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Summary 

Identifying objects of interest from a video sequence is a fundamental and essential part 

in many vision systems. A common method is to perform background subtraction. For 

automated surveillance systems, real-time background subtraction is especially important 

to ensure the performance of the systems. In this paper, we review various background 

subtraction algorithms in a binary hypothesis test way and compare their performances. 

We implement several of the algorithms in real-time and get robust, auto-adaptive results 

of the background subtraction. 
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1 Introduction 
 

 Identifying objects of interest from a video sequence is a fundamental and essential 

part in many vision systems, such as traffic analysis systems and human detection and 

tracking systems. Background subtraction is widely used in these systems. For automated 

surveillance systems, processing speed may be an essential factor due to security concern. 

Since background subtraction is often the first step in these applications, real-time and 

robust background subtraction algorithms are important and need to be explored.  

 

In background subtraction, pixels from objects of interest are considered 

“foreground” and the rest of the pixels in the frame is considered “background”. Usually 

objects of interest refer to moving objects in the scene while background refers to stable 

objects. Every pixel in the current frame will either be detected as foreground pixel or 

background pixel. We can consider this as a binary hypothesis test problem with only two 

possible hypotheses: background and foreground. The background may not be fixed but 

must be adapt to several situations to get satisfying results. A robust background 

subtraction algorithm should adapt to various levels of illumination at different times of 

the day and can handle gradual and sudden illumination changes. It should also adapt to 

some motions changes in the scene, such as fluttering leaves, sea waves, waterfalls and 

camera oscillations. Changes in background geometry such as newly parked cars should 

also be considered in a robust background subtraction algorithms.  

 

In this paper, we view different background subtraction algorithms in a common 

hypothesis test way and compare their performances. We implement single Gaussian 

background model, kernel density estimation (KDE) background model, Markov 

Random Field model and neighborhood foreground model in real-time and get robust 

detection results. The paper is organized as follows: the problem statement is in Chapter 

2, our implementation of the algorithms and experimental results can be found in Chapter 

3 and Chapter 4 separately. Results of our algorithms are shown in Chapter 5. Finally we 

conclude our paper in Chapter 6.  
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2 Literature review 

  

Since we assume there are only two possible modes for each pixel in a single frame: 

background and foreground, we can view the background subtraction problem as a binary 

hypothesis problem. Based on the current value of the pixel and the probability 

distributions of two models, we can use a maximum a posterior rule (MAP) to detect the 

pixel’s current mode. Let [ ]I n  be a grayscale image sampled on 2-D 

lattice 2: [ ],I n n R  , and 
BP  be the prior probability of background, 

FP  be the 

prior probability of foreground. We denote a sequence of such images ( )[ ]kI n , with k  

being the frame number. We use ( )( [ ])k

BP I n  to denote the background PDF and 

( )( [ ])k

FP I n  as the foreground PDF. So we get if 

( )

( )

( [ ])

( [ ])

k

B F

k

F B

P I n P

P I n P
         (1) 

then the current pixel is identified as background, if not, the current pixel is identified as 

foreground. To attain better detect result, we need better estimation of the likelihood of 

background pixels and foreground pixels, which we define as the models of background 

and foreground.  

 

A simple way is to do background subtraction is to assume the foreground as 

uniform when we consider the test. If we cannot get the explicit model of foreground, 

assuming it as uniform can help us avoid the decision bias. When foreground is 

considered uniform, ( )( [ ])k

FP I n  turns into a constant, so we only need to find out the 

likelihood probability distribution of background when we perform the hypothesis test. 

There are various models of background. One of the simplest and most straightforward 

one is to choose background as the average or median of the former frames [1][2]. 

However, they usually perform badly due to noise and complicate background situation 

changes. A single Gaussian model [3] is better, however it also performs poorly when it 

comes to non-stationary background, such as ceiling fans, swaying tree branches, sea 

waves and etc. Mixture of Gaussians model [4] usually gives out a more accurate 
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probability model than the former two. Its shortcomings are the number of Gaussians 

usually needs pre-defined and some mixtures actually models both foreground and 

background, resulting confusion in concept and inaccuracy in calculation. A better model 

to estimate the PDF is to use Kernel Density Estimator [5]. The background PDF is given 

by the histogram of the past pixel values, each smoothed with a kernel (usually a 

Gaussian kernel). But it usually requires high computational complexity than the others. 

All these methods above basically use the information from former frames to establish 

the model. 

 

Recently, building proper model for foreground is causing more and more attention 

and proved to be effective in background subtraction. A method [6] proposed by Mike 

McHugh et al. is to using the small spatial neighborhood information to establish the 

model of foreground. It is demonstrated in [7] that periodicity in time also holds spatially. 

So we can establish the foreground model the same way as the background model except 

we use the information in small spatial neighborhood instead of past frames.  

 

There exist other models which focus more on spatial information in the current 

frame than the temporal information in past frames to improve the model accuracy. But it 

is noticeable that the initial information used in these methods is obtained from results of 

former category. El Gammal et al. proposed foreground modeling for human body [8], 

and Sheikh and Shah proposed a general foreground model using past frames [9]. The 

first model is object-specific, and the second one needs slow object motion as its 

assumption, otherwise background samples will contaminate foreground model. A better 

principle method is using information in spatial correlation [10]. Using Markov random 

field modeling of changing labels can be seen as taking advantage of spatial information 

too [11]. Many have proved that combining temporal information with spatial 

information can offer us better results in subtraction. 

 

3 Problem Statement 
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Our goal is to implement real-time background subtraction algorithms in different 

models using C++. We define the background in the common way, which refers to the 

stable objects in the scene and objects with repetitive small motion objects in the scene 

such as swaying tree branches and sea waves. We try to find the most suitable model 

models between time efficiency and detection results for real-time background 

subtraction. We choose C++ as our development language because it is easy to transplant 

and has high computational efficiency. We also want to make our program read in video 

stream directly from a web camera since networked video cameras are extensively used 

today.  

 

 We started from the basic methods such as using only Single Gaussian background 

model to do background subtraction. Then we went further to kernel density estimation 

background model. To increase the process speed of our algorithms, we add look-up table 

(LUT) and early-break method into our algorithms. Then we studied how the kernel 

numbers in buffer memory would affect the speed of the algorithms. We added Markov 

Random Field model of changing labels to improve the detection performance and 

studied the effect of numbers of iteration on the speed of the program. In the last, we use 

neighborhood information in the current frame to establish the foreground model, and 

studied its performance.  

 

4 Implementation 

      

(1)      Single Gaussian Model 

 

This model uses a single Gaussian distribution for the conditional background 

probability distribution and a uniform distribution for the foreground distribution 

probability. For every pixel in current frame, we can determine whether it is background 

pixel by comparing its probability of the current value with a fixed threshold. We only 

need to save two parameters for our background distribution since single Gaussian 

distribution only relates to its mean and variance. The Gaussian distribution is as follows: 
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2

22

1 ( [ ] )
( [ ]) exp( )

22

I x
P I x






 

                     (2) 

Where   and   are the mean and variance of the Gaussian function. 

 

In order to adapt to the gradual illumination changes in background, we update the 

background probability for each pixel. In this project, we update single Gaussian model 

by running average. 

1 (1 )k k kB      
       (3) 

2 2 2

1 ( ) (1 )k k k kB        
                     (4) 

k  and k  are the mean and variance of the current pixel in the k
th

 image, kB is the 

background image used for the k
th

 frame subtraction.   is the update parameter. The 

range of   is between 0 and 1. We update every pixel in the background image for each 

new frame.  

 

By using this running average, we ensure that background can update with gradual 

illumination changes. Also, if there exist some false positives or miss in the initialized 

background, they can be corrected after some time with properly chosen update 

parameter  .  

 

The flow chart of the Single Gaussian Model algorithm is: 
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Fig. 1: flow chart of Single Gaussian Method 

 

(2) Kernel Density Estimation 

 

The main idea of this method is that the background PDF is given by the histogram of 

the n most recent pixel values, each smoothed with a kernel(specifically, a Gaussian 

kernel) (Fig. 2).  
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Fig. 2: Kernel Density Estimation Probability 

 

We also assume foreground to be uniform. For every pixel in the new image, use a 

binary hypothesis test to check whether it is background pixel or foreground pixel. The 

flow chart of our program is in Fig. 3, and we will explain each step in the following text. 
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Fig. 3: flow chart KDE algorithm 

 

In the initialization step where we build an initial background for the following 

detection, we pick only one frame and put it in the buffer for every ten frames we read in. 

We keep doing this until we fill the buffer. The buffer is a circular array which stores n 

frames of images, where n equals to the number of kernels. We call the frames stored in 

the buffer kernel images, because it provide the average parameter in each Gaussian 

kernel function when we do further computation. We initialize the buffer this way 

because if we choose continuous frames in the sequences to initialize the buffer, due to 

high fps, some slow-motion objects are probably stays at the same place in these frames. 
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These objects will be recognized as background and contaminate the background 

probability. Initialization this way will cost more time to initialize, but the time is 

negligible and it increases the accuracy of the model greatly. 

 

More frames we store in the buffer, more accurate the probability distribution we 

will get. However, increase the buffer length will not only take more space but also more 

time to perform background subtraction. To improve the algorithm’s efficiency, we 

introduce look-up table (LUT) and early-break method into the algorithms. . 

 

                  (5) 

 

In our Gaussian kernel function, every 
i comes from a pixel value from the former 

frame, assume we have only 256 gray scale levels, then i  can only have 256 possible 

values. [ ]I x  also have 256 possible values. Notice Gaussian function is symmetric, so 

there is only 256 possible values for the output result of Gaussian function. We can 

compute and store these values in memory before we do any processing of the frames. No 

matter how large the image size is and how long the sequence is, each time we read in a 

new pixel value [ ]I x  and need to find the corresponding kernel probability value i , 

we can look it up directly in the memory according to [ ] iI x  .  

 

When we consider the foreground as uniform, if ( [ ])P I x  is larger than the 

threshold  , then we can say the current pixel belongs to background. Notice ( [ ])P I x  

is the sum of kernel probability value i   

0

( [ ])
n

i i

i

P I x w


                            (6) 
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and all 
i  are positive numbers, so if the sum of part of 

i  is larger than the threshold, 

we can classify this pixel to background. If we get a large enough sum of 
i  in the first 

few 
i , then we do not need to go and find the other values of 

i . We call this algorithm 

as fast break because it will break out of the loop when we can ensure this pixel belongs 

to background. Because generally most of the pixels in one image belong to background, 

this early-break will make the algorithm more efficient. 

 

Also, we use selective update method to update the kernel images in the buffer. 

There are two points need to be mentioned here: 

 

(i) The update order: 

Assume the buffer size is n, the buffer is circular array which will store the nearest 

past n frames. For frame k, suppose  

(mod)l k n                               (7) 

Then we update the l
th

 frame in the buffer. Most of the time, the l
th

 frame is the oldest 

frame in the buffer, which is frame k – n. Our background model can track the gradual 

and even some sudden illumination changes (if fps is relatively high) using this update 

order.  

 

(ii) Selective update between background and foreground: 

When we update the kernel images, we have two separate ways to update the kernel 

images in the buffer depending on if it is detected as background or foreground. Let 

[ ]kF x  denotes the current value of the pixel locates at x  in Frame k, and [ ]l x  

denotes the pixel value in buffer l at the same position. If [ ]kF x  is consider background 

pixel, then we have  

[ ] [ ]l kx F x                              (8) 

If the pixel is detected as foreground, we have: 

     [ ] (1 ) [ ] [ ]l l kx x F x                          (9) 

  is the update parameter which is between (0,1) and usually lies around 0.05 

depending on different image sequences. For background, we use the current value 
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replace the one in the kernel image, but for foreground, we only update it a little. By 

doing this, for background, we keep the nearest n values of background in the buffer, and 

the background can track the illuminant changes; for foreground, we only slightly change 

the values in the buffer. However, if one pixel keeps to be detected as foreground pixel 

for a long time, it will gradually become background. This is reasonable because we often 

see there is geometry change in the background, such as a car drive into the scene and 

park there. By doing small update on pixels detected as foreground instead of not 

updating them, we can also fix the misses and false positives in the initial kernels.  

 

(3) Markov Random Field(MRF) 

 

If only KDE is implemented in the algorithm, as we have tried, it can be easily done 

in real time. But at the same time, the result is not satisfactory because of the false 

positives in background and some misses in the foreground objects. To remove them, we 

introduced Markov Random Field model of changing labels. 

 

If U is a Markov Random Field, it can be characterized by Gibbs jointly probability 

distribution. 

1( ,...., )/

1 1

1
( ,...., ) NE u u

N NP U u U u e
Z


  

                 (10) 

1 1( ,...., ) ( ,..., )N c N

c C

E u u V u u



                      (11) 

Where: 

Z - normalizing constant called partition function; 

β - natural temperature(constant); 

c - clique (geometric concept); 

C - set of all cliques; 

Vc - potential function (algebraic concept) 

 

In our specific problem, the potential function is: 
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                  (12) 

Combine the function with binary hypothesis formula: 

              (13) 

After simplified, we can get: 

                (14) 

This hypothesis test use spatial information to identify the status of each pixel and run it 

for several iterations before get satisfying result. 

 

In MRF, for specific pixel, the status of the pixels in its neighborhood will affect its 

status, which means, if most of the pixels in its neighborhood in background, it is 

probably background pixel and vice visa. So it will remove the false positives and fill 

misses in foreground (because the pixels around false positives are almost background 

pixels and the pixels around the misses are almost the foreground pixels). On the other 

hand, it needs to run several iterations to get the result, so it is of comparatively lower 

computing efficiency. However, in the results below we can see that the main bottleneck 

of the efficiency is often not the number of iterations but the number of kernels in the 

buffer. 

 

After we add MRF to the KDE method, the flow chart is shown as follows: 
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Fig. 4: KDE with MRF 

Compared with the KDE method, we add a MRF iteration process after we get the motion 

label image in KDE. 

 

(4) Neighborhood Foreground Models 

 

This model is similar to kernel density estimation except to use spatial information to 

estimate the probability distribution, and it is explained clearly in [6].  To make this 

article concise, we just introduce this model in general but we implement the algorithm 
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and give out result below. We use neighborhood foreground model to further decrease the 

detection error rate. For every pixel in the frame, we use the neighborhood pixels of it to 

build its foreground model. Suppose [ ]kF y  is in the neighborhood of the current pixel 

[ ]kF x  and there is n number of neighbor of x  (usually 8 or 24 or 48). Then we have its 

foreground model is:  

0

( [ ])
n

i i

i

P I x w


                                    (15) 

2

22

( [ ] [ ])1
exp( )

22

k k
i

ii

F x F y





         (16) 

5. Experimental Results 

 

The system parameters of the system where we test our algorithms are listed below: 

CPU: Inter(R) Core(TM)2 Duo CPU T8300@2.40GHz 

RAM: 3.00GB 

System: Windows 7 

Development Enviroment:  Microsoft Visual C++ 2005, version 8.05 , OpenCV2.0 

 

We record some long video sequences from the web camera and find the average frame 

rate in daytime of that camera is 20fps. This is a common value for many webcams. The 

processing time should be under 50ms to ensure real-time processing. 

 

(1) Single Gaussian Method results: 

The result is shown as follows: 
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Fig. 5: the result of Single Gaussian Model 

We can find that in the right picture there is a large part of false alarms in the bottom and 

some misses. The reason is that when initializing the background model, there is a bus at 

that part, so the pixels in the bus are taken as the background, which results in errors. 

 

After some time, it can be fixed. The time needed to fix the error depends on the update 

parameter  . The result after some time is shown as follows: 

 

Fig. 6: the result after some time 

The processing time of one single run plot is shown as follows (horizontal axis is the 

index of frames, vertical axis is the processing time measure in milliseconds, for 320*240 

image, 3 channels): 
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Fig. 7: processing time of Single Gaussian Method 

 

Although single Gaussian is not accurate enough and may introduce lots of errors, it is 

very fast. For each channel, it just needs about 10-12ms to process. So it can be used to 

process very large image sequences. In experiment, it can process a 3-channel  

image(480* 360) in 75-78ms and it can process larger 1-channel image sequences in real 

time. 

 

(2) KDE with LUT and early-break results 

The result is shown as follows: 
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Fig. 8: the result of KDE with LUT and early-break 

 

Compare with the result from single Gaussian Method, we can see that the false alarms 

are significantly decreases but there are still some misses, although the number of misses 

is smaller than that in Single Gaussian Method. 

The processing time of one single run with and without LUT are shown as follows (for 

320*240 image sequences): 

 

Fig. 9: processing time for KDE with LUT 
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Fig. 10: processing time for KDE with LUT and early-break 

 

It can be found that if LUT and early-break are not applied in KDE, it will cost a long 

time to process one frame(about 250ms), and after applying only LUT to it, it can afford 

100 kernels in the buffer to process the image sequences in real time, so the LUT is of 

great importance in the algorithm. And after applying early-break, the processing time 

decreases again about 25%.  

 

(3) KDE with MRF results 

 

The result of KDE with 1
st
 order MRF is shown as follows: 
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Fig. 11: KDE with 1st order MRF 

Compared to the results of Single Gaussian Method and KDE, we can see from the result 

of the algorithm that most of false alarms and misses disappear and we obtain 

comparatively good results. 

To find out the bottleneck of real-time background subtraction, we also try to run the 

algorithm with different number of kernels and iterations of MRF and we get the result as 

follows (for 320*240 image sequences): 

 

Fig. 12: processing time with different number of iterations in 1st MRF 
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Fig. 13: processing time with different number of kernels in 1st MRF 

 

Fig. 14: processing time with different number of kernels in 2nd MRF 
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Fig. 15: processing time with different number of kernels in 2nd MRF 

 

And from the four plots above, the algorithm needs roughly one more millisecond to 

processing one image as the number of kernel increases by 1 or the number of MRF 

increases by one. However, there is little improvement when the number of iterations is 

larger than 4.  From all the results above, we can know that the main bottleneck factor in 

real-time background subtraction is the number of kernels. 

 

(4) The result of applying foreground model 

 

The result is shown as follows: 
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Fig. 16 Applying foreground model to the algorithm 

 

Actually, after applying foreground model to the algorithm, the quality does not change 

much. And the processing time has increased approximately 7%: 

 

 

Fig. 17 the processing time after applying foreground to the algorithm 
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From the Fig. 17 and Fig. 18, it can be found that after applying foreground model to the 

algorithm, the quality has little improvement.  

Finally, we give some tables for the average processing time of every method: 

 320* 240 pixels 480*360 pixels 

Single Gaussian Method(1 

channel) 
11.1ms 26.1ms 

Single Gaussian Method(3 

channels) 
34.3ms 76.4ms 

Table 1: average processing time for Single Gaussian Method (1 channel and 3 channels) 

 

 320* 240 pixels 480*360 pixels 

KDE(50 kernels) 250.4ms 600.6ms 

KDE with LUT(50 kernels) 24.9ms 76.3ms 

KDE with LUT(100 

kernels) 
49.3ms 300.2ms 

KDE with LUT and 

early-break(50 kernels) 
20.1ms 37.4ms 

KDE with LUT and 

early-break(100 kernels) 
42.2ms 94.3ms 

Table 2: average processing time for KDE 

 

 320*240 pixels 480*360 pixels 

KDE(50 kernels) with 

MRF(4 iterations) 
49.4ms 124.3ms 

KDE(50 kernels) with 

MRF(5 iterations) 
52.1ms 128.2ms 

KDE(50 kernels) with 

MRF(6 iterations) 
53.7ms 131.6ms 

Table 3: average processing time for KDE with MRF (1
st
) of different number of 

iterations 
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 320*240 pixels 480*360 pixels 

KDE(32 kernels) with 

MRF(1
st
) 

35.5ms 78.3ms 

KDE(50 kernels) with 

MRF(1
st
) 

55.5ms 124.5ms 

KDE(64 kernels) with 

MRF(1
st
) 

62.6ms 144.7ms 

Table 4: average processing time for KDE with MRF (1
st
) of different number of kernels 

 

 

 320*240 pixels 480*360 pixels 

KDE(50 kernels) with 

MRF(4 iterations) 
49.3ms 123.1ms 

KDE(50 kernels) with 

MRF(5 iterations) 
50.3ms 124.4ms 

KDE(50 kernels) with 

MRF(6 iterations) 
53.2ms 129.5ms 

Table 5: average processing time for KDE with MRF (2
nd

) of different number of 

iterations 

 

 320*240 pixels 480*360 pixels 

KDE(32 kernels) with 

MRF(2
st
) 

35.5ms 78.3ms 

KDE(50 kernels) with 

MRF(2
st
) 

50.6ms 116.6ms 

KDE(64 kernels) with 

MRF(2
st
) 

62.8ms 144.4ms 

Table 6: average processing time for KDE with MRF (2
nd

) of different number of kernels 
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We summarize the result in the next table, if its average processing time is larger than 

50ms, we consider this method to be real-time (Denote as “Y” in the table), else we 

consider it cannot be done in real-time (Denote as “N” in the table): 

 320*240 pixels 480*360 pixels 

Gaussian 
1 channel Y Y 

3 channels Y N 

KDE(16 kernels) 

LUT N N 

LUT and 

early-break 
Y Y 

MRF (4 iterations) Y Y 

MRF (5 iterations) Y Y 

MRF (6 iterations) Y Y 

KDE(32 

kernels) 

LUT N N 

LUT and 

early-break 
Y N 

MRF (4 iterations) Y N 

MRF (5 iterations) Y N 

MRF (6 iterations) Y N 

KDE(50 kernels) 

LUT N N 

LUT and 

early-break 
Y N 

MRF (4 iterations) Y N 

MRF (5 iterations) Y N 

MRF (6 iterations) Y N 

KDE(100 kernels) 

LUT N N 

LUT and 

early-break 
Y N 

MRF (4 iterations) N N 

MRF (5 iterations) N N 

MRF (6 iterations) N N 
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Foreground Model MRF(1
st
) Y N 

MRF(2
nd

) Y N 

Table 7 Final results 

 

6. Conclusion 

 

From the project, we learned that: 

(1) Single Gaussian Method is fast and easy to implement in real-time, but it usually has 

bad performance in complicated situations.  

(2) Kernel density estimation model building is not efficient enough, often it cannot be 

done in real time, but if we introduce LUT and early-break method into the KDE 

model, it can be done in real time and we get robust and satisfying result which will 

adapt to illuminant and motion changes in the background.  

(3) The bottleneck factors for real-time background subtraction are mainly the data 

amount (image resolutions) and kernel numbers, the orders or iteration numbers of 

MRF have insignificant effect on that.  

(4) Kernel numbers is an essential factor on both the processing speed and the detection 

error rate. Orders or iteration numbers have much less effect on detection error rate. 

Although the processing time for applying neighborhood foreground models in the 

algorithm do not increase significantly, but it also has insignificant improvement in 

decreasing the error rate.  

 

Possible future work may include: using multi-threading algorithms or multi-core 

workstations to process large image sequences. However, as we define our topic as read 

in streams from web cameras directly and perform background subtraction, larger 

resolution images processing seems unnecessary due to the networsk capacity constraints.
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8. Appendix 

Below is listed C++ source code developed for this project. It can be downloaded from 

the address below:  

(1) For single Gaussian Model 

 

#include "stdafx.h" 

#include <iostream> 

#include <string> 

#include <highgui.h> 

#include <cv.h> 

#include <math.h> 

#include <stdlib.h> 

#include <windows.h> 

#include <ctime> 

 

LARGE_INTEGER limtp; 

 

const double e = 2.7183; 

const double segama = 30; 

const double pi = 3.14; 

double temp; 

const int numFrame = 10; 

const int numInitial = 1; 

const int numMRF = 4; 

const int num_write = 500; 

const double threshold = 0.65; 

 

using namespace std; 

 

double gaussian_value(int value) 

{ 

 double index = -pow((double)value, 2)/(2 * pow(segama, 2)); 

 temp = pow(e, index)/numFrame; 

 return temp; 

} 

 

int main(int argc, char **argv) 

{ 

 //set up windows 

 cvNamedWindow("origin", CV_WINDOW_AUTOSIZE); 

 cvNamedWindow("processing", CV_WINDOW_AUTOSIZE); 

 cvNamedWindow("result", CV_WINDOW_AUTOSIZE); 

 

 

 CvCapture* capture = NULL; 

 //capture = cvCreateFileCapture( "http://vsn3-iss.bu.edu/mjpg/video.mjpg" ); 
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 capture = cvCaptureFromAVI("vsn3_3.avi"); 

 

 IplImage* frame = NULL; //original images of video 

 IplImage* frame_u = NULL; //expected images of video 

 IplImage* frame_var = NULL; //variance images 

 IplImage* frame_std = NULL; //deviation images 

 IplImage* frame_bin = NULL; //binary images 

 IplImage* frame_diff = NULL; //difference images 

 

 double alpha = 0.05; //updata parameter alpha 

    double std_init = 20; //initialized std 

    double var_init = std_init * std_init; //initialized var     

    double lamda = 2.5 * 1.2; //updata parameter 

 

 

 CvScalar pixel = {0}; //original values of pixels 

 CvScalar pixel_u = {0}; //expected values of pixels 

 CvScalar pixel_var = {0}; //variance images 

 CvScalar pixel_std = {0}; //standard deviation images 

 CvScalar pixel_for = {255, 0, 0, 0}; 

 CvScalar pixel_back = {0}; 

 

 //initiallize frame_u, frame_var, frame_std 

 frame = cvQueryFrame(capture); 

 frame_u = cvCreateImage(cvSize(frame->width, frame->height), IPL_DEPTH_8U, 3); 

 frame_var = cvCreateImage(cvSize(frame->width, frame->height), IPL_DEPTH_8U, 3); 

 frame_std = cvCreateImage(cvSize(frame->width, frame->height), IPL_DEPTH_8U, 3); 

 frame_diff = cvCreateImage(cvSize(frame->width, frame->height), IPL_DEPTH_8U, 3); 

 frame_bin = cvCreateImage(cvSize(frame->width, frame->height), IPL_DEPTH_8U, 1); 

 

 CvSize size = {frame->width, frame->height}; 

 

 //CvVideoWriter* writer1 = 0; 

 //CvVideoWriter* writer2 = 0; 

 //int isColor1 = 1; 

 //int isColor2 = 0; 

 //double fps = 20; 

 //writer1 = cvCreateVideoWriter("video_origin_single_gaussian.avi", CV_FOURCC('P', 'I', 'M', 

'1'), fps, size, isColor1); 

 //writer2 = cvCreateVideoWriter("video_back_single_gaussian.avi", CV_FOURCC('P', 'I', 'M', 

'1'), fps, size, isColor2); 

 

 for(int y = 0; y < frame->height; ++y) 

 { 

  for(int x = 0; x < frame->width; ++x) 

  { 

            pixel = cvGet2D(frame, y, x); 

 

            pixel_u.val[0] = pixel.val[0]; 

            pixel_u.val[1] = pixel.val[1]; 

            pixel_u.val[2] = pixel.val[2]; 

 

            pixel_std.val[0] = std_init; 

            pixel_std.val[1] = std_init; 

            pixel_std.val[2] = std_init; 
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            pixel_var.val[0] = var_init; 

            pixel_var.val[1] = var_init; 

            pixel_var.val[2] = var_init; 

 

            cvSet2D(frame_u, y, x, pixel_u); 

            cvSet2D(frame_var, y, x, pixel_var); 

            cvSet2D(frame_std, y, x, pixel_std);  

  } 

 } 

 

 int num = 0; 

 time_t TimeStart, TimeEnd, TimeUsed; 

 int time[1500]; 

 char* filename = "D:\\ec720\\data\\RGB_single_Gaussian_480.txt"; 

 FILE* fp = fopen(filename, "w"); 

 while(cvWaitKey(1) != 27)    //press ESC to quit, fps = 1/33 

 { 

  frame = cvQueryFrame(capture); 

 

  TimeStart = clock(); 

  //Guassian model 

        for (int y = 0; y < frame->height; ++y) 

        { 

            for (int x = 0; x < frame->width; ++x) 

            { 

                pixel = cvGet2D(frame, y, x); 

                pixel_u = cvGet2D(frame_u, y, x); 

                pixel_std = cvGet2D(frame_std, y, x); 

                pixel_var = cvGet2D(frame_var, y, x); 

 

                //if|I-u| < lamda*std, background, update 

                if (fabs(pixel.val[0] - pixel_u.val[0]) < lamda * pixel_std.val[0] && 

                    fabs(pixel.val[1] - pixel_u.val[1]) < lamda * pixel_std.val[1] && 

                    fabs(pixel.val[2] - pixel_u.val[2]) < lamda * pixel_std.val[2]) 

                { 

                    //update u = (1-alpha)*u + alpha*I 

                    pixel_u.val[0] = (1 - alpha) * pixel_u.val[0] + alpha * pixel.val[0]; 

                    pixel_u.val[1] = (1 - alpha) * pixel_u.val[1] + alpha * pixel.val[1]; 

                    pixel_u.val[2] = (1 - alpha) * pixel_u.val[2] + alpha * pixel.val[2]; 

 

                    //update var = (1-alpha)*var + alpha*(I-u)^2 

                    pixel_var.val[0] = (1 - alpha) * pixel_var.val[0] + 

                                    (pixel.val[0] - pixel_u.val[0]) * (pixel.val[0] - 

pixel_u.val[0]); 

                    pixel_var.val[1] = (1 - alpha) * pixel_var.val[1] + 

                                    (pixel.val[1] - pixel_u.val[1]) * (pixel.val[1] - 

pixel_u.val[1]); 

                    pixel_var.val[2] = (1 - alpha) * pixel_var.val[2] + 

                                    (pixel.val[2] - pixel_u.val[2]) * (pixel.val[2] - 

pixel_u.val[2]); 

 

                    //update deviation 

                    pixel_std.val[0] = sqrt(pixel_var.val[0]); 

                    pixel_std.val[1] = sqrt(pixel_var.val[1]); 
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                    pixel_std.val[2] = sqrt(pixel_var.val[2]); 

 

                    //write into matrix 

                    cvSet2D(frame_u, y, x, pixel_u); 

                    cvSet2D(frame_var, y, x, pixel_var); 

                    cvSet2D(frame_std, y, x, pixel_std); 

                } 

            } 

        } 

 

  cvAbsDiff(frame_u, frame, frame_diff); 

  for(int y = 0; y < frame->height; ++y) 

  { 

   for(int x = 0; x < frame->width; ++x) 

   { 

    if((frame_diff->imageData + y * frame_diff->widthStep)[3 * x] > 20 && 

     (frame_diff->imageData + y * frame_diff->widthStep)[3 * x + 1] > 20 && 

     (frame_diff->imageData + y * frame_diff->widthStep)[3 * x + 2] > 20 ) 

     /*(frame_bin->imageData + y * frame_bin->widthStep)[x] = 255;*/ 

     cvSet2D(frame_bin, y, x, pixel_for); 

    else 

     /*(frame_bin->imageData + y * frame_bin->widthStep)[x] = 0;*/ 

     cvSet2D(frame_bin, y, x, pixel_back); 

   } 

  } 

 

  TimeEnd = clock(); 

  TimeUsed = TimeEnd - TimeStart; 

  time[num] = TimeUsed; 

  cout << time[num] << endl; 

 

        //show the result 

        cvShowImage("origin", frame); 

        cvShowImage("processing", frame_u); 

  cvShowImage("result", frame_bin); 

 

   

  //cvWriteFrame(writer1, frame); 

  //cvWriteFrame(writer2, frame_bin); 

  num++; 

  if(num == 1500) 

   break; 

 

 

    } 

 

 for(int i = 0; i < 1500; ++i) 

  fprintf(fp, "%d\n", time[i]); 

 fclose(fp); 

    //Release the memory 

    cvReleaseCapture(&capture); 

    //cvReleaseImage(&frame); 

    cvReleaseImage(&frame_u); 

 cvReleaseImage(&frame_var); 

 cvReleaseImage(&frame_std); 



33  Haotian Wu, Yifan Yu 

 cvReleaseImage(&frame_bin); 

 cvReleaseImage(&frame_diff); 

 

    cvDestroyWindow("origin"); 

    cvDestroyWindow("processing"); 

 cvDestroyWindow("result"); 

 

    return 0; 

} 
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For KDE with LUT, early-break and MRF 
 
#include "stdafx.h" 

#include <iostream> 

#include <string> 

#include <highgui.h> 

#include <cv.h> 

#include <math.h> 

#include <stdlib.h> 

#include <windows.h> 

#include <ctime> 

 

LARGE_INTEGER limtp; 

 

const double e = 2.7183; 

const double segama = 30; 

const double pi = 3.14; 

double temp; 

const int numFrame = 64; 

const int numInitial = 1; 

const int numMRF = 5; 

const int num_write = 500; 

const double threshold = 0.58; 

const double alpha = 0.05; 

 

using namespace std; 

 

// return frame_result; 

//} 

 

double gaussian_value(int value) 

{ 

 double index = -pow((double)value, 2)/(2 * pow(segama, 2)); 

 temp = pow(e, index)/numFrame; 

 return temp; 

} 

 

 

int main(int argc, char **argv) 

{ 

 //set up windows 

 cvNamedWindow("origin", CV_WINDOW_AUTOSIZE); 

 cvNamedWindow("result", CV_WINDOW_AUTOSIZE); 

 double hash[256]; 

 

 for(int i = 0; i < 256; ++i) 

  hash[i] = gaussian_value(i); 

 

 CvCapture* capture = NULL; 

 capture = cvCaptureFromAVI("vsn3_3.avi"); 

 //capture = cvCreateFileCapture( "http://vsn3-iss.bu.edu/mjpg/video.mjpg" ); 

 

 IplImage* frame = NULL; //original images of video 

 IplImage* frame_gray = NULL; //original images of video of gray level 

 IplImage* frame_temp = NULL; //next frame to be computed 
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 IplImage* frame_result = NULL; // the result after background subtraction 

 IplImage* chain[numFrame]; //save the images to compute the kernel 

 IplImage* diff[numFrame]; //save the absolute difference 

 IplImage* phi[numFrame]; //save the MRF temp results 

 IplImage* dividend;  

 //IplImage* abc; 

 IplImage* frame_left_shift = NULL; //save the image with 1 pixel shifted to the left 

 IplImage* frame_right_shift = NULL; //save the image with 1 pixel shifted to the right 

 IplImage* frame_up_shift = NULL; //save the image with 1 pixel shifted to the up 

 IplImage* frame_down_shift = NULL; //save the image with 1 pixel shifted to the down 

 IplImage* frame_MRF = NULL; //save the MRF 

 IplImage* frame_diff = NULL; //save the difference of the image 

 

 frame = cvQueryFrame(capture); 

 CvSize size = {frame->width, frame->height}; 

 CvSize size_shift = {frame->width, frame->height}; 

 dividend = cvCreateImage(size, IPL_DEPTH_8U, 1); 

 frame_diff = cvCreateImage(size, IPL_DEPTH_8U, 1); 

 

 frame_MRF = cvCreateImage(size_shift, IPL_DEPTH_8U, 1); 

 

 

 CvScalar value = {numFrame, 0, 0, 0}; 

 

 cvSet(dividend, value); 

 

 for(int i = 0; i < numFrame; ++i) 

  phi[i] = cvCreateImage(size, IPL_DEPTH_8U, 1); 

  

 for(int num = 0; num < numFrame; ++num) 

 { 

  int count = 0; 

  chain[num] = cvCreateImage(size, IPL_DEPTH_8U, 1); 

  //cvSetZero(frame_temp); 

  while(1) 

  { 

   frame = cvQueryFrame(capture); 

   if(count == 0) 

   { 

    frame_gray = cvCreateImage(size, IPL_DEPTH_8U, 1); 

    cvCvtColor(frame, frame_gray, CV_RGB2GRAY); 

    chain[num] = frame_gray; 

   } 

   count++; 

   if(count == 7) 

    break; 

 

  

   cvWaitKey(37); 

   //count++; 

   //if(count == numInitial) 

   // break; 

  } 

 }// initialize 
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 //frame_gray = cvCreateImage(size, IPL_DEPTH_8U, 1); 

 for(int i = 0; i < numFrame; ++i) 

  diff[i] = cvCreateImage(size, IPL_DEPTH_8U, 1); 

 

 

 int count_write = 0; 

 time_t TimeStart, TimeEnd, TimeUsed; 

 int time[1500]; 

 int num_time = 0; 

 

 frame_gray = cvCreateImage(size, IPL_DEPTH_8U, 1); 

 while(1) 

 { 

  frame = cvQueryFrame(capture); 

  TimeStart = clock(); 

  cvCvtColor(frame, frame_gray, CV_RGB2GRAY); 

   

  for(int i = 0; i < numFrame; ++i) 

   cvAbsDiff(frame_gray, chain[i], diff[i]); 

 

  int num = 0; 

  frame_result = cvCreateImage(size, IPL_DEPTH_8U, 1); 

  for(int i = 0; i < frame_gray->width; ++i) 

  { 

   for(int j = 0; j < frame_gray->height; ++j) 

   {   

    double temp = 0; 

    for(int k = 0; k < numFrame; ++k) 

    { 

     (frame_result->imageData + frame_result->widthStep * j)[i] = 1; 

     int value = (diff[k]->imageData + diff[k]->widthStep * j)[i]; 

     temp += hash[value]; 

     /*temp += gaussian_value(value);*/ 

     if(temp > threshold) 

     { 

      (frame_result->imageData + frame_result->widthStep * j)[i] = 0; 

      break; 

     } 

    } 

   } 

  } 

 

 

 

  cvSetZero(frame_diff); 

  for(int i = 0; i < numFrame; ++i) 

  { 

   cvDiv(diff[i], dividend, phi[i], 1); 

   cvAdd(phi[i], frame_diff, frame_diff); 

  } 

 

 

 

 

  for(int k = 0; k < numMRF; ++k) 
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  { 

   for(int i = 1; i < frame->width - 1; ++i) 

    for(int j = 1; j < frame->height - 1; ++j) 

     (frame_MRF->imageData + frame_MRF->widthStep * j)[i] = 

(frame_result->imageData + frame_result->widthStep * (j - 1))[i] + (frame_result->imageData + 

frame_result->widthStep * (j + 1))[i] + (frame_result->imageData + frame_result->widthStep * j)[i 

+ 1] + (frame_result->imageData + frame_result->widthStep * j)[i - 1]; 

 

 

   //cvAdd(frame_left_shift, frame_right_shift, frame_MRF); 

   //cvAdd(frame_MRF, frame_up_shift, frame_MRF); 

   //cvAdd(frame_MRF, frame_down_shift, frame_MRF); 

 

   //cvSetZero(frame_diff); 

   //for(int i = 0; i < numFrame; ++i) 

   //{ 

   // cvDiv(diff[i], dividend, phi[i], 1); 

   // cvAdd(phi[i], frame_diff, frame_diff); 

   //} 

 

   cvSetZero(frame_result); 

   for(int i = 0; i < frame->width; ++i) 

    for(int j = 0; j < frame->height; ++j) 

     if(pow((double)(frame_diff->imageData + frame_diff->widthStep * j)[i], 

2) > 2 * pow(segama, 2) * (2.5 - 2 * (frame_MRF->imageData + frame_MRF->widthStep * (j + 1))[i + 1])) 

      if(k != numMRF - 1) 

       (frame_result->imageData + frame_result->widthStep * j)[i] = 

1; 

      else 

       (frame_result->imageData + frame_result->widthStep * j)[i] = 

255; 

  } 

  //cvDilate(frame_result, frame_result); 

  //cvErode(frame_result, frame_result); 

  cvShowImage("origin", frame); 

  /*cvShowImage("test", frame_left_shift);*/ 

  cvShowImage("result", frame_result); 

 

 

 

  for(int i = 0; i < frame_gray->width; ++i) 

  { 

   for(int j = 0; j < frame_gray->height; ++j) 

   { 

    if((frame_result->imageData + frame_result->widthStep * j)[i] == 0) 

    { 

     (chain[num%numFrame]->imageData + chain[num%numFrame]->widthStep * j)[i] 

= (frame_gray->imageData + frame_gray->widthStep * j)[i]; 

    } 

    else 

    { 

     (chain[num%numFrame]->imageData + chain[num%numFrame]->widthStep * j)[i] 

= (int)((1 - alpha) * (double)(chain[num%numFrame]->imageData + chain[num%numFrame]->widthStep * 

j)[i] + alpha * (double)(frame_gray->imageData + frame_gray->widthStep * j)[i]); 

    } 
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   } 

  } 

  //chain[num%numFrame] = frame_gray; 

  TimeEnd = clock(); 

  //time[num_time] = TimeEnd - TimeStart; 

 

  cout << "The processing time is: " << TimeEnd - TimeStart << endl; 

  //cvWriteFrame(writer1, frame); 

  //cvWriteFrame(writer2, frame_result); 

 

  cvReleaseImage(&frame_result); 

 

  num++; 

  //if(num == numFrame) 

  // num = 0; 

 

  //num_time++; 

  //if(num_time == 1500) 

  // break; 

 

  if(cvWaitKey(1) == 27) //press ESC to quit, fps = 33; 

   break;  

 } 

 

    //Release the memory 

 //cvReleaseVideoWriter(&writer1); 

 //cvReleaseVideoWriter(&writer2); 

 //char* filename = "D:\\ec720\\data\\KDE_MRF_1st_16F_4I_without_boundary_480.txt"; 

 //FILE* fp = fopen(filename, "w"); 

 //for(int i = 0; i < 1500; ++i) 

 // fprintf(fp, "%d\n", time[i]); 

 //fclose(fp); 

    cvReleaseCapture(&capture); 

    //cvReleaseImage(&frame); 

    cvReleaseImage(&frame_gray); 

    //cvReleaseImage(&frame_next); 

    //cvReleaseImage(&frame_result); 

 //cvReleaseImage(&chain[numFrame]); 

    cvDestroyWindow("origin"); 

    //cvDestroyWindow("processing"); 

 cvDestroyWindow("result"); 

 

    return 0; 

} 

 


