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1. Abstract 
 

The objective of this MS project was to investigate change detection in a scene 

using two synchronous cameras with overlapping fields of view. Specifically, of interest 

was monitoring of vehicle traffic on I-90 interstate highway. 

 

This report summarizes work completed within the MS project. First, a state-of-

the-art change detection algorithm using single camera is described. The algorithm is 

then extended to two cameras by applying affine mapping to align video sequences from 

two synchronous cameras. Since affine mapping is accurate only within planar surfaces, 

two cases were considered: affine transformation applied to highway surface, and affine 

transformation applied to side of a truck/bus/car. 

 

The experimental results illustrate that affine mapping using feature points 

selected from the background (highway surface) tend to match target objects more 

accurately than affine mapping using feature points selected from foreground objects 

(large trucks). It was also observed that optical distortions caused by wide-angle camera 

lens contribute to inaccuracies in the affine transformation between cameras. 

 

It is concluded that the bi-camera change detection as implemented in this project 

is inferior to single camera detection due to lens distortions and simple mapping model. 
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2. Introduction 
 

Change detection in a scene using multiple cameras can potentially improve 

detection accuracy over a single-camera detection since more information about the scene 

is available. Expected benefits are: increased detection accuracy and sensitivity. The 

objective of this project is to investigate such a multi-camera change detection in the 

particular context of highway traffic monitoring from cameras positioned above the I-90 

interstate highway. 

Two assumptions were made: 1) all cameras are stationary, 2) background is 

planar. Based on these assumptions, there are three major challenges. The first challenge 

is to construct a network of video cameras and to develop suitable synchronous multi-

camera video acquisition software. The second challenge is to analyze and implement a 

state-of-the-art single-camera change detection algorithm, such as one proposed by 

Elgammal al et [1]. The third challenge is to extend this single-camera algorithm to two 

cameras assuming planarity of the background. 

This report first introduces the network camera setup and the video acquisition 

software. The state-of-the-art change detection algorithm using single camera is then 

reviewed, followed by implementation of the change detection algorithm using two 

cameras. Experimental results, conclusions, and suggestions for future work follow at the 

end of the report. 

3. Network Camera Setup and Video Acquisition Software 
 
3.1 Network Camera Setup 
 

The hardware setup of this project involves Axis 207W and Axis 213 PTZ 

network cameras along with Linksys WRT54G routers. Both camera models are capable 

of providing live video streams in M-JPEG and MPEG-4 formats. Each camera contains 

a built-in Web server, which allows viewers to see live video via a standard Web 

browser, while permitting selected users to control some camera functions (such as pan-

tilt-zoom). Currently, four Axis 207W and two Axis PTZ network cameras are set up for 

users to access. 



3 

All cameras are connected to one of the Boston University NTP time servers for 

time synchronization. The hourly time adjustment in each camera varies based on the 

camera server reports. However, the adjustments for some cameras can be as large as 

0.03 seconds. This implies that there might be a one-frame offset while streaming at a 

rate of 30 frames per second. In addition, heavy network traffic causes frequent frame 

drop outs, despite the fact that some cameras are connected through wired Ethernet.. 

The Axis 207W’s are located on the fourth floor of the Photonics Building. Two 

of them wirelessly communicate to a router that is assigned a static IP address. The router 

is then connected to a local area network. The rest are connected directly to the same 

LAN. All four 207W’s are looking down at the I-90 interstate highway and have partially 

overlapping views. 

 
The list of available Axis 207W network cameras: 
 
• Router 1 (PHO 439) 

o PHO 438:  http://vsn1-iss.bu.edu:10438 
o PHO 435:  http://vsn1-iss.bu.edu:10435 

• PHO 443:  http://vsn3-iss.bu.edu 
• PHO 440:  http://vsn2-iss.bu.edu 

 
The Axis 213 PTZ cameras are installed on the roof of the Photonic Building. 

Each camera is assigned a static IP address and is wire-connected to a subnet on the 9-th 

floor. Both cameras are set to face the City of Cambridge.  

 
The list of active Axis PTZ network cameras: 
• PHO West: http://ptz1-iss.bu.edu 
• PHO East: http://ptz2-iss.bu.edu 

 
3.2 Video Acquisition Software 
 

The video acquisition software, Photonics Camera Network (PCN), was 

developed in C-sharp along with the Axis Media Control SDK, which contains graphic 

decoder and various media control functions for Axis products, under the Microsoft 

Visual Studio 2005 environment. The PCN allows users to simultaneously view up to 

four video streams and save them, at the rate of 10 frames/sec, to local disk. The 

development of PCN intends to provide for future image and video processing 
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applications in the department.  The PCN software is likely to prove valuable in courses 

such as SC463/464, SC520, SC717, and SC720. Fig. 1 below show a snapshot of  PCN 

window. 

 

 
Figure 1. A snapshot of PCN window 
 

4. Single-Camera Change Detection Algorithm 
 

Background subtraction techniques are often used in change detection and motion 

detection. The most fundamental method is to average a number of consecutive frames 

and threshold the difference between a new frame and this average using a global 

threshold. This method is simple to implement, but it results in low detection accuracy. 

Elgammal al et [1] proposed a more sophisticated method. The main idea is to construct a 

non-parametric background model for each pixel in form of a probability distribution of 
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intensity values. This background model can handle situations where the background of 

the scene contains small motion or variations in luminance. The model is sensitive to 

motion however, and adapts quickly to changes in the background. 

 
4.1. Basic Background Model 
 
4.1.1 Probability Density Estimation 
 

Let  be a recent sample of intensity values for a single pixel. Using 

these samples, the probability that this pixel will have intensity value  at time  can be 

non-parametrically estimated [1] using the kernel estimator as follows 

 

 
(1)

 
The kernel estimator function, , is chosen to be a Normal function N(0, ), 

where  represents the kernel function width. Then, the density for grayscale images can 

be estimated as 

 

 
(2)

 
For color images,  becomes , where  is a covariance matrix that 

represents the kernel function width. If different color channels are treated independently 

with different kernel widths   , then the matrix  is diagonal 

 

 
 
and the probability function can be written as 
 

 
(3)
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Using the estimated probability, a pixel is classified as a foreground pixel, i.e., 

changed (moving) pixel, if  where the threshold  is a global threshold 

over the entire image. This threshold can be adjusted to achieve a desired percentage of 

false positives. Clearly, if probability of  is low, i.e., it is unlikely to come from the 

same probability distribution as the background pixels,  is likely to belong to the 

foreground. For fast implementation, pre-calculated lookup tables for the kernel function 

values given the intensity difference  and the kernel function width are used. 

 

 
(a)                                                                      (b) 

Figure 2. (a) Original image. (b) Result of thresholding Pr(xt) 
 
4.1.2 Kernel Width Estimation 
 

To estimate the kernel width  for the th color channel for a given pixel, the 

median absolute deviation is computed over a sample of consecutive intensity values of 

the pixel. The median, denoted , of consecutive differences  is calculated 

independently for each color channel. Since the deviations between two consecutive 

intensity values usually come from the same local-in-time distribution, only few pairs are 

likely to come from cross distributions (i.e., those of the background and foreground). If 

this local-in-time distribution is assumed to be Normal , then the difference 

 is also Normal but with double variance, . The standard deviation of 

the first distribution can then be obtained from the following relationship: 
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4.2 Suppression of False Detections 
 

False detections that result from random noise, which should be homogeneous 

over the entire image, and from small movements, due to camera or background object 

displacements, often appear after thresholding Pr(xt). Clearly, a suppression of false 

detections is needed as a post-processing step. The goal is to alleviate false detections due 

to small movements in the background, such as leaves fluttering in the wind, waves on 

water surface, etc. 

 

 
(a)                                                                                        (b)                                                                         

 
(c)                                                                                       (d)                                                                       

 
Figure 3. (a) Original image from 213PTZ camera, and (b) false detections due to vibration of this camera. 
(c) Original image from 207W camera, and (d) false detections due to random noise. 

 
Let  be the observed value of a pixel, x, detected as a foreground pixel from the 

probability estimate (first stage) at time t. Define the pixel displacement probability, 

, to be the maximum probability that the observed value, , belongs to the 

background distribution of some point in the neighborhood  of  
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where  means that the pixel , which is within the neighborhood of , belongs to the 

background model. The probability estimate  is calculated using the kernel 

function estimation as in (2) for grayscale images and in (3) for color images.  

By thresholding  many false detections due to random noise and due to small 

motions in the background can be eliminated. However, it is also possible to lose true 

detections during this process because some true detected pixels might accidentally fit the 

background distribution of neighbor pixels. This happens more often on grayscale 

images. 

 

 
(a) (b) 

 
Figure 4. (a) Original image (b) Example of over suppression when thresholding  

 
In order to avoid losing true detections, an additional constraint can be added, 

such as that the whole detected foreground object, not only some of its pixels, must have 

moved from a nearby location. The component displacement probability  is the 

probability that a detected connected component C has been displaced from a nearby 

location. Although the meaning of  “connected component” is not detailed in the original 

paper [1], we understand this to mean a group of detected (changed) pixels that are 

mutual neighbors, e.g., in the sense of first- or second-order neighborhood structure 

(MRF). This probability is estimated by 
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For a connected component corresponding to a real target, the probability that this 

object has displaced from the background will be very small. Thus, a detected pixel  

will be considered to be a part of the background only if . 

 

 
(a)                                                                                   (b) 

 
(c)                                                                                   (d) 

 
Figure 5. (a) Result of raw detection. (b) Result of pixel displacement suppression. (c) Result of 
component displacement suppression. (d) Result of  
 

In my implementation, a square neighborhood of five is used to determine pixel 

displacement probabilities. The first threshold  is identical to the threshold used in the 

first stage. The second threshold  can effectively distinguish between real moving 

objects and displaced ones because a real moving object has a much lower component 

displacement probability. This threshold is selected independent of  and has a much 

smaller value. 
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4.3 Updating the Background Model 
 

At this point, a background model has been constructed and needs to be updated 

continuously in a first-in-first-out manner. There are two alternative mechanisms to 

update the background. One is the selective update method, which adds the new sample 

to the model only if it is classified as a background sample. Although selective update 

adapts to changes quickly, it potentially results in error propagations. The other is the 

blind update method, which adds the new sample to the model regardless of the 

classification of the pixel. However, the blind update adapts slowly to changes in the 

background. 

The selective update method is used as a short-term model, which takes  recent 

sample pixels from previous frames. The blind update method, on the other hand, is used 

as a long-term model, and contains  (  > ) sample pixels from previous frames. A 

combination of both methods results in a background model that adapts quickly to 

changes in the scene to support sensitive detection and low false detection rate. The final 

detection results are produced by intersecting the results from both updating models. 
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(a) (b) 

  

 
(c)                                                                                        (d) 

 
Figure 6. (a) Original image. (b) Result using blind update. (c) Result using selective update. (d) Result of 
intersection of (b) and (c). 
 

5. Change Detection from Two Cameras 
 

In order to be able to use intensities from two cameras with overlapping fields of 

view, we need to establish correspondence between features in images captured at the 

same time by the cameras. In general, such a correspondence can be established be a 

dense vector field that to each location in one image assigns a location in the other image. 

However, establishing such a dense correspondence is computationally expensive. 

Moreover, since we assumed that the background is planar (highway surface), a simpler 

parametric correspondence can be established by means of affine transformation which 

accounts for rotation, scaling, and displacement, and requires to compute only 6 

parameters. Efficient techniques exist to compute these 6 parameters of affine 

transformation. 
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5.1 Affine Transformation 
  

The affine transformation can be represented as follows: 

 

 (4)
 
where  is a 2 × 2 transformation matrix and  is the displacement vector. 

The above transformation is accurate for image points y that are projections of 3D 

points on a plane in the original scene, such as the highway surface. We calculated 

transformation matrix  and displacement vector  in this case from manually 

selected feature points on highway surface (lane markings) as shown in Fig. 7(a). 

Since the cars/buses/trucks on the highway are 3D, non-planar structures traveling 

on a planar surface, they do not obey the affine constraint. Therefore, a point on a car in 

one image affine-mapped to the other image is likely not to correspond to the same 

feature. Moreover, any image point resulting from a projection of any feature not on 

highway surface will be likely detected as a changed (moving) point. To alleviate this we 

also considered estimation of affine parameters  and  from feature points on one 

side of a large truck (foreground mapping) that can be considered planar. Feature points 

are marked manually and affine parameters are computed using Matlab functions 

available in VIP Laboratory. 

 

     
Figure 7. (a) Feature points on highway surface. (b) Feature points on a large truck. 
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5.2  Change Detection from Two Cameras 
 

With the two images aligned, at each time instant there are two intensities 

available for each pixel in one image that has a correspondence in the other image. Note 

that some pixels may have no correspondence due to occlusions and also due to slightly 

different fields of view. We consider only pixels that are present in both fields of view 

and we ignore occlusion effects. 

Thus, by projecting one of the images (image B) using the affine mapping onto 

the coordinate system of the other image (image A), and placing this warped image 

immediately after image A, we generate a new video sequence of double length. We 

apply the algorithm of Section 4 to this new sequence. We expect that, due to affine 

mapping inaccuracies, intensity variability for a given pixel will be larger than that of the 

original sequence A, and thus we estimate a new kernel width parameter.  

6. Experimental Results 
  
 All image sequences were captured from 207W’s at a rate of 30 fps with the 

resolution of 320×240 and were processed offline. Morphological closing was used to 

clean up the final detection results. The sample size  varies in different experiments. 

Most of sequences used were captured in good weather conditions. 

 
6.1. Impact of JPEG Compression on Change Detection 
  

During early experiments, we observed block-structured clusters in the detection 

results. We suspected this to be the result of JPEG compression used to stream the video. 

In order to confirm our hypothesis, we varied the compression ratio and performed 

change detection using the same parameters in each case. 

Let  be the rate of compression ranging from 0 to 100; 0 and 100 being the 

minimal and maximal compression, respectively. Several image sequences were captured 

at various rates of compression to demonstrate how JPEG compression affects the 

detection results.  
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(a)                                                                                  (b) 

 
(c)                                                                                 (d) 

(e)                                                                                    (f) 
Figure 8. (a) Original image at  = 0. (b) Detection result of (a). (c)  Original image at  = 50. (d) 
Detection result of (c). (e) Original image at   = 90. (f) Detection result of (e). 

 
As can be seen in Fig. 8, the impact on the detection result is minimal at  = 0. 

Most details in the target objects are still distinguishable. The background model is also 

sensitive to the shadow of the target objects although this effect is barely visible. At  = 

50, the detection result contains less details of the target objects. At C = 90, it is difficult 

to identify what the target objects really are because of the blocking artifacts. 
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 The detection results from differently-compressed sequences may prove useful, 

even at low rates, depending on the type of application. If the detail of target objects is 

not a priority, the detection results from lower rates of compression may be sufficient. 

Furthermore, low rates of compression allows fewer frame drops if the cameras operate 

in wireless mode. 

 
6.2. Results of Single-Camera Change Detection 

 

 
(a)                                                                                      (b) 

 
(c)                                                                                      (d) 

Figure 9. Change detection using the background affine mapping: (a) image A; (b) image B warped to 
coordinate system of  image A; (c) intersection (yellow) of  detection results from image A (red) and from 
warped image B (green); (d) difference of intensities between cropped image A and warped image B. 
 

Fig. 9 shows change detection results for single-camera algorithm described in 

Section 4. First, affine mapping is used to back project image B to the coordinate system 

of image A (Fig. 9(b)) using feature points on the pavement (background affine 

mapping). Then, the change detection algorithm is applied to image A and warped image 

B. Fig. 9(c) shows both detection results overlaid on top of each other. The intersection of 

detected pixels is shown in yellow. Since red (image A) and green (image B) detected 
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pixels are rather few, the detection results from two cameras are in a reasonably good 

alignment. 

The results of detection using foreground affine parameters (computed from 

feature points on a large truck – Fig. 7(b)) are shown in Fig. 10. 

 

 
(a)                                                                                     (b) 

(c)                                                                       (d) 
Figure 10. Change detection using the foreground affine mapping: (a) image A; (b) image B warped to 
image A; (c) intersection (yellow) of detection results from image A (red) and from warped image B 
(green); and  (d) difference of intensities between cropped image A and warped image B. 
 
 By looking at the overlays in both cases, it seems that the mapping using 

background affine parameters outperforms mapping using foreground affine parameters. 

All moving objects (vehicles on the highway) in the scene are well-aligned using the 

background mapping. Misalignments in the case of foreground mapping are due to the 

inability to capture vehicle shape at different depths (lanes) using a single plane 

orthogonal to highway surface, and also due to potential inaccuracies in estimating 

foreground affine parameters (few, closely clustered feature points). 

in wireless mode. 
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6.3. Results of Dual-Camera Change Detection 
 

 Instead of processing image sequences from the two cameras independently, a 

new sequence was composed by interleaving sequence A and warped sequence B. The 

resulting sequence has twice as many samples as the individual ones. The algorithm was 

then applied to the new sequence. Interleaving the two sequences increase intensity 

(color) variability between frame pairs. This is similar to the situation when leaves in the 

background swing back and forth. However, the algorithm does not perform as well as it 

is expected. 

 

 Fig. 11 shows change detection results based on video sequences from two time-

synchronized cameras. An obvious observation is that the bridge and the railing are 

detected as foreground while some parts of the vehicles in the scene are detected as 

background. This is because the railing and the bridge are not on the same planar surface 

as the highway. The simple mapping model used is not inaccurate.  

 

Moreover, we also observed that the 207W camera, having a wide-angle lens, 

introduces severe geometric distortion (straight lines are curved close to image 

periphery). This is an additional handicap for the dual-camera detection using an affine 

mapping; although both cameras may have similar geometric distortions, since their 

fields of view differ the geometric distortion has, in general, different impact on 

differently located same features in both images. One needs to compensate for this 

geometric distortion in order to improve image alignment.   
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(a)                                                                                    (b) 

 
(c)                                                                                     (d) 

 
(e)                                                                                        (f) 

Figure 11. Change detection using two cameras (sequence A interleaved with warped sequence B). (a) 
image A; (b) warped image B; (c) intersection (yellow) of single-camera detection result from image A and 
dual-camera detection result (cropped image A interleaved with warped image B) in grayscale; (d) dual-
camera detection result (cropped image A interleaved with warped image B) in grayscale; (e-f) similar ual-
camera change detection results using color. 
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7. Conclusions and Future Extensions 
 

One of the obstacles in this project is in-synchronous video acquisition. Frequent 

0.03 seconds (1 frame) errors due to NTP synchronization make synchronous video 

acquisition difficult. Another obstacle is due to network traffic. Although the two 

cameras used for video acquisition are connected to LAN using wired ehternet, frequent 

frame drops occur while acquiring video data. 

 The change detection algorithm by Elgammal at el [1] works well for large 

sample size, . As the sample size grows, the background effectively removes undesired 

false positives with appropriate threshold. False positive suppressio may be omitted to 

reduce implementation time and computation complexity. 

 The experimental results basically indicate that background affine parameters 

tend to match target objects more accurately than foreground affine parameters. Overall, 

the dual-camera change detection is inferior to single camera detection due to lens 

distortions and simple mapping model. 

 This project can be extended in three aspects in the future. First, a model that can 

account for lens distortion needs to be developed. According to the experimental results, 

lens distortions can severely jeopardize mapping accuracy. Second, a more sophisticated 

correspondence model needs to be employed in order to minimize mapping errors. 

Finally, the number of cameras can be increased to three. 
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