

Real-time Background Subtraction in C++

Haotian Wu, Yifan Yu

May 2, 2010

Boston University

Department of Electrical and Computer Engineering

Technical report No. ECE-2010-06

BOSTON

UNIVERSITY

REAL-TIME BACKGROUND SUBTRACTION USING C++

Haotian Wu, Yifan Yu

Boston University

Department of Electrical and Computer Engineering

8 Saint Mary’s Street

Boston, MA 02215

www.bu.edu/ece

May 2, 2008

Technical Report No. ECE-2010-06

http://www.bu.edu/ece

Summary

Identifying objects of interest from a video sequence is a fundamental and essential part

in many vision systems. A common method is to perform background subtraction. For

automated surveillance systems, real-time background subtraction is especially important

to ensure the performance of the systems. In this paper, we review various background

subtraction algorithms in a binary hypothesis test way and compare their performances.

We implement several of the algorithms in real-time and get robust, auto-adaptive results

of the background subtraction.

Keywords: background subtraction, real-time

Contents

1. Introduction ...1

2. Literature review ..2

3. Problem statement ..3

4. Implementation ...4

5. Experimental results ...14

6. Conclusions ..26

7. References ..28

8. Appendix ..29

List of Figures

Fig. 1 flow chart of Single Gaussian Method 6

Fig. 2 Kernel Density Estimation Probability 7

Fig. 3 flow chart KDE algorithm 8

Fig. 4 KDE with MRF 13

Fig. 5 the result of Single Gaussian Model 15

Fig. 6 the result after some time 15

Fig. 7 processing time of Single Gaussian Method 16

Fig. 8 the result of KDE with LUT and early-break 17

Fig. 9 processing time for KDE with LUT 17

Fig. 10 processing time for KDE with LUT and early-break 18

Fig. 11 KDE with 1st order MRF 19

Fig. 12 processing time with different number of iterations in 1st MRF 19

Fig. 13 processing time with different number of kernels in 1st MRF 20

Fig. 14 processing time with different number of kernels in 2nd MRF 20

Fig. 15 processing time with different number of kernels in 2nd MRF 21

Fig. 16 Applying foreground model to the algorithm 22

Fig. 17 The processing time after applying foreground to the algorithm 23

List of Tables

Table 1 average processing time for Single Gaussian Method (1 channel and 3 channels)

 23

Table 2 average processing time for KDE 23

Table 3 average processing time for KDE with MRF (1
st
) of different number of

iterations 23

Table 4 average processing time for KDE with MRF (1
st
) of different number of kernels

 24

Table 5 average processing time for KDE with MRF (2
nd

) of different number of

iterations 24

Table 6 average processing time for KDE with MRF (2
nd

) of different number of

kernels 24

Table 7 final result 25

1 Haotian Wu, Yifan Yu

1 Introduction

 Identifying objects of interest from a video sequence is a fundamental and essential

part in many vision systems, such as traffic analysis systems and human detection and

tracking systems. Background subtraction is widely used in these systems. For automated

surveillance systems, processing speed may be an essential factor due to security concern.

Since background subtraction is often the first step in these applications, real-time and

robust background subtraction algorithms are important and need to be explored.

In background subtraction, pixels from objects of interest are considered

“foreground” and the rest of the pixels in the frame is considered “background”. Usually

objects of interest refer to moving objects in the scene while background refers to stable

objects. Every pixel in the current frame will either be detected as foreground pixel or

background pixel. We can consider this as a binary hypothesis test problem with only two

possible hypotheses: background and foreground. The background may not be fixed but

must be adapt to several situations to get satisfying results. A robust background

subtraction algorithm should adapt to various levels of illumination at different times of

the day and can handle gradual and sudden illumination changes. It should also adapt to

some motions changes in the scene, such as fluttering leaves, sea waves, waterfalls and

camera oscillations. Changes in background geometry such as newly parked cars should

also be considered in a robust background subtraction algorithms.

In this paper, we view different background subtraction algorithms in a common

hypothesis test way and compare their performances. We implement single Gaussian

background model, kernel density estimation (KDE) background model, Markov

Random Field model and neighborhood foreground model in real-time and get robust

detection results. The paper is organized as follows: the problem statement is in Chapter

2, our implementation of the algorithms and experimental results can be found in Chapter

3 and Chapter 4 separately. Results of our algorithms are shown in Chapter 5. Finally we

conclude our paper in Chapter 6.

2 Haotian Wu, Yifan Yu

2 Literature review

Since we assume there are only two possible modes for each pixel in a single frame:

background and foreground, we can view the background subtraction problem as a binary

hypothesis problem. Based on the current value of the pixel and the probability

distributions of two models, we can use a maximum a posterior rule (MAP) to detect the

pixel’s current mode. Let []I n be a grayscale image sampled on 2-D

lattice 2: [],I n n R , and
BP be the prior probability of background,

FP be the

prior probability of foreground. We denote a sequence of such images ()[]kI n , with k

being the frame number. We use ()([])k

BP I n to denote the background PDF and

()([])k

FP I n as the foreground PDF. So we get if

()

()

([])

([])

k

B F

k

F B

P I n P

P I n P
 (1)

then the current pixel is identified as background, if not, the current pixel is identified as

foreground. To attain better detect result, we need better estimation of the likelihood of

background pixels and foreground pixels, which we define as the models of background

and foreground.

A simple way is to do background subtraction is to assume the foreground as

uniform when we consider the test. If we cannot get the explicit model of foreground,

assuming it as uniform can help us avoid the decision bias. When foreground is

considered uniform, ()([])k

FP I n turns into a constant, so we only need to find out the

likelihood probability distribution of background when we perform the hypothesis test.

There are various models of background. One of the simplest and most straightforward

one is to choose background as the average or median of the former frames [1][2].

However, they usually perform badly due to noise and complicate background situation

changes. A single Gaussian model [3] is better, however it also performs poorly when it

comes to non-stationary background, such as ceiling fans, swaying tree branches, sea

waves and etc. Mixture of Gaussians model [4] usually gives out a more accurate

3 Haotian Wu, Yifan Yu

probability model than the former two. Its shortcomings are the number of Gaussians

usually needs pre-defined and some mixtures actually models both foreground and

background, resulting confusion in concept and inaccuracy in calculation. A better model

to estimate the PDF is to use Kernel Density Estimator [5]. The background PDF is given

by the histogram of the past pixel values, each smoothed with a kernel (usually a

Gaussian kernel). But it usually requires high computational complexity than the others.

All these methods above basically use the information from former frames to establish

the model.

Recently, building proper model for foreground is causing more and more attention

and proved to be effective in background subtraction. A method [6] proposed by Mike

McHugh et al. is to using the small spatial neighborhood information to establish the

model of foreground. It is demonstrated in [7] that periodicity in time also holds spatially.

So we can establish the foreground model the same way as the background model except

we use the information in small spatial neighborhood instead of past frames.

There exist other models which focus more on spatial information in the current

frame than the temporal information in past frames to improve the model accuracy. But it

is noticeable that the initial information used in these methods is obtained from results of

former category. El Gammal et al. proposed foreground modeling for human body [8],

and Sheikh and Shah proposed a general foreground model using past frames [9]. The

first model is object-specific, and the second one needs slow object motion as its

assumption, otherwise background samples will contaminate foreground model. A better

principle method is using information in spatial correlation [10]. Using Markov random

field modeling of changing labels can be seen as taking advantage of spatial information

too [11]. Many have proved that combining temporal information with spatial

information can offer us better results in subtraction.

3 Problem Statement

4 Haotian Wu, Yifan Yu

Our goal is to implement real-time background subtraction algorithms in different

models using C++. We define the background in the common way, which refers to the

stable objects in the scene and objects with repetitive small motion objects in the scene

such as swaying tree branches and sea waves. We try to find the most suitable model

models between time efficiency and detection results for real-time background

subtraction. We choose C++ as our development language because it is easy to transplant

and has high computational efficiency. We also want to make our program read in video

stream directly from a web camera since networked video cameras are extensively used

today.

 We started from the basic methods such as using only Single Gaussian background

model to do background subtraction. Then we went further to kernel density estimation

background model. To increase the process speed of our algorithms, we add look-up table

(LUT) and early-break method into our algorithms. Then we studied how the kernel

numbers in buffer memory would affect the speed of the algorithms. We added Markov

Random Field model of changing labels to improve the detection performance and

studied the effect of numbers of iteration on the speed of the program. In the last, we use

neighborhood information in the current frame to establish the foreground model, and

studied its performance.

4 Implementation

(1) Single Gaussian Model

This model uses a single Gaussian distribution for the conditional background

probability distribution and a uniform distribution for the foreground distribution

probability. For every pixel in current frame, we can determine whether it is background

pixel by comparing its probability of the current value with a fixed threshold. We only

need to save two parameters for our background distribution since single Gaussian

distribution only relates to its mean and variance. The Gaussian distribution is as follows:

5 Haotian Wu, Yifan Yu

2

22

1 ([])
([]) exp()

22

I x
P I x

 (2)

Where and are the mean and variance of the Gaussian function.

In order to adapt to the gradual illumination changes in background, we update the

background probability for each pixel. In this project, we update single Gaussian model

by running average.

1 (1)k k kB
 (3)

2 2 2

1 () (1)k k k kB
 (4)

k and k are the mean and variance of the current pixel in the k
th

 image, kB is the

background image used for the k
th

 frame subtraction. is the update parameter. The

range of is between 0 and 1. We update every pixel in the background image for each

new frame.

By using this running average, we ensure that background can update with gradual

illumination changes. Also, if there exist some false positives or miss in the initialized

background, they can be corrected after some time with properly chosen update

parameter .

The flow chart of the Single Gaussian Model algorithm is:

6 Haotian Wu, Yifan Yu

Fig. 1: flow chart of Single Gaussian Method

(2) Kernel Density Estimation

The main idea of this method is that the background PDF is given by the histogram of

the n most recent pixel values, each smoothed with a kernel(specifically, a Gaussian

kernel) (Fig. 2).

7 Haotian Wu, Yifan Yu

Fig. 2: Kernel Density Estimation Probability

We also assume foreground to be uniform. For every pixel in the new image, use a

binary hypothesis test to check whether it is background pixel or foreground pixel. The

flow chart of our program is in Fig. 3, and we will explain each step in the following text.

8 Haotian Wu, Yifan Yu

Fig. 3: flow chart KDE algorithm

In the initialization step where we build an initial background for the following

detection, we pick only one frame and put it in the buffer for every ten frames we read in.

We keep doing this until we fill the buffer. The buffer is a circular array which stores n

frames of images, where n equals to the number of kernels. We call the frames stored in

the buffer kernel images, because it provide the average parameter in each Gaussian

kernel function when we do further computation. We initialize the buffer this way

because if we choose continuous frames in the sequences to initialize the buffer, due to

high fps, some slow-motion objects are probably stays at the same place in these frames.

9 Haotian Wu, Yifan Yu

These objects will be recognized as background and contaminate the background

probability. Initialization this way will cost more time to initialize, but the time is

negligible and it increases the accuracy of the model greatly.

More frames we store in the buffer, more accurate the probability distribution we

will get. However, increase the buffer length will not only take more space but also more

time to perform background subtraction. To improve the algorithm’s efficiency, we

introduce look-up table (LUT) and early-break method into the algorithms. .

 (5)

In our Gaussian kernel function, every
i comes from a pixel value from the former

frame, assume we have only 256 gray scale levels, then i can only have 256 possible

values. []I x also have 256 possible values. Notice Gaussian function is symmetric, so

there is only 256 possible values for the output result of Gaussian function. We can

compute and store these values in memory before we do any processing of the frames. No

matter how large the image size is and how long the sequence is, each time we read in a

new pixel value []I x and need to find the corresponding kernel probability value i ,

we can look it up directly in the memory according to [] iI x .

When we consider the foreground as uniform, if ([])P I x is larger than the

threshold , then we can say the current pixel belongs to background. Notice ([])P I x

is the sum of kernel probability value i

0

([])
n

i i

i

P I x w

 (6)

10 Haotian Wu, Yifan Yu

and all
i are positive numbers, so if the sum of part of

i is larger than the threshold,

we can classify this pixel to background. If we get a large enough sum of
i in the first

few
i , then we do not need to go and find the other values of

i . We call this algorithm

as fast break because it will break out of the loop when we can ensure this pixel belongs

to background. Because generally most of the pixels in one image belong to background,

this early-break will make the algorithm more efficient.

Also, we use selective update method to update the kernel images in the buffer.

There are two points need to be mentioned here:

(i) The update order:

Assume the buffer size is n, the buffer is circular array which will store the nearest

past n frames. For frame k, suppose

(mod)l k n (7)

Then we update the l
th

 frame in the buffer. Most of the time, the l
th

 frame is the oldest

frame in the buffer, which is frame k – n. Our background model can track the gradual

and even some sudden illumination changes (if fps is relatively high) using this update

order.

(ii) Selective update between background and foreground:

When we update the kernel images, we have two separate ways to update the kernel

images in the buffer depending on if it is detected as background or foreground. Let

[]kF x denotes the current value of the pixel locates at x in Frame k, and []l x

denotes the pixel value in buffer l at the same position. If []kF x is consider background

pixel, then we have

[] []l kx F x (8)

If the pixel is detected as foreground, we have:

 [] (1) [] []l l kx x F x (9)

 is the update parameter which is between (0,1) and usually lies around 0.05

depending on different image sequences. For background, we use the current value

11 Haotian Wu, Yifan Yu

replace the one in the kernel image, but for foreground, we only update it a little. By

doing this, for background, we keep the nearest n values of background in the buffer, and

the background can track the illuminant changes; for foreground, we only slightly change

the values in the buffer. However, if one pixel keeps to be detected as foreground pixel

for a long time, it will gradually become background. This is reasonable because we often

see there is geometry change in the background, such as a car drive into the scene and

park there. By doing small update on pixels detected as foreground instead of not

updating them, we can also fix the misses and false positives in the initial kernels.

(3) Markov Random Field(MRF)

If only KDE is implemented in the algorithm, as we have tried, it can be easily done

in real time. But at the same time, the result is not satisfactory because of the false

positives in background and some misses in the foreground objects. To remove them, we

introduced Markov Random Field model of changing labels.

If U is a Markov Random Field, it can be characterized by Gibbs jointly probability

distribution.

1(,....,)/

1 1

1
(,....,) NE u u

N NP U u U u e
Z

 (10)

1 1(,....,) (,...,)N c N

c C

E u u V u u

 (11)

Where:

Z - normalizing constant called partition function;

β - natural temperature(constant);

c - clique (geometric concept);

C - set of all cliques;

Vc - potential function (algebraic concept)

In our specific problem, the potential function is:

12 Haotian Wu, Yifan Yu

 (12)

Combine the function with binary hypothesis formula:

 (13)

After simplified, we can get:

 (14)

This hypothesis test use spatial information to identify the status of each pixel and run it

for several iterations before get satisfying result.

In MRF, for specific pixel, the status of the pixels in its neighborhood will affect its

status, which means, if most of the pixels in its neighborhood in background, it is

probably background pixel and vice visa. So it will remove the false positives and fill

misses in foreground (because the pixels around false positives are almost background

pixels and the pixels around the misses are almost the foreground pixels). On the other

hand, it needs to run several iterations to get the result, so it is of comparatively lower

computing efficiency. However, in the results below we can see that the main bottleneck

of the efficiency is often not the number of iterations but the number of kernels in the

buffer.

After we add MRF to the KDE method, the flow chart is shown as follows:

13 Haotian Wu, Yifan Yu

Fig. 4: KDE with MRF

Compared with the KDE method, we add a MRF iteration process after we get the motion

label image in KDE.

(4) Neighborhood Foreground Models

This model is similar to kernel density estimation except to use spatial information to

estimate the probability distribution, and it is explained clearly in [6]. To make this

article concise, we just introduce this model in general but we implement the algorithm

14 Haotian Wu, Yifan Yu

and give out result below. We use neighborhood foreground model to further decrease the

detection error rate. For every pixel in the frame, we use the neighborhood pixels of it to

build its foreground model. Suppose []kF y is in the neighborhood of the current pixel

[]kF x and there is n number of neighbor of x (usually 8 or 24 or 48). Then we have its

foreground model is:

0

([])
n

i i

i

P I x w

 (15)

2

22

([] [])1
exp()

22

k k
i

ii

F x F y

 (16)

5. Experimental Results

The system parameters of the system where we test our algorithms are listed below:

CPU: Inter(R) Core(TM)2 Duo CPU T8300@2.40GHz

RAM: 3.00GB

System: Windows 7

Development Enviroment: Microsoft Visual C++ 2005, version 8.05 , OpenCV2.0

We record some long video sequences from the web camera and find the average frame

rate in daytime of that camera is 20fps. This is a common value for many webcams. The

processing time should be under 50ms to ensure real-time processing.

(1) Single Gaussian Method results:

The result is shown as follows:

15 Haotian Wu, Yifan Yu

Fig. 5: the result of Single Gaussian Model

We can find that in the right picture there is a large part of false alarms in the bottom and

some misses. The reason is that when initializing the background model, there is a bus at

that part, so the pixels in the bus are taken as the background, which results in errors.

After some time, it can be fixed. The time needed to fix the error depends on the update

parameter . The result after some time is shown as follows:

Fig. 6: the result after some time

The processing time of one single run plot is shown as follows (horizontal axis is the

index of frames, vertical axis is the processing time measure in milliseconds, for 320*240

image, 3 channels):

16 Haotian Wu, Yifan Yu

Fig. 7: processing time of Single Gaussian Method

Although single Gaussian is not accurate enough and may introduce lots of errors, it is

very fast. For each channel, it just needs about 10-12ms to process. So it can be used to

process very large image sequences. In experiment, it can process a 3-channel

image(480* 360) in 75-78ms and it can process larger 1-channel image sequences in real

time.

(2) KDE with LUT and early-break results

The result is shown as follows:

17 Haotian Wu, Yifan Yu

Fig. 8: the result of KDE with LUT and early-break

Compare with the result from single Gaussian Method, we can see that the false alarms

are significantly decreases but there are still some misses, although the number of misses

is smaller than that in Single Gaussian Method.

The processing time of one single run with and without LUT are shown as follows (for

320*240 image sequences):

Fig. 9: processing time for KDE with LUT

18 Haotian Wu, Yifan Yu

Fig. 10: processing time for KDE with LUT and early-break

It can be found that if LUT and early-break are not applied in KDE, it will cost a long

time to process one frame(about 250ms), and after applying only LUT to it, it can afford

100 kernels in the buffer to process the image sequences in real time, so the LUT is of

great importance in the algorithm. And after applying early-break, the processing time

decreases again about 25%.

(3) KDE with MRF results

The result of KDE with 1
st
 order MRF is shown as follows:

19 Haotian Wu, Yifan Yu

Fig. 11: KDE with 1st order MRF

Compared to the results of Single Gaussian Method and KDE, we can see from the result

of the algorithm that most of false alarms and misses disappear and we obtain

comparatively good results.

To find out the bottleneck of real-time background subtraction, we also try to run the

algorithm with different number of kernels and iterations of MRF and we get the result as

follows (for 320*240 image sequences):

Fig. 12: processing time with different number of iterations in 1st MRF

20 Haotian Wu, Yifan Yu

Fig. 13: processing time with different number of kernels in 1st MRF

Fig. 14: processing time with different number of kernels in 2nd MRF

21 Haotian Wu, Yifan Yu

Fig. 15: processing time with different number of kernels in 2nd MRF

And from the four plots above, the algorithm needs roughly one more millisecond to

processing one image as the number of kernel increases by 1 or the number of MRF

increases by one. However, there is little improvement when the number of iterations is

larger than 4. From all the results above, we can know that the main bottleneck factor in

real-time background subtraction is the number of kernels.

(4) The result of applying foreground model

The result is shown as follows:

22 Haotian Wu, Yifan Yu

Fig. 16 Applying foreground model to the algorithm

Actually, after applying foreground model to the algorithm, the quality does not change

much. And the processing time has increased approximately 7%:

Fig. 17 the processing time after applying foreground to the algorithm

23 Haotian Wu, Yifan Yu

From the Fig. 17 and Fig. 18, it can be found that after applying foreground model to the

algorithm, the quality has little improvement.

Finally, we give some tables for the average processing time of every method:

 320* 240 pixels 480*360 pixels

Single Gaussian Method(1

channel)
11.1ms 26.1ms

Single Gaussian Method(3

channels)
34.3ms 76.4ms

Table 1: average processing time for Single Gaussian Method (1 channel and 3 channels)

 320* 240 pixels 480*360 pixels

KDE(50 kernels) 250.4ms 600.6ms

KDE with LUT(50 kernels) 24.9ms 76.3ms

KDE with LUT(100

kernels)
49.3ms 300.2ms

KDE with LUT and

early-break(50 kernels)
20.1ms 37.4ms

KDE with LUT and

early-break(100 kernels)
42.2ms 94.3ms

Table 2: average processing time for KDE

 320*240 pixels 480*360 pixels

KDE(50 kernels) with

MRF(4 iterations)
49.4ms 124.3ms

KDE(50 kernels) with

MRF(5 iterations)
52.1ms 128.2ms

KDE(50 kernels) with

MRF(6 iterations)
53.7ms 131.6ms

Table 3: average processing time for KDE with MRF (1
st
) of different number of

iterations

24 Haotian Wu, Yifan Yu

 320*240 pixels 480*360 pixels

KDE(32 kernels) with

MRF(1
st
)

35.5ms 78.3ms

KDE(50 kernels) with

MRF(1
st
)

55.5ms 124.5ms

KDE(64 kernels) with

MRF(1
st
)

62.6ms 144.7ms

Table 4: average processing time for KDE with MRF (1
st
) of different number of kernels

 320*240 pixels 480*360 pixels

KDE(50 kernels) with

MRF(4 iterations)
49.3ms 123.1ms

KDE(50 kernels) with

MRF(5 iterations)
50.3ms 124.4ms

KDE(50 kernels) with

MRF(6 iterations)
53.2ms 129.5ms

Table 5: average processing time for KDE with MRF (2
nd

) of different number of

iterations

 320*240 pixels 480*360 pixels

KDE(32 kernels) with

MRF(2
st
)

35.5ms 78.3ms

KDE(50 kernels) with

MRF(2
st
)

50.6ms 116.6ms

KDE(64 kernels) with

MRF(2
st
)

62.8ms 144.4ms

Table 6: average processing time for KDE with MRF (2
nd

) of different number of kernels

25 Haotian Wu, Yifan Yu

We summarize the result in the next table, if its average processing time is larger than

50ms, we consider this method to be real-time (Denote as “Y” in the table), else we

consider it cannot be done in real-time (Denote as “N” in the table):

 320*240 pixels 480*360 pixels

Gaussian
1 channel Y Y

3 channels Y N

KDE(16 kernels)

LUT N N

LUT and

early-break
Y Y

MRF (4 iterations) Y Y

MRF (5 iterations) Y Y

MRF (6 iterations) Y Y

KDE(32

kernels)

LUT N N

LUT and

early-break
Y N

MRF (4 iterations) Y N

MRF (5 iterations) Y N

MRF (6 iterations) Y N

KDE(50 kernels)

LUT N N

LUT and

early-break
Y N

MRF (4 iterations) Y N

MRF (5 iterations) Y N

MRF (6 iterations) Y N

KDE(100 kernels)

LUT N N

LUT and

early-break
Y N

MRF (4 iterations) N N

MRF (5 iterations) N N

MRF (6 iterations) N N

26 Haotian Wu, Yifan Yu

Foreground Model MRF(1
st
) Y N

MRF(2
nd

) Y N

Table 7 Final results

6. Conclusion

From the project, we learned that:

(1) Single Gaussian Method is fast and easy to implement in real-time, but it usually has

bad performance in complicated situations.

(2) Kernel density estimation model building is not efficient enough, often it cannot be

done in real time, but if we introduce LUT and early-break method into the KDE

model, it can be done in real time and we get robust and satisfying result which will

adapt to illuminant and motion changes in the background.

(3) The bottleneck factors for real-time background subtraction are mainly the data

amount (image resolutions) and kernel numbers, the orders or iteration numbers of

MRF have insignificant effect on that.

(4) Kernel numbers is an essential factor on both the processing speed and the detection

error rate. Orders or iteration numbers have much less effect on detection error rate.

Although the processing time for applying neighborhood foreground models in the

algorithm do not increase significantly, but it also has insignificant improvement in

decreasing the error rate.

Possible future work may include: using multi-threading algorithms or multi-core

workstations to process large image sequences. However, as we define our topic as read

in streams from web cameras directly and perform background subtraction, larger

resolution images processing seems unnecessary due to the networsk capacity constraints.

27 Haotian Wu, Yifan Yu

28 Haotian Wu, Yifan Yu

7. References

[1] B.P.L. Lo and S.A. Velastin, “Automatic congestion detection system for

underground platforms,” Proc. of 2001 Int. Symp. on Intell. Multimedia, Video and

Speech Processing, pp. 158-161, 2000.

[2] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, “Detecting moving objects,

ghosts and shadows in video streams”, IEEE Trans. on Patt. Anal. and Machine Intell.,

vol. 25, no. 10, Oct. 2003, pp. 1337-1342.

[3] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland, “Pfinder:Real-time Tracking

of the Human Body,” IEEE Trans. on Patt. Anal. and Machine Intell., vol. 19, no. 7, pp.

780-785, 1997.

.

[4] C. Stauffer, W.E.L. Grimson, “Adaptive background mixture modelsfor real-time

tracking”, Proc. of CVPR 1999, pp. 246-252.

[5] A. Elgammal, D. Harwood, and L.S. Davis, “Non-parametric Model for Background

Subtraction”, Proc. of ICCV '99 FRAME-RATE Workshop, 1999.

[6] J. Mike McHugh, Janusz Konrad, Venkatesh Saligrama, and Pierre-Marc Jodoin,

“Foreground-Adaptive Background Subtraction”, IEEE Signal Process. Lett, 2009 IEEE.

[7] P.-M. Jodoin, M. Mignotte, and J. Konrad, “Statistical background subtraction using

spatial cues,” IEEE Trans. Circuits Syst. Video Technol., vol. 17, pp. 1758–1763, Dec.

2007.

[8] A. Elgammal, R. Duraiswami, D. Harwood, and L. Davis, “Background and

foreground modeling using nonparametric kernel density for visual surveillance”, Proc.

IEEE, vol. 90, pp. 1151.1163, 2002.

[9] Y. Sheikh and M. Shah, “Bayesian modeling of dynamic scenes for object

detection”, IEEE Trans. Pattern Anal. Machine Intell., vol. 27, no. 11, pp. 1778.1792,

2005.

[10] M. Seki, T. Wada, H. Fujiwara, K. Sumi, “Background detection based on the

cooccurrence of image variations”, Proc. of CVPR 2003, vol. 2, pp. 65-72.

[11] T. Aach and A. Kaup, “Bayesian algorithms for adaptive change detection

in image sequences using Markov random fields”, Signal Process., Image Commun., vol.

7, pp. 147.160, 1995.

29 Haotian Wu, Yifan Yu

8. Appendix

Below is listed C++ source code developed for this project. It can be downloaded from

the address below:

(1) For single Gaussian Model

#include "stdafx.h"

#include <iostream>

#include <string>

#include <highgui.h>

#include <cv.h>

#include <math.h>

#include <stdlib.h>

#include <windows.h>

#include <ctime>

LARGE_INTEGER limtp;

const double e = 2.7183;

const double segama = 30;

const double pi = 3.14;

double temp;

const int numFrame = 10;

const int numInitial = 1;

const int numMRF = 4;

const int num_write = 500;

const double threshold = 0.65;

using namespace std;

double gaussian_value(int value)

{

 double index = -pow((double)value, 2)/(2 * pow(segama, 2));

 temp = pow(e, index)/numFrame;

 return temp;

}

int main(int argc, char **argv)

{

 //set up windows

 cvNamedWindow("origin", CV_WINDOW_AUTOSIZE);

 cvNamedWindow("processing", CV_WINDOW_AUTOSIZE);

 cvNamedWindow("result", CV_WINDOW_AUTOSIZE);

 CvCapture* capture = NULL;

 //capture = cvCreateFileCapture("http://vsn3-iss.bu.edu/mjpg/video.mjpg");

30 Haotian Wu, Yifan Yu

 capture = cvCaptureFromAVI("vsn3_3.avi");

 IplImage* frame = NULL; //original images of video

 IplImage* frame_u = NULL; //expected images of video

 IplImage* frame_var = NULL; //variance images

 IplImage* frame_std = NULL; //deviation images

 IplImage* frame_bin = NULL; //binary images

 IplImage* frame_diff = NULL; //difference images

 double alpha = 0.05; //updata parameter alpha

 double std_init = 20; //initialized std

 double var_init = std_init * std_init; //initialized var

 double lamda = 2.5 * 1.2; //updata parameter

 CvScalar pixel = {0}; //original values of pixels

 CvScalar pixel_u = {0}; //expected values of pixels

 CvScalar pixel_var = {0}; //variance images

 CvScalar pixel_std = {0}; //standard deviation images

 CvScalar pixel_for = {255, 0, 0, 0};

 CvScalar pixel_back = {0};

 //initiallize frame_u, frame_var, frame_std

 frame = cvQueryFrame(capture);

 frame_u = cvCreateImage(cvSize(frame->width, frame->height), IPL_DEPTH_8U, 3);

 frame_var = cvCreateImage(cvSize(frame->width, frame->height), IPL_DEPTH_8U, 3);

 frame_std = cvCreateImage(cvSize(frame->width, frame->height), IPL_DEPTH_8U, 3);

 frame_diff = cvCreateImage(cvSize(frame->width, frame->height), IPL_DEPTH_8U, 3);

 frame_bin = cvCreateImage(cvSize(frame->width, frame->height), IPL_DEPTH_8U, 1);

 CvSize size = {frame->width, frame->height};

 //CvVideoWriter* writer1 = 0;

 //CvVideoWriter* writer2 = 0;

 //int isColor1 = 1;

 //int isColor2 = 0;

 //double fps = 20;

 //writer1 = cvCreateVideoWriter("video_origin_single_gaussian.avi", CV_FOURCC('P', 'I', 'M',

'1'), fps, size, isColor1);

 //writer2 = cvCreateVideoWriter("video_back_single_gaussian.avi", CV_FOURCC('P', 'I', 'M',

'1'), fps, size, isColor2);

 for(int y = 0; y < frame->height; ++y)

 {

 for(int x = 0; x < frame->width; ++x)

 {

 pixel = cvGet2D(frame, y, x);

 pixel_u.val[0] = pixel.val[0];

 pixel_u.val[1] = pixel.val[1];

 pixel_u.val[2] = pixel.val[2];

 pixel_std.val[0] = std_init;

 pixel_std.val[1] = std_init;

 pixel_std.val[2] = std_init;

31 Haotian Wu, Yifan Yu

 pixel_var.val[0] = var_init;

 pixel_var.val[1] = var_init;

 pixel_var.val[2] = var_init;

 cvSet2D(frame_u, y, x, pixel_u);

 cvSet2D(frame_var, y, x, pixel_var);

 cvSet2D(frame_std, y, x, pixel_std);

 }

 }

 int num = 0;

 time_t TimeStart, TimeEnd, TimeUsed;

 int time[1500];

 char* filename = "D:\\ec720\\data\\RGB_single_Gaussian_480.txt";

 FILE* fp = fopen(filename, "w");

 while(cvWaitKey(1) != 27) //press ESC to quit, fps = 1/33

 {

 frame = cvQueryFrame(capture);

 TimeStart = clock();

 //Guassian model

 for (int y = 0; y < frame->height; ++y)

 {

 for (int x = 0; x < frame->width; ++x)

 {

 pixel = cvGet2D(frame, y, x);

 pixel_u = cvGet2D(frame_u, y, x);

 pixel_std = cvGet2D(frame_std, y, x);

 pixel_var = cvGet2D(frame_var, y, x);

 //if|I-u| < lamda*std, background, update

 if (fabs(pixel.val[0] - pixel_u.val[0]) < lamda * pixel_std.val[0] &&

 fabs(pixel.val[1] - pixel_u.val[1]) < lamda * pixel_std.val[1] &&

 fabs(pixel.val[2] - pixel_u.val[2]) < lamda * pixel_std.val[2])

 {

 //update u = (1-alpha)*u + alpha*I

 pixel_u.val[0] = (1 - alpha) * pixel_u.val[0] + alpha * pixel.val[0];

 pixel_u.val[1] = (1 - alpha) * pixel_u.val[1] + alpha * pixel.val[1];

 pixel_u.val[2] = (1 - alpha) * pixel_u.val[2] + alpha * pixel.val[2];

 //update var = (1-alpha)*var + alpha*(I-u)^2

 pixel_var.val[0] = (1 - alpha) * pixel_var.val[0] +

 (pixel.val[0] - pixel_u.val[0]) * (pixel.val[0] -

pixel_u.val[0]);

 pixel_var.val[1] = (1 - alpha) * pixel_var.val[1] +

 (pixel.val[1] - pixel_u.val[1]) * (pixel.val[1] -

pixel_u.val[1]);

 pixel_var.val[2] = (1 - alpha) * pixel_var.val[2] +

 (pixel.val[2] - pixel_u.val[2]) * (pixel.val[2] -

pixel_u.val[2]);

 //update deviation

 pixel_std.val[0] = sqrt(pixel_var.val[0]);

 pixel_std.val[1] = sqrt(pixel_var.val[1]);

32 Haotian Wu, Yifan Yu

 pixel_std.val[2] = sqrt(pixel_var.val[2]);

 //write into matrix

 cvSet2D(frame_u, y, x, pixel_u);

 cvSet2D(frame_var, y, x, pixel_var);

 cvSet2D(frame_std, y, x, pixel_std);

 }

 }

 }

 cvAbsDiff(frame_u, frame, frame_diff);

 for(int y = 0; y < frame->height; ++y)

 {

 for(int x = 0; x < frame->width; ++x)

 {

 if((frame_diff->imageData + y * frame_diff->widthStep)[3 * x] > 20 &&

 (frame_diff->imageData + y * frame_diff->widthStep)[3 * x + 1] > 20 &&

 (frame_diff->imageData + y * frame_diff->widthStep)[3 * x + 2] > 20)

 /*(frame_bin->imageData + y * frame_bin->widthStep)[x] = 255;*/

 cvSet2D(frame_bin, y, x, pixel_for);

 else

 /*(frame_bin->imageData + y * frame_bin->widthStep)[x] = 0;*/

 cvSet2D(frame_bin, y, x, pixel_back);

 }

 }

 TimeEnd = clock();

 TimeUsed = TimeEnd - TimeStart;

 time[num] = TimeUsed;

 cout << time[num] << endl;

 //show the result

 cvShowImage("origin", frame);

 cvShowImage("processing", frame_u);

 cvShowImage("result", frame_bin);

 //cvWriteFrame(writer1, frame);

 //cvWriteFrame(writer2, frame_bin);

 num++;

 if(num == 1500)

 break;

 }

 for(int i = 0; i < 1500; ++i)

 fprintf(fp, "%d\n", time[i]);

 fclose(fp);

 //Release the memory

 cvReleaseCapture(&capture);

 //cvReleaseImage(&frame);

 cvReleaseImage(&frame_u);

 cvReleaseImage(&frame_var);

 cvReleaseImage(&frame_std);

33 Haotian Wu, Yifan Yu

 cvReleaseImage(&frame_bin);

 cvReleaseImage(&frame_diff);

 cvDestroyWindow("origin");

 cvDestroyWindow("processing");

 cvDestroyWindow("result");

 return 0;

}

34 Haotian Wu, Yifan Yu

For KDE with LUT, early-break and MRF

#include "stdafx.h"

#include <iostream>

#include <string>

#include <highgui.h>

#include <cv.h>

#include <math.h>

#include <stdlib.h>

#include <windows.h>

#include <ctime>

LARGE_INTEGER limtp;

const double e = 2.7183;

const double segama = 30;

const double pi = 3.14;

double temp;

const int numFrame = 64;

const int numInitial = 1;

const int numMRF = 5;

const int num_write = 500;

const double threshold = 0.58;

const double alpha = 0.05;

using namespace std;

// return frame_result;

//}

double gaussian_value(int value)

{

 double index = -pow((double)value, 2)/(2 * pow(segama, 2));

 temp = pow(e, index)/numFrame;

 return temp;

}

int main(int argc, char **argv)

{

 //set up windows

 cvNamedWindow("origin", CV_WINDOW_AUTOSIZE);

 cvNamedWindow("result", CV_WINDOW_AUTOSIZE);

 double hash[256];

 for(int i = 0; i < 256; ++i)

 hash[i] = gaussian_value(i);

 CvCapture* capture = NULL;

 capture = cvCaptureFromAVI("vsn3_3.avi");

 //capture = cvCreateFileCapture("http://vsn3-iss.bu.edu/mjpg/video.mjpg");

 IplImage* frame = NULL; //original images of video

 IplImage* frame_gray = NULL; //original images of video of gray level

 IplImage* frame_temp = NULL; //next frame to be computed

35 Haotian Wu, Yifan Yu

 IplImage* frame_result = NULL; // the result after background subtraction

 IplImage* chain[numFrame]; //save the images to compute the kernel

 IplImage* diff[numFrame]; //save the absolute difference

 IplImage* phi[numFrame]; //save the MRF temp results

 IplImage* dividend;

 //IplImage* abc;

 IplImage* frame_left_shift = NULL; //save the image with 1 pixel shifted to the left

 IplImage* frame_right_shift = NULL; //save the image with 1 pixel shifted to the right

 IplImage* frame_up_shift = NULL; //save the image with 1 pixel shifted to the up

 IplImage* frame_down_shift = NULL; //save the image with 1 pixel shifted to the down

 IplImage* frame_MRF = NULL; //save the MRF

 IplImage* frame_diff = NULL; //save the difference of the image

 frame = cvQueryFrame(capture);

 CvSize size = {frame->width, frame->height};

 CvSize size_shift = {frame->width, frame->height};

 dividend = cvCreateImage(size, IPL_DEPTH_8U, 1);

 frame_diff = cvCreateImage(size, IPL_DEPTH_8U, 1);

 frame_MRF = cvCreateImage(size_shift, IPL_DEPTH_8U, 1);

 CvScalar value = {numFrame, 0, 0, 0};

 cvSet(dividend, value);

 for(int i = 0; i < numFrame; ++i)

 phi[i] = cvCreateImage(size, IPL_DEPTH_8U, 1);

 for(int num = 0; num < numFrame; ++num)

 {

 int count = 0;

 chain[num] = cvCreateImage(size, IPL_DEPTH_8U, 1);

 //cvSetZero(frame_temp);

 while(1)

 {

 frame = cvQueryFrame(capture);

 if(count == 0)

 {

 frame_gray = cvCreateImage(size, IPL_DEPTH_8U, 1);

 cvCvtColor(frame, frame_gray, CV_RGB2GRAY);

 chain[num] = frame_gray;

 }

 count++;

 if(count == 7)

 break;

 cvWaitKey(37);

 //count++;

 //if(count == numInitial)

 // break;

 }

 }// initialize

36 Haotian Wu, Yifan Yu

 //frame_gray = cvCreateImage(size, IPL_DEPTH_8U, 1);

 for(int i = 0; i < numFrame; ++i)

 diff[i] = cvCreateImage(size, IPL_DEPTH_8U, 1);

 int count_write = 0;

 time_t TimeStart, TimeEnd, TimeUsed;

 int time[1500];

 int num_time = 0;

 frame_gray = cvCreateImage(size, IPL_DEPTH_8U, 1);

 while(1)

 {

 frame = cvQueryFrame(capture);

 TimeStart = clock();

 cvCvtColor(frame, frame_gray, CV_RGB2GRAY);

 for(int i = 0; i < numFrame; ++i)

 cvAbsDiff(frame_gray, chain[i], diff[i]);

 int num = 0;

 frame_result = cvCreateImage(size, IPL_DEPTH_8U, 1);

 for(int i = 0; i < frame_gray->width; ++i)

 {

 for(int j = 0; j < frame_gray->height; ++j)

 {

 double temp = 0;

 for(int k = 0; k < numFrame; ++k)

 {

 (frame_result->imageData + frame_result->widthStep * j)[i] = 1;

 int value = (diff[k]->imageData + diff[k]->widthStep * j)[i];

 temp += hash[value];

 /*temp += gaussian_value(value);*/

 if(temp > threshold)

 {

 (frame_result->imageData + frame_result->widthStep * j)[i] = 0;

 break;

 }

 }

 }

 }

 cvSetZero(frame_diff);

 for(int i = 0; i < numFrame; ++i)

 {

 cvDiv(diff[i], dividend, phi[i], 1);

 cvAdd(phi[i], frame_diff, frame_diff);

 }

 for(int k = 0; k < numMRF; ++k)

37 Haotian Wu, Yifan Yu

 {

 for(int i = 1; i < frame->width - 1; ++i)

 for(int j = 1; j < frame->height - 1; ++j)

 (frame_MRF->imageData + frame_MRF->widthStep * j)[i] =

(frame_result->imageData + frame_result->widthStep * (j - 1))[i] + (frame_result->imageData +

frame_result->widthStep * (j + 1))[i] + (frame_result->imageData + frame_result->widthStep * j)[i

+ 1] + (frame_result->imageData + frame_result->widthStep * j)[i - 1];

 //cvAdd(frame_left_shift, frame_right_shift, frame_MRF);

 //cvAdd(frame_MRF, frame_up_shift, frame_MRF);

 //cvAdd(frame_MRF, frame_down_shift, frame_MRF);

 //cvSetZero(frame_diff);

 //for(int i = 0; i < numFrame; ++i)

 //{

 // cvDiv(diff[i], dividend, phi[i], 1);

 // cvAdd(phi[i], frame_diff, frame_diff);

 //}

 cvSetZero(frame_result);

 for(int i = 0; i < frame->width; ++i)

 for(int j = 0; j < frame->height; ++j)

 if(pow((double)(frame_diff->imageData + frame_diff->widthStep * j)[i],

2) > 2 * pow(segama, 2) * (2.5 - 2 * (frame_MRF->imageData + frame_MRF->widthStep * (j + 1))[i + 1]))

 if(k != numMRF - 1)

 (frame_result->imageData + frame_result->widthStep * j)[i] =

1;

 else

 (frame_result->imageData + frame_result->widthStep * j)[i] =

255;

 }

 //cvDilate(frame_result, frame_result);

 //cvErode(frame_result, frame_result);

 cvShowImage("origin", frame);

 /*cvShowImage("test", frame_left_shift);*/

 cvShowImage("result", frame_result);

 for(int i = 0; i < frame_gray->width; ++i)

 {

 for(int j = 0; j < frame_gray->height; ++j)

 {

 if((frame_result->imageData + frame_result->widthStep * j)[i] == 0)

 {

 (chain[num%numFrame]->imageData + chain[num%numFrame]->widthStep * j)[i]

= (frame_gray->imageData + frame_gray->widthStep * j)[i];

 }

 else

 {

 (chain[num%numFrame]->imageData + chain[num%numFrame]->widthStep * j)[i]

= (int)((1 - alpha) * (double)(chain[num%numFrame]->imageData + chain[num%numFrame]->widthStep *

j)[i] + alpha * (double)(frame_gray->imageData + frame_gray->widthStep * j)[i]);

 }

38 Haotian Wu, Yifan Yu

 }

 }

 //chain[num%numFrame] = frame_gray;

 TimeEnd = clock();

 //time[num_time] = TimeEnd - TimeStart;

 cout << "The processing time is: " << TimeEnd - TimeStart << endl;

 //cvWriteFrame(writer1, frame);

 //cvWriteFrame(writer2, frame_result);

 cvReleaseImage(&frame_result);

 num++;

 //if(num == numFrame)

 // num = 0;

 //num_time++;

 //if(num_time == 1500)

 // break;

 if(cvWaitKey(1) == 27) //press ESC to quit, fps = 33;

 break;

 }

 //Release the memory

 //cvReleaseVideoWriter(&writer1);

 //cvReleaseVideoWriter(&writer2);

 //char* filename = "D:\\ec720\\data\\KDE_MRF_1st_16F_4I_without_boundary_480.txt";

 //FILE* fp = fopen(filename, "w");

 //for(int i = 0; i < 1500; ++i)

 // fprintf(fp, "%d\n", time[i]);

 //fclose(fp);

 cvReleaseCapture(&capture);

 //cvReleaseImage(&frame);

 cvReleaseImage(&frame_gray);

 //cvReleaseImage(&frame_next);

 //cvReleaseImage(&frame_result);

 //cvReleaseImage(&chain[numFrame]);

 cvDestroyWindow("origin");

 //cvDestroyWindow("processing");

 cvDestroyWindow("result");

 return 0;

}

