Duboscq and the
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Figure 1.1: Wheatstone used hand drawings to demonstrate the function of his stereo-
scopic device

company started manufacturing the device [3].The company exhibited the stereoscope
in an exhibit in London. Queen Victoria was very impressed by the device. Having
caught the attention of the noble, it also drew the public’s attention. As the result,
within a three months period, a quarter of a million stereoscopes were sold in London
and Paris.

Since the first stereoscopic device, many new techniques were introduced for
stereoscopic displays. In this report, we will cover these technologies and we will
mainly focus on stereovision related research topics.

Specifically, the report will start with the discussion of how humans perceive
depth which will be followed by technologies used for stereoscopy. Also, applications
of stereoscopy will be presented in this chapter.

Next, we will define correspondence estimation and intermediate view reconstruc-
tion (IVR). Applications of IVR and then correspondence estimation techniques along
with comparisons will be presented. Next, IVR techniques will be discussed.

The report will conclude with a work plan and conclusions.
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1.1 Definition of problem

The problem to be investigated is to create high-quality intermediate views using a
number of cameras. For this purpose a number of techniques will be introduced to
solve the following problems:

• Reliable estimation of depth using multiple cameras

• Transformation of the resulting depth maps to virtual viewpoints

• Reconstruction of virtual view at the new viewpoint

Following this phase, transmission of multiple views to users will be the main topic.
The problems in this phase are:

• Evaluation of
(a) transmission of all multiple views
(b) transmission of a minimum number of views which are going to be used at
the receiver end to create the extra views.

• If method (a) is preferred, compression techniques to reduce the redundancy
should be investigated.

• If method (b) is preferred, optimization of IVR methods should be investigated.

1.2 Goals

A prototype system which renders required number of high-quality views from min-
imum number of cameras and then compresses them for fast transmission will be
completed at the end of the project. Solutions to each problem mentioned in the
previous section will act as milestones in the project.



Chapter 2

Perception of depth

How humans perceive depth is covered in this chapter. Monocular and binocular
depth cues are introduced.

2.1 How do we perceive depth?

Depth is the relative distance of objects to the observer within a scene. Perception
of depth is achieved by coordination of our eyes and brain. Human brain uses the
depth cues, which can be defined as clues that help observer to find out the depth.

There are several types of depth cues that are used by human brain. They are
mainly divided into two groups as monocular and binocular depth cues.

2.1.1 Monocular depth cues

Monocular depth cues don’t require the use of two eyes and as the name implies, they
can be viewed with one eye.

One of the basic monocular depth cues is light and shade [38]. Artists often use
this cue in their works. Shadows give an idea about the shape of objects and help us
to estimate the relative positions of points. Fig. 2.1 [38] shows this effect.

Another monocular depth cue is interposition. If an object is blocking the view
of another object, then it is obvious that it is the closer to the viewer. For example,
the gray square in Fig. 2.2 is closer to the viewer than the black one.

Yet another monocular depth cue is relative size. We know that objects that
appear larger are closer to us. Therefore, if two objects are known to have the same
size and if one of them is relatively bigger than the other, then we know that the
bigger one is closer to us. The house on the left in Fig. 2.3 is closer to the viewer.

Aerial perspective is defined as the blurring of distant objects in the scene because
of the haze and scattering of light in the atmosphere. The objects in Fig. 2.4 are
same sized but the blurry one seems to be more distant to the viewer.

Textual gradient is another monocular depth cue [38] which is defined as gradual
change in appearance of objects from coarse to fine. The objects that appear more
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Figure 2.1: Shadows provide depth a cue

Figure 2.2: Interposition of objects provides a depth cue

distinct appear closer. Fig. 2.5 shows this effect. The lines in the lower side of the
figure appear closer because of the textual gradient.

Motion parallax [38] depth cue can be noticed in case of continuous movement of
objects. If two objects are known to have the same speed, the closer object appears
to be moving faster than the distant object. This effect can be easily noticed when
travelling in a car. As the car moves, hills in the landscape move very slowly, while
the traffic signs on the road pass by very quickly.

Objects appear to be getting smaller as they get further away from the viewer.
This effect is called geometric perspective [25]. Consider the example in Fig. 2.6.
Point B seems to be closer than point A.
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Figure 2.3: Relative sizes of objects provides a depth cue

Figure 2.4: Blurriness of objects provides a depth cue

Figure 2.5: Textual gradient provides a depth cue
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Figure 2.6: Geometric perspective provides a depth cue

2.1.2 Binocular depth cues

Unlike monocular ones, binocular depth cues are perceived by two eyes.
Human eyes are positioned at slightly different locations. The average interocular

distance for humans is approximately 2.6 inches (6.5 cm) [27]. Due to this distance
between eyes, the projections of the scene onto retinas of eyes are slightly different.
The brain fuses these two slightly different images to give depth feeling. Fig. 2.71

shows the projection of a scene onto two cameras placed at interocular distance. If
examined closely, one can notice the differences. For example, the farthest car that
is in front of the bushes is more visible in the left image, while most parts of the car
are occluded in the right image. Other differences can be noticed especially at object
boundaries.

It is also easy to notice that positions of objects are slightly different in the two
images. In order to understand this effect, consider this easy experiment: While
looking at a stationary scene, close and open one eye at a time. It is easy to notice
the differences.

Ignoring occlusions, a topic which will be covered later, all points in the left image
are also present in the right image with a displacement due to the projection of scene.
This displacement of a point in two images is called disparity.

The disparity is larger for objects closer to the viewer2. One can do the previous
experiment to observe this fact, too. Put your thumb nearly 10 cm far away from
your eyes. While looking at a distant object open and close one of your eyes. It is
easy to notice that your thumb ’moves’ quite a bit, while the distant object ’moves’
little.

Using this basic information and camera geometry, the depth of each pixel in the
scene can be constructed using stereo images. Depth value for each pixel can be

1Used with permission of www.stereovision.net
2It should be noted that we are considering parallel camera configuration here. In case of toed-in

configuration, this statement may be invalid. Camera configurations are covered in Chapter 5.
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Figure 2.7: Image on the left shows the scene through left camera and image on the
right shows it through right camera

regarded as a new image, which is called the depth (or range) map.



Chapter 3

Intermediate view reconstruction

One of the main problems of stereoscopic systems is that they don’t offer the freedom
of choosing the viewpoint. The observer should watch the scene at the position of
cameras. When watching a stereoscopic image/video, if the viewer moves the scene
stays the same, which is not realistic. In real life, if one moves his head, he can
see around the objects. This is called look-around feeling which stereoscopic systems
cannot deliver [25].

Figure 3.1: Intermediate view reconstruction

The solution to this problem is shooting the same scene at many different view-
points and showing two of the views at a time to the user as he moves his head.
Without any novel approach, using many cameras for recording the scene seems to be
the easiest way. However, this kind of setup will be not only very expensive but also
very bulky. Instead, we can use special techniques to create views at virtual view-
points using a small number of real cameras. Creating virtual views using stereoscopic
images is called intermediate view reconstruction1. In Fig. 3.1 we show such a setup.
The scene is recorded using two cameras, the question is what the scene would look
like from the position of the virtual camera. We will return to intermediate view
reconstruction later.

1also called view synthesis
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3.1 Distinction of terms

Since many terms such as stereoscopic, stereographic and 3D are used in literature,
it is appropriate to begin by making distinction between them.

A stereographic image is a single image which contains meaningful and correct
monocular depth cues. Therefore all the images that are captured using a camera are
stereographic images [25].

Two stereographic images, one for left eye and one for right eye are called stereo-
scopic images or stereo-pair. If these images are properly delivered to viewever’s eyes,
he/she will perceive the depth of the scene.

The viewpoint2 in stereoscopic images is fixed. The viewer sees through the view-
point of the cameras. There is no freedom of choosing a viewpoint. The systems that
let the users to determine the viewpoint for the scenes are called 3D systems [25].

2Here, we use the term viewpoint to describe the position of cameras.



Chapter 4

Stereoscopic display technologies

This chapter elaborates the benefits of stereoscopic display systems and technologies.
In this chapter, we will discuss these technologies, with the emphasis on autostereo-
scopic displays.

4.1 Benefits and applications of stereoscopic dis-

play technologies

The first application area of stereoscopic vision is entertainment. Adding the third
dimension to the current technology will add realism and will be more pleasing to
audiences. IMAX TM movie theaters are well-known among people for such an expe-
rience. Overcoming hardware and software problems, stereoscopic TVs can replace
ordinary TVs in the future.

Businesses will benefit from stereoscopic displays, too. Companies can demon-
strate their products in life-size using 3D displays. A customer in another country
can examine the product without visiting the company or waiting for a sample. Sim-
ilarly, virtual visits of homes, vacation sites can be made possible [34].

Stereoscopic vision can also be used in remote handling applications that are
potentially hazardous to humans. Examples are underground works and radioactively
contaminated areas. The field of medicine can use stereoscopy for surgeries.

All kind of simulators can be improved using stereoscopy. The trainee will be
more aware of the situation with the enhanced display.

4.2 Current technology

Color-multiplexed (Anaglyph) displays: First anaglyphs were invented by Roll-
man in 1853. Although this technology is very old, it is still used due to its simplicity
and little cost.

Anaglyph glasses have a red lens on left eye and a blue (sometimes cyan) lens on
right eye. Anaglyph stereo images are produced in such a way that two images, a red
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and blue image, are superimposed, one on top of the other. Since anaglyph glasses
have colored lenses, left and right eyes see the red and blue images respectively. Since
two different images are perceived by each eye, viewer can perceive the depth.

Crosstalk, which is defined as each eye seeing some part of the image of the other
eye, is too high in this method. Also color rivalry, where homologous points are
presented with non-matching colors, restricts the use of this method [55]. Many
examples of anaglyph works and displays can be found on the internet.

Polarization-multiplexed displays: In this method, two views are projected
through light polarizers onto the screen. These superimposed images are then sep-
arated by polarized (circular or linear) glasses worn by the user. The advantages
of this method are little crosstalk and inexpensive and lightweight polarizing glasses
[55]. An example polarized display product NuVision 17SXTM can be found at [4].

Time-multiplexed displays: This technique exploits the fact that human visual
system can retain an image for some time. The left and right views are sequentially
shown on the screen and lenses of the liquid crystal shutter glasses open and close in
synchronization with the displayed images. When the left view is on the display, right
lens occludes the right eye and vice versa. The operation of glasses is controlled by a
infrared emitter placed close on the monitor. When the observer turns away from the
screen, shutter glasses stop working and both lenses switch to open, so the viewer is
not affected during normal viewing. Persistence of phosphors of CRT monitors may
result in some crosstalk in this method [55]. An example product, CrystalEyes 3TM

can be found at [7].
Autostereoscopic displays: While the techniques above require eyewear, au-

tostereoscopic displays don’t require eyewear. In this method, views are spatially
multiplexed on a pixel-addressable screen and then separated using an optical layer
that covers the display [34]. One example for the optical layer is lenticular sheet.
SynthaGramTM 3D monitor, a product of StereoGraphics Corp., uses lenticular sheets
for 3D viewing. This specific monitor is discussed in detail in the next section. More
information on 3D display technologies can be found in [55].

4.3 SynthaGram 3-D display

The SynthaGramTM is an autostereoscopic monitor manufactured by StereoGraphics
Corp. Most important features of SynthaGram are its capability to deliver 3D view
without the need of eyewear and its capability to give look-around feeling.

SynthaGramTM monitors use lenticular sheet (sometimes called lens sheet or micro
lens) which can be regarded as many miniature lenses arrayed on a flat sheet. This
sheet covers the surface of a flat panel monitor. The screen and lenticular sheet are
precisely aligned using Moir Interferometry1. The mapping of pixels on the monitor
is predefined, a process called interzigging by StereoGraphics Corp.

1Moir Interferometry is an optical technique that uses lasers to measure displacements and strains
on the surface of objects. Moir gives a full-field map of the strains. It has subwavelength displacement
sensitivity[5].
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Figure 4.1: Lenticular sheet

The main idea of using lenticular sheet is summarized in Fig. 4.1. The basic
principle of delivering different images to each eye is achieved using optical lenses of
the lenticular sheet. One can think of this configuration as of eyewear, that the user
should wear, is carried on the monitor itself.

As already mentioned, the SynthaGramTM is capable of giving look-around feel-
ing. This is achieved by creating a number of view zones using nine images. These
nine images of the scene should be taken by evenly spaced cameras. Since there are
many images shown on the monitor, the user will be able to see different perspectives
as he moves his head. To sum up, in a single view zone, user can experience a look-
around feeling. If the user enters another view zone, same perspective progression
is repeated. There are five view zones which are created using nine images. Using
nine images wass selected after experiments of developers. Although nine images are
required in order to have the best quality, fewer images can be used, but results will
be degraded, since there will be distinct jumps between perspectives.

It should also be noted that another advantage of having multiple view zones is
that multiple users can see the same 3-D image effortlessly.

Since there are nine images for the display, there are nine times more pixels than
in a single image, therefore they should be processed before displayed on the monitor.
This processing is called interzigging. The first step of interzigging is downsampling
of images to reduce the number of pixels. Since there are nine images, downsampling
by three in both x and y directions is appropriate. It should also be noted that this
downsampling process obviously decreases the image quality, which is a drawback of
the SynthaGramTM. Proper prefiltering stage needs to be applied to prevent aliasing.
Special anti-aliasing filters for SynthaGramTM monitors are discussed in [35] .

The next step is choosing the correct pixel from the source image and assigning
it to its new location in the interzigged image. In an early version of such displays
manufactured by Phillips, the following formula is used to choose pixels and assign
them on the monitor [67].
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N =
(k + koffset − 3 l tan α) modX

X
Ntot (4.1)

where

k,l : pixel location

N-tot : total number of views

α: angle of slanted lenticular

X: view per lens

koffset: a variable to accommodate horizontal shift of the lenticular lens array
(usually zero)

Figure 4.2: Nine-tile format

After the interzigging operation there will be a single image to view on the
SynthaGramTMwith the same dimensions as the original images.

However, a problem arises after interzigging. Since the new image is a ’shuffled’
image, compression significantly degrades the quality due to blocking artifacts. Block-
ing artifact is a problem in block based-lossy compression standards, e.g., JPEG. Due
to the quantization step in compression algorithms, it is easy to see the boundary
changes between blocks at high quantization levels. Although this blocking effect
can be tolerated to some level in ordinary images, it results an unpleasant experi-
ence on SynthaGramTMmonitors, because blocking artifact causes texture and depth
distortion.

In order to overcome the compression and transmission difficulty, developers in-
troduced the nine-tile format, which is basically downsampling the images by three in
each direction and concatenating them to create a single image with the same size of
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the original images. The images should be properly prefiltered before downsampling
to avoid aliasing.

Another reason for the nine-tile format is that for different monitor resolutions
different interzigging algorithms are required. Therefore original images are required
to create an interzigged image for a different monitor. Thus it is an appropriate way
to store the images.



Chapter 5

3-D geometry

In this chapter, we will define basic concepts that we frequently use in 3-D processing
such as camera model, projective and epipolar geometry.

5.1 Pinhole camera model

Since we work on images taken by cameras, it is essential that we have a camera model
to extract quantitative measures. Therefore, we will first define the basic model used
in the literature which is the pinhole camera model. Although being very simple, this
model accurately models the geometry and optics of most modern cameras [24].

Figure 5.1: Pinhole camera model

The image formation process in a pinhole camera model is illustrated in Fig. 5.1.
All of the light rays departing from the object pass through a small hole, called center
of projection or optical center, and forms the inverted image on the screen. Now we
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will elaborate on the geometry, and derive the equations that describe projective
geometry.

Figure 5.2: Projection of a point in 3D world onto image plane

Consider Fig. 5.2 which shows two planes: Plane F, the focal plane, is where
the center of projection resides, and plane R, the retinal plane, is where points in
three-dimensional space are projected onto. The distance between plane F and R

is called focal length. Now let us define two coordinate systems, one for the three
dimensional space (world coordinates) (C, x, y, z) which is centered at C, and one for
the retinal plane (c, u, v) which is centered at c.

Now let’s study the point M with coordinates (x,y,z ) in three-dimensional space.
M is going to be projected onto m on the retinal plane R through the point C on
the focal plane, thus resulting in point m.

Using basic geometric relation of similar triangles, the following relation can be
written

−
f

z
=

u

x
=

v

y
(5.1)

Rewriting the equations we get
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where z 6= 0

Next, we define an additional component S in order to convert the above relationship
to linear, so that we can define an image point with a triplet (U,V,S) where

u = U/S

v = V/S

and

S 6= 0

This additional component comes from the idea that (U, V, S), (u, v, 1) and (u, v)
should represent the same point.

Finally combining previous equations, we derive the following equation.
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(5.3)

or
~m = ~P ~M (5.4)

where
~m = [U V S]T and ~M = [x y z t]T .

To sum up, in (5.4) we project a point in world coordinates to the camera plane
with the help of a linear equation.

5.2 Stereo camera setups

There are two primary camera configurations in the literature.
The parallel camera configuration uses two cameras with parallel optical axes. This

configuration is frequently used due to its simplicity in both setup and mathematical
derivations. Since the optical axes are parallel, they will converge at infinity and
infinity will projected on the screen. This may result in excessive screen parallax on
the screen and can cause viewing difficulties for the observer. Another problem is
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that depending on the distance between the cameras the common field of view may
be small. This creates a problem at the correspondence matching stage.

The second configuration is toed-in camera or converging camera configuration
where cameras are a little rotated towards each other, so that the optical axes of cam-
eras converge at some point other than infinity. The advantage is that the common
field of view is increased. However, this configuration introduces opposing keystone
distortions in the stereo pair. Keystone distortion can be described as distortion that
projects a rectangular figure as a trapezoid in the picture.

A comparison of these two configurations along with resulting distortions is dis-
cussed in [68].

5.3 Camera geometry

We will now define geometric relations for the camera setups mentioned in the previ-
ous section using the pinhole camera model.

5.3.1 Parallel cameras

Figure 5.3: Projection of a point onto parallel cameras

The parallel camera configuration is illustrated in Fig. 5.3. Consider a point P
in 3D world with coordinates (X,Y, Z) and its projection onto two points pl and pr

on image sensors of the left and right cameras. Let the coordinates of points pl and
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pr be (xl, yl) and (xr, yr), respectively. The horizontal distance b between the two
cameras’ optical centers is called the baseline distance. Finally, assuming that two
identical cameras are used, let the focal length of the cameras be f .

Using the perspective transformation the following relations [25] can be written

xl = f
X + b/2

f − Z
(5.5)

yl = f
Y

f − Z
(5.6)

xr = f
X − b/2

f − Z
(5.7)

yr = f
Y

f − Z
(5.8)

It is obvious that yl and yr are identical. This is the advantage of the parallel
camera setup. Disparity d is mathematically defined as

d = xr − xl (5.9)

The Z component of point P can be also computed using similarity of triangles
(P, pl, pr) and (P,C,C).

Z

Z + f
=

b

b + d
(5.10)

Z =
b f

d
(5.11)

5.3.2 Converging cameras

In converging camera setup, cameras are a little rotated towards each other at angle
β so that their optical axes intersect at a convergence point. For the setup given in
Fig. 5.4 the convergence point is at

Zconvergence =
b

2 tan β
(5.12)

The projection of a 3D point on convergenging cameras is more complicated than the
parallel cameras case. In addition to steps in the parallel cameras case, there is also
a rotation in projection. Using derivations given in [25] we can show the projection
step by step
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(5.13)
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Figure 5.4: Projection of a point onto converging cameras

ii) Rotation around the y axis by angle of β
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(5.14)

iii) Perspective projection

xl = f
cos(β)(X + b/2) − sin(β)Z

f − sin(β)(X + b/2) − cos(β)Z
(5.15)

yl = f
Y

f − sin(β)(X + b/2) − cos(β)Z
(5.16)

xr = f
cos(β)(X − b/2) + sin(β)Z

f + sin(β)(X + b/2) − cos(β)Z
(5.17)

yr = f
Y

f + sin(β)(X − b/2) − cos(β)Z
(5.18)

Using these equations we can determine the horizontal disparity as

d = xr − xl = −2f
N

D
(5.19)
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where

N = 4 sin(β) cos(β)Z2 +
[

2b − 4f sin(β) − 4b cos2(β)
]

Z

b cos(β) [2f − b sin(β)] + 4 sin(β) cos(β)X2 (5.20)

and

D = 4 cos2(β)Z2 + 4 cos(β) − [b ∗ sin(β) − 2f ] Z
[

4f 2 − 4fb sin(β) + b2 sin2(β)
]

− 4 sin2(β)X2 (5.21)

For β = 0 the converging camera setup becomes equivalent to parallel camera
setup.

5.3.3 Epipolar geometry

Figure 5.5: Epipolar geometry

Epipolar geometry introduces a very powerful restriction in correspondence esti-
mation. Epipolar constraint was first introduced in [40].

In order to understand the epipolar constraint better, consider Fig. 5.5. It can
be noticed that all possible physical points M that may have produced ml are the
infinite half line 〈C,M〉. As a direct consequence, all possible matches mr of ml on
the right retinal plane are formed by this half-line through the second camera. This
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image is a half-line epipolar line 2 going through mr which is the intersection of the
line that connects the center of projections with the right retinal plane.

Using the latter observation, the epipolar constraint states that for a given ml

on left retinal plane, all its possible matches on the right plane lie on a line. After
introducing this constraint, the matching process reduces to one dimension from two.



Chapter 6

Correspondence estimation
techniques

In previous chapter, we have given the basics for stereo geometry which are used
to solve stereo vision problems. The biggest obstacle for this problem is the corre-
spondence estimation. Correspondence estimation can be described as finding the
corresponding token (line, pixel, object etc.) in second image using a given token in
the first image. By nature, correspondence estimation is ill-posed which means that
the problem has no exact or unique solution or is overly sensitive to the date.

There are mainly two constraints introduced to make the problem simpler. The
first constraint, constant image brightness constraint (CIB) [28], is introduced in
order to be able to relate luminance values and correspondence. The constant image
brightness constraint states that corresponding pixels in images should have equal
luminance values. However, even this strong constraint is not enough for solving the
problem. Consider an image which contains a contour whose points have the same
luminance, then pick a point on the contour. Since all points have the same luminance
values, what is the corresponding point in the other image? Thus, CIB is not enough
to convert the problem to a well-posed one [58]. The second constraint is epipolar
constraint which restricts the search range for a corresponding point in one image to
the epipolar line in the other image.

Another problem in correspondence estimation is occlusion. As illustrated in Fig.
6.1, occlusion problem arises when a point is visible through one camera but not the
other one. In such cases, correspondence estimation becomes impossible.

Yet another problem can be noticed from programming perspective. As opposed
to motion estimation in video, the possible range of vectors in disparity estimation
is larger, therefore there are more candidates to investigate which obviously requires
very high computational effort [72]. Of course, in case of the epipolar constraint,
number of calculations significantly decreases, however in real-world images there is
almost always a vertical component of disparity vectors.

A technique called rectification [51] is used to ’adjust’ images so that images are
re-projected onto planes corresponding to parallel camera setup. In other words,
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Figure 6.1: Point A is visible on right camera but not visible on the left camera

images are aligned in such a way that disparities in vertical direction are cancelled
after rectification step. A free rectification toolbox for MATLAB can be found in
[16].

Although rectification methods help reduce the computational load, they manip-
ulate the original images, therefore may yield problems during intermediate view
reconstruction. Specifically, during the process of rectification, images are resampled.
Some of the data can be lost during rectification, especially details in small areas.
The loss of data may degrade the quality of resulting intermediate views.

Now we will discuss methods used in correspondence estimation. Numerous meth-
ods have been proposed in literature:

Block matching algorithms: These techniques match rectangular blocks of
pixels in images [39, 63, 69, 10, 23]. For a block Bleft in the left image, a block Bright

is searched in the right image in a predefined search window. The resemblance is
evaluated using some cost function, for example Sum of Absolute Differences. Once
the best match is found, same correspondence vector is assigned to all points in the
block. Therefore this method a piecewise constant disparity map.

The advantage of this method is its simplicity. Many efficient block matching
techniques are available in video compression. Hardware implementations are also
available.

This method yields very good results in large textured areas that are displaced
uniformly [58]. Results can be enhanced using different block sizes, however large
blocks tend to work better due to carrying more features to match.

Although being very simple, this method cannot fully describe disparities that
yield constant depths. Another problem is the assumption that states that all points
in the block should have experienced the same displacement, therefore they should
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have equal depth values. However, this assumption fails at object boundaries. The
depth suddenly changes at object boundary, however since it is assumed that all
points in a block should have the same depth, the resulting depth map will contain
incorrect values if there is an object boundary in the block.

One solution for this problem is changing block size in problematic areas [44]. In
potential boundary areas, the block size can be reduced to accommodate the sudden
change in the depth. Although this works up to some level, detection of problematic
areas and implementation are difficult.

Block matching is computationally expensive especially for large disparity values
since a cost function is evaluated at every candidate point.

Feature matching: This method tries to match a specific feature between the
images. The feature may be determined automatically or by the user. This can be a
line, an edge or any other specific feature in the scene [15, 17, 64, 37].

The advantage of feature matching is that features used are usually more reliable
than intensities when CIB constraint does not hold. However, feature matching may
face problems if the feature extraction process yields missing or false features [49].

Although feature matching techniques can compute reliable and accurate corre-
spondences, they compute sparse maps. No disparity information is computed for
non-feature points.

Optical Flow: All previous methods work locally on the images, therefore result-
ing disparity map is sometimes not reliable. Moreover, in case of feature matching a
sparse disparity map is computer. However a dense depth map which requires dispar-
ity vectors calculated for each pixel independently is required for applications such
as intermediate view synthesis. Optical flow, proposed by Horn and Schunck in [29],
is a seminal method that started the work towards calculating the motion globally.

Optical flow is the apparent motion of a brightness pattern. In theory, the optical
flow is equal to motion field1. Let E(x, y, t) be the brightness at time t at the image
point (x, y), and u(x, y) and v(x, y) be the horizontal and vertical components of the
optical flow at that image point. Using the constant image brightness constraint, we
can write the following equality at t + 4t where 4t is a small time interval

E(x, y, t) = E(x + u4t, y + v4t, t + 4t) (6.1)

Expanding the equation using Taylor series and making some approximations, we
end up with the following equation which is called the optical flow constraint equation.

Exu + Eyv + Et = 0. (6.2)

where

Ex = ∂E
∂x

, Ey = ∂E
∂y

, Et = ∂E
∂t

and

1Practically, this condition is not always satisfied in some cases such as rotation of an object.
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u = dx
dt

, v = dy

dt

Working solely with 6.2 will yield an irregular optical flow map. However, since
the optical flow will be very similar on the average, it can be smoothed by introducing
additional constraints. Assuming the rigid body motion, we can smooth most parts
of the image by minimizing the departure of velocities u and v from the smoothness.
Specifically, we can minimize

es =
∫ ∫

((u2

x + u2

y) + (v2

x + v2

y)) dx dy. (6.3)

After combining (6.2) and (6.3) and introducing a smoothness parameter λ, we
minimize the following integral

∫ ∫

((u2

x + u2

y) + (v2

x + v2

y) + λ (Exu + Eyv + Et)
2 dx dy (6.4)

The corresponding Euler equations are

∇2u = λ(Exu + Eyv + Et)Ex (6.5)

∇2v = λ(Exu + Eyv + Et)Ey (6.6)

where

∇2 =
∂2

∂x2
+

∂2

∂y2

.
Although smoothing the optical flow using additional constraints yields better

estimates, it also creates a major problem at object boundaries. There will be dis-
continuities at the object boundaries where the motion field (or the depth) suddenly
changes. Therefore, regularization algorithms that are used to smooth the optical flow
should force smoothness inside a rigid body but should refrain from smoothing across
the object boundaries. March discusses this problem in [47]. He proposes to use a
mask for the optical flow equation, which prevents smoothing across the boundaries.

Recognizing an object boundary is an easy task for a human but it is very difficult
to detect in computational implementations. An edge in the image may be a boundary
between objects or a textural edge as well. Explicitly marking the boundaries and
preventing the algorithms work at these points may solve the problem.

After Horn and Schunck, many optical flow methods have been proposed in lit-
erature: Lucas and Kanade [41], Nagel-Enkelmann [50] are two of the popular ones.
For a detailed comparison of optical flow methods, refer to Barron et al.’s paper [14]
which quantitively evaluates several methods. McCane et al. also compares optical
flow methods in [48].

The main drawback of optical flow methods is that they cannot capture displace-
ments more than one or two pixels due to the approximation in derivation. Therefore,
hierarchical scheme implementations are required to compute large displacements.
Initializating the method using coarse displacements may be another solution.
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Another drawback of this method is that the derivatives given above are numeri-
cally approximated. This requires a local spatiotemporal linearity of luminance which
is not always the case for image sequences with large motion [58].

Phase-based methods: Another approach for correspondence estimation is
based on phase of the Fourier transform of two images [31, 43, 42].

The idea behind phase-based methods is to compute the disparity as the spatial
shift from the local phase differences in Fourier domain [42]. Usually both images are
convolved with a filter and local phase is extracted from the result. Since the local
shift is approximately proportional to the local phase difference, a disparity value can
be estimated at each point. The filter usually exploited is Gabor filter. An FFT-
based disparity estimation is also proposed in [11]. For a comparison of some of the
phase-based disparity estimation techniques refer to [22].

Other methods: Since the problem is ill-posed, many other approaches for
disparity estimation can be found in the literature. Although we will not give details
of these methods, we will give some references to these work.

One approach is simultaneous estimation of correspondence fields combined with
object segmentation using Bayesian methods [20, 36].

Other approaches that use partial differential equation (PDE) based methods can
be found in [56, 12, 13, 66]. The basic idea of PDE based methods is to represent the
image as the level set of a higher dimensional hypersurface. Using PDEs in image
analysis helps to model the images in a continuous domain, which leads to grid-
independence and isotropy [59]. Another advantage of variational and PDE methods
is that they allow to directly handle and process visually important geometric features
such as gradients, curvatures. They can also easily simulate dynamic processes such
as nonlinear diffusion [19]. Moreover, the PDE approach can achieve accurate and
stable solutions with the help of available research on numerical analysis [18].

Moreover, A Maximum A Posteriori (MAP) estimation technique can be found in
[9].



Chapter 7

Intermediate view reconstruction
techniques

In previous chapter, we presented some techniques to compute the correspondences
between images. Now we are going to present techniques that utilize these computed
correspondences to construct intermediate views.

For simplicity let’s assume the number of cameras is two and the cameras are
perfectly parallel. Similar approaches can be used to extend the method for more
cameras.

Figure 7.1: Intermediate view reconstruction pivoting on the intermediate view

We have two images Ileft(x, y), Iright(x, y) and the correspondence (disparity) map
d(x, y) and we would like to reconstruct the intermediate view Iα(x, y) at relative
position α, where 0 ≤ α ≤ 1.

In order to compute the intensity value of a point (x, y) on Iα, we pivot on in-
termediate view plane at (x, y) such that the disparity vector d(x, y) passes through
(x, y). Then, we have three points of interest1:

Ileft(x − α d(x, y), y)

1assuming vertical disparities are zero
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Iright(x + (1 − α )d(x, y), y)

Iα(x, y)

The basic approach to calculate the intensity of Iα(x, y) is weighted averaging.
Therefore we can write the following equation

Iα(x, y) = (1 − α) Ileft(x − α d(x, y), y) + α Iright(x + (1 − α )d(x, y), y) (7.1)

Since we pivoted on the intermediate view, intersections of a disparity vector with
left and right images do not, in general, belong to their sampling lattices. These
intensities should be computed using interpolation techniques such as bilinear inter-
polation or bicubic spline.

Instead of pivoting on an intermediate view, we can also pivot on left and right
views, however in this case, most of the points reconstructed on intermediate view
will not belong to the sampling lattice. The resulting irregularly-spaced points can
be projected onto orthogonal lattice using such techniques as Projection onto Convex
Sets (POCS) [65].

There are a few methods that utilize the approach described by (7.1). The basic
method is block-based reconstruction [33]. One disparity vector is assigned per block
and all points in the block are reconstructed using (7.1).

As already mentioned, the assumption that all points in a block should have
the same disparity does not always hold. Therefore, it is appropriate to change the
block size when required. Quadtree block matching [45] technique first calculates the
disparity values for larger blocks and then reduces the block size at possible boundary
locations. After estimation of disparity field, intermediate views are reconstructed
using (7.1) again.

Linear interpolation methods that use equation (7.1) tend to result in blurry in-
termediate views. Mansouri and Konrad proposed a winner-take-all approach to
overcome this problem [46]. In their approach, the intermediate view is reconstructed
by tilings from either left or right images. In other words, every block in the in-
termediate view is equal to the corresponding disparity-compensated block in either
the left or right image. Although this method decreases the blurr in reconstructed
image, it also introduces a patchiness effect when left and right views have significant
differences in intensities.

Another method by Scharstein computes two intermediate views at the same point
by forward mapping (disparity compensating the images using disparity vectors) both
left and right views [61]. The algorithm computes the disparity field using an intensity
gradient method described in [60]. Then, both left and right images are forward
mapped to intermediate location. Obviously there will be holes in forward mapped
images since a point may be overdefined (i.e., more than two points in original image
can fall on the same location in intermediate view) or the new point is not visible
in both of the views. The next step is combining these two intermediate views.
Weighted averaging is one of the methods to blend the images. Also, holes can be
filled using information from one of the images. However, holes may still exist in the
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intermediate view. At this point, Scharstein uses texture synthesis methods. This
method being simple, suffers from the forward mapping part. Filling the holes using
texture synthesis methods may be a problem for reconstructed views. Especially areas
with details may not be reconstructed properly.

Redert et al. introduce a method which can reconstruct views at non intermedi-
ate positions [57]. Their motivation is to overcome the restriction that fixes the new
viewpoint between the cameras. They compute correspondences using dynamic pro-
gramming and working on blocks of 4x4 points. Then they compute the intermediate
view at center point between the two cameras. For the rest of the algorithm, they use
this center view and a single disparity map D (either right-to-center or center-to-left).
They relate the center view to any view at position (Sx, Sy, Sz) with the following
formula







Xv

Yv





 =
Szoom

1 − Sz
Hc

f
D







X − Sx D

Y − Sy D R





 (7.2)

where Hc and Vc are sizes of the image in x and y direction respectively, R = Hc/Vc

the pixel ratio of the camera and f focal length of the camera.
Image rendering using equation (7.2) also suffers from problems like in Scharstein’s

case. Pixels in virtual image may be overdefined or remain undefined. In case of
overdefinition authors select the point that is closest to virtual camera. For undefined
case they use linear interpolation using the neighboring points to fill the holes. It
should be noted that the method is successful in the sense of simplicity since it uses
a single image and a single disparity map for any intermediate view.

Havaldar et al. proposed a view synthesis technique in [26] which uses projective
invariants. They do not require knowledge of the camera positions. An invariant,
defined with respect to a transformation T , is a property which remains unchanged
under transformation T . For example, parallel lines always map to parallel line under
orthographic projection. Also, the ratio of line segments with respect to each other
named cross ratio remains unchanged. Their method starts by extracting feature
points which are usually corners and faces. Next, these features are matched using
correspondence estimation methods. Given any corresponding points on two images,
the prediction of the point in new image is accomplished using cross ratio of four points
in two images. Since for every point whose cross ratio is computed, the location of the
point in new image can be calculated, these points are linked to form wireframes in the
virtual view. After this step, the boundaries of objects in the scene are reconstructed.
The final step is texture mapping which uses back projection using the computed
projective transform.

Utilizing more than two cameras for view synthesis is also discussed in the liter-
ature. The advantage is that occluded parts may be better defined using additional
views. Park and Inoue proposed an arbitrary view generation algorithm using five
cameras [53]. Their camera system consists of a center camera and a total of four
cameras to each direction of above, lower, left and right, separated by the same dis-
tance. The center camera is of special importance since all of the correspondence
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estimations will include this camera.
In their algorithm, they exploit a hierarchical correspondence estimation algorithm

given in [54]. This estimation method assumes that at least one of the two cameras
located symmetrically (i.e., either left or right or upper or lower) is not influenced
by occlusion, therefore gives correct matching data. At each step, they compare
cost values of symmetric cameras and discard the larger one. This is equivalent to
choosing the most proper configuration consisting of three cameras. Following this
correspondence estimation step, they construct a depth map for the central camera
using the disparity values.

In the next step, they relate the points (x, y) in central camera with the points
(x′, y′) of a virtual camera at position (Sx, Sy, Sz) with the following equations:

x′ =
1

1 − Sz/D(x, y)

(

x −
f Sx

D(x, y)

)

(7.3)

y′ =
1

1 − Sz/D(x, y)

(

x −
f Sy

D(x, y)

)

(7.4)

where D(x, y) is the depth map and f is the focal length.
By using (7.3) and (7.4), they forward map the depth map of central camera to

that of the virtual camera. However, the problem of having overdefined or unde-
fined points again arises due to the forward mapping. For overdefined points, they
choose the smallest value among the multiple depth values. In order to fill the holes
(i.e. undefined points) in transformed depth map, they use the concept of observable
viewpoint (OVP). OVP can be defined as the direction of mapping. For example, if
the camera is moved to the right, the new image on the new viewpoint will contain
some information that cannot be observed from the original viewpoint and all of the
new points will be on the right of objects, because the camera is moved to the right.
In summary, the OVP is the direction in which an uncovered area appears. Thus,
they fill the empty points with the maximum depth value of two endpoints along
the direction of OVP. After these steps they have a fully defined depth map at new
viewpoint.

The reasons for choosing smallest depth value for overdefined points but choosing
the maximum depth value for undefined points are not explicitly mentioned and seem
to contradict each other.

The final step in the algorithm is texture mapping. This is easily done at points
that can be observed from both primary and virtual cameras. For uncovered areas,
they map a color value from one or two of the secondary images using the depth
value guessed in the previous step. If none of the projection methods succeeds to
fill the empty region, they interpolate the holes by weighted spreading of colors from
neighboring pixels.

Finally, after reconstructing the virtual view, they change the orientation and
scale of the image if desired. They employ 2D geometric transformations given in
[52].
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Figure 7.2: (a) The scene is shot using n cameras. The point of interest is V . (b)
Projection of 3D LOS onto input cameras. (c) The projected lines are aligned and
stacked. The color consistent points are flower, tail and grass. Since flower is closest
to V , color of flower is selected as the color visible from point V .

An interesting work by Irani et al. proposes to reconstruct views at any point in
the scene without computing any correspondence estimation [30]. In their algorithm,
they first align and compare all the projections of each line of sight emerging from
the virtual camera center in the input views and then the they create the virtual
view. They describe the line-of-sight as the sight of the viewpoint along the line that
stretches from the point to the direction desired.

To better understand this method, consider the scene given in Fig. 7.2 [30] where
n uncalibrated cameras are utilized. The question is how scene looks like from the eye
of the person, point V . In order to extract the color information which is visible from
V , the line of sight (LOS) stretching from V should be analyzed. In this example,
the first physical point that LOS intersects is the flower, therefore visible from V .
This 3D LOS currently analyzed creates a 2D projection on each image as shown in
Fig. 7.2.b. Therefore, the idea is to find the 2D projections of a 3D LOS and to
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stack them as shown in Fig. 7.2.c to create color-consistent columns. Next step is to
choose the closest column to viewpoint and assign as the color visible from point V
in the direction of the LOS.

Although it is a bit different than view synthesis, we would like to mention the
work of Seitz and Dyer [62]. Motivation of view morphing is in creating natural
additional views between two images which are going to be used in transition from
one image to the other when played as a video sequence. Therefore, images do not
necessarily have to be the same. Due to its ability to change the viewpoint, view
morphing is somehow related to view synthesis and can be used for this purpose.

Another approach in intermediate view reconstruction used especially in computer
vision area is to reconstruct a 3D volumetric model of the scene and then to use this
model to map new virtual views. All methods we have already mentioned were 2D
methods. They first relate the images with correspondence estimation and then work
towards view reconstruction.

Volumetric methods first create a 3D model of the scene and then manipulate and
transform the object and easily create new views. However, these methods’ execution
speed is dependent on scene complexity. Moreover, they require sophisticated software
and hardware for a realistic result.

There are also other works that use image sequences instead of calibrated multiple
cameras [21].

Although they are a bit different from intermediate view reconstruction, it is going
to be appropriate to mention other image-based rendering techniques. A survey by
Kang [32] gives details about image-based rendering techniques. The term image-
based is used here to describe that the methods use explicit images rather than
volumetric 3D models.

The first category is non-physically based image mapping. One of the ideas in
this method is to create an arbitrary view as a linear combination of a set of images
which are considered to be basis images. This method is also utilized in entertainment
industry for view morphing.

Another category is mosaicing. The aim in mosaicing is to create a higher reso-
lution or a larger image using the combination of at least two different images. An
example of this work is to create panoramic image using a few images. Since interme-
diate views are also contained in mosaics, arbitrary view generation is also possible.
In order to create the image mosaics from images, the constituent images are reg-
istered first. Many image registration techniques are used for registering. One of
the main obstacle in this method is to remove the discontinuities and distortions at
boundaries where images are connected [32].

The third category of methods is interpolation from dense samples. The aim
here is to first build up a lookup table by many samples from a scene from many
cameras and then arbitrary view is generated by interpolating the stored lookup
table. The advantage of this method is that correspondence estimation step is usually
not necessary. Rapid image synthesis is possible using the lookup table without the
estimation step. However, the number of samples required is very large (in hundreds
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and thousands). In addition, camera viewpoints should also be available. These are
the main drawbacks of this method [32].



Chapter 8

Conclusion and future work

In this report, we first presented how humans perceive the depth and described the
basic monocular and binocular depth cues used by the brain. We then described the
technologies used for stereoscopic viewing and mentioned the SynthaGramTM monitor
which utilizes lenticular sheets. SynthaGram monitors do not require the viewer to
use special glasses and, therefore are more attractive to the audience. They can also
deliver look-around feeling which is not possible in ordinary stereoscopic technologies.

The geometry of 3D was described next. We related the points in real world
with points in an image. Following this projection we introduced stereo cameras
and elaborated on the projection of the same 3D point onto image planes. The dis-
placement of the point between its projections, which is called disparity, was defined
mathematically.

Following this, we discussed the basic methods used for correspondence estimation.
Block matching, although being very simple to implement, suffer from the unrealistic
assumption that all the points in the same block should have the same disparity (or
depth) value.

Feature matching methods which can yield good results, suffer from the feature
extraction part. In case of unreliable features, results will be degraded. Another
problem is that these methods create sparse correspondence maps.

Optical flow methods are the first methods that consider the image as a whole
and try to estimate correspondence map as a function that can describe the motion.
They give very promising results, however they can only describe displacements of a
few pixels and therefore not suitable for most cases. Moreover, the discretization step
of the continuous functions can significantly affect the results.

One of the most promising emerging methods is the use of partial differential equa-
tions to estimate the correspondences. They yield very good results when compared
to other methods.

Next, we described the methods that create new virtual views. We mainly concen-
trated on 2D methods, which explicitly work on images. They first relate the images
using correspondence estimation methods and then use this result for view synthesis.
There are also 3D methods which first reconstruct a 3D model of the scene and then
map back to 2D to create a virtual view.
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8.1 Future work

We plan to use more than two cameras to shoot the scene and then try to compute
additional intermediate views. As we presented before, one of the main obstacles
in correspondence estimation are occlusions. In case of occlusions, two cameras will
not be enough to extract depth information. Introducing extra cameras into acqui-
sition process may solve this problem. Following the detection of occlusions, we can
ignore the information from problematic camera and use other cameras for reliable
information.

Another advantage of having multiple cameras is that we will have additional con-
straints during the computation of depth and creating intermediate views. Consider
the case when there is no occlusion. Giving the emphasis to the central camera, we
can compute many different depth values for the same point using the central cam-
era and one of the additional cameras. The very important result here is that all
depth values should be exactly equal since the cameras are coplanar. We may use
this constraint for better estimation and reconstruction.

Following the reconstruction of the depth map, we would like to fit a continuous
function onto this discrete map. We can utilize one of the works [71, 70] on this topic.
The advantage of fitting a continuous function is that in case of mapping to a new
viewpoint, since we have a depth everywhere, no holes will exist in the new depth
map.

8.2 Conclusion

In this report, we have described some of the methods found in the literature for
correspondence estimation and intermediate view reconstruction. We mentioned pros
and cons of each method. Finally, we set our future plan.
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