

CAMERA JITTER COMPENSATION
Huseyin Ozkan Jonathan Tang

May 4, 2008

Boston University
Department of Electrical and Computer Engineering

Technical report No. ECE-2008-02

BOSTON
UNIVERSITY

CAMERA JITTER COMPENSATION

Huseyin Ozkan Jonathan Tang

Boston University
Department of Electrical and Computer Engineering

8 Saint Mary’s Street
Boston, MA 02215
www.bu.edu/ece

May 4, 2008

Technical report No. ECE-2008-02

Summary

This project was completed as a part of the course EC 720 entitled “Digital

Video Processing”. The objective of this project was to compensate the jitter

found in the PTZ cameras on the roof of Photonics. Since the jitter inherent in the

capture process can be viewed as global motion, we implemented a global motion

compensation method which is based on perspective projective modeling of the

motion. Because this motion model ignores the dept variations in a scene, we

assumed that the observation in a video is sufficiently away from the camera

center so that assuming planarity in the scenes is reasonable. The implemented

technique in this project was designed to minimize the mean square error (MSE)

between the frames of a video sequence and a chosen reference frame among

them with which all of the other frames are to be aligned. To achieve this, gradient

descent algorithm was applied because of the nonlinearity of the minimization.

And lastly, since the jitter in the cameras is due to small amounts of camera

movements: track-boom-pan-tilt-roll, it may be approximated, to a great amount,

as mostly global translations and less rotations in the imaging plane of the

cameras. This, indeed, was proved by our simulation results.

Contents

1. Introduction .. 1

2. Implementation... 3

3. Experimental Results... 10

4. Conclusions.. 12

5. Appendix... 13

6. References.. 18

List of figures

Fig. 1 PTZ Cameras 1

Fig. 2 Basin of Global Minimum 7

Fig. 3 Algorithm Block Diagram 8

Fig. 4 Barbara Image 9

Fig. 5 Pixel Progression Variance 11

Fig. 6 MSE and PPV 11

1 Huseyin Ozkan & Jonathan Tang

1 Introduction

Camera Jitter is an issue with practically all video acquisition setups. The

result is shaky video that is both unpleasing to the eye and detrimental to the

performance of local motion estimation, motion detection, and a host of other

video processing algorithms. Successfully compensating for the jitter will smooth

out the video and improve the performance of the aforementioned algorithms. Our

project focuses on compensating the jitter in the cameras installed on the roof of

the Photonics building.

Fig. 1 PTZ Cameras

Fig. 1 shows the PTZ cameras that overlook Commonwealth Avenue and

MIT. Note the rigid mounting structure. This particular setup will restrict the

motion of the cameras and this highly constrained movement can be accurately

modeled by a relatively simple model of motion.

1.1 Literature Review

In [1] a basic layout for the global motion estimation is proposed. Our work

mimics the main ideas of this paper with a few small variations that will be

2 Huseyin Ozkan & Jonathan Tang

discussed in the Problem Statement and Implementation sections. In the

paper, there were four stages implemented to achieve global motion

compensation. First the input images were downsized. On each of the

downsized image pairs an initial matching was performed using a modified n-step

search. The initial estimate provides a starting point for the gradient descent

algorithm. Upon convergence of the gradient descent algorithm at one level, the

motion parameters were scaled to correspond to the up-sampled image pairs and

the gradient descent algorithm was repeated. This procedure was repeated

once more forming a 3 level pyramid approach to global motion estimation.

Convergence of the gradient descent algorithm was achieved when one of two

conditions was met: The update term of the previous iteration was less than some

threshold or the number of iterations surpassed some threshold.

The ideas in [2] provided valuable insight in the actual implementation of the

gradient descent algorithm, however; since we implemented our algorithm using

MATLAB’s pre-built functions, most of the techniques proposed in this paper were

not necessary.

The interpolating kernel proposed in [3] provided the foundation of our

gradient descent algorithm. The derivative of the kernel,

can be used to create the Hessian matrix needed for the update term in the

gradient descent algorithm that will be discussed in Implementation.

1.2 Problem Statement

Our task is to compensate the jitter found in the PTZ cameras shown in Fig.

1 above. Due to the highly constrained movement of the cameras combined with

the long distance at which we are capturing video, we expect that the jitter

inherent in the capture process consists mostly of translation. To prove this point

3 Huseyin Ozkan & Jonathan Tang

we will assume different degrees of motion complexity and compare the results of

each implementation.

2 Implementation

In this project, the implemented technique is designed to minimize the mean

square error (MSE) between the chosen reference frame and the other “motion

compensated” frames in a given video sequence which is suffering from camera

jittering. MSE is given as follows:

In the above expression,

(,) denotes the spatial coordinates of the i pixel in the referance frame and similarly,
(' , ') denotes the location of corresponding pixel in the compansated frame. The summation
 is carried o

th
i i

i i

x y
x y

ut over N pairs of pixels.

Hence, basically, an error minimization problem was attempted to solve a

defined mapping between the pairs (,) & (' , ').i i i ix y x y This mapping stems from a

perspective motion model which is, in the most general case, an 8-parameter

non-linear model.

2.1 Motion Model

In the project, the relationship between the pairs (,) & (' , ')i i i ix y x y or the

camera jittering was described by a perspective projective motion model which is

defined as follows:

4 Huseyin Ozkan & Jonathan Tang

where 0 7(,...,)a a are the motion parameters. Obviously, the model here is not

dependent on the depth variations, whereas, perspective projection suggests that

it must be so. Therefore, as the model implies, the depth variations in the 3-D

space were neglected under the following assumptions:

• The scene in the video sequence is far away from the camera center.

• The objects in the scene (actually, the scene itself) are almost planar.

So that, the above model does not suffer from depth issues and becomes a

suitable approximation.

Moreover; when the set up of the Photonics cameras are considered and

when some sample video sequences are carefully watched, it is easy to conclude

that the cameras go under a motion which is a combination of small amounts of

track-boom-pan-tilt-zoom (and maybe a little bit of roll). All of these camera

movements, under the above assumptions and when they are not large

movements, can be regarded as a combination of simple global translation,

rotation, and zoom on the imaging plane. So for such cases, it is useful to apply

the following reductions to the above 8-parameter motion model:

2-parameter model: If one sets 2 5 3 4 6 71, 0a a a a a a= = = = = = , the most

general case reduces to 2-paramter model which only accounts for simple global

translation on the imaging plane.

Similarly,

4-parameter model: If one does the necessary eliminations (a2=a5, a3=-a4,

a6=a7=0), then the 8-parameter model turns out to be 4-parameter model which

only accounts for simple global translation-rotation and zooming activity on the

imaging plane.

Hence, in the project, 2-parameter and 4-parameter models are assumed

and an MSE minimization algorithm implemented on each.

5 Huseyin Ozkan & Jonathan Tang

2.2 Gradient Descent

Based on the above motion model, the goal of the project was solving for the

motion parameters via minimizing the following cost function which is essentially

the MSE between the chosen reference frame and compensated frames in a

given video sequence suffering from camera jittering.

The dependency of this cost function on motion parameters are resulted

from the relation between the pairs (,) & (' , ')i i i ix y x y which is given by the above

motion model. It is easy to notice that, this cost function is a non-linear function of

the motion parameters and so minimization with respect to these parameters is

not trivial. Therefore, gradient descent algorithm was applied to solve this

non-linear minimization problem. This can be given by the following iterative

procedure:
(1) ()

(1) ()
0where and denote the motion parameters, (,...,), suggested by the iterations t+1

and t respectively. is an matrix equals to one-half times of the Hessian matrix of

t t

t t
na a

nxn

+

+

= + -1a a H b
a a

H and
is usually referred to as the curvature matrix, is an n-element vector equals to minus one-half
times the gradient of , and n refers to the number of the parameters of the model. More specific

E
b

E ally,

The approximation in the calculation of the Hessian matrix of E does hold

when the second order derivatives are significantly smaller then the first order

derivatives and the latter equality in the calculation of gradient vector of E does

hold when the cost function is in the form of ‘sum of squares’. Both are the valid

cases in this project and so with these modified formulas, the gradient descent is

6 Huseyin Ozkan & Jonathan Tang

called Newton-Ralphson method which is widely used in error minimization

problems.

In this iterative loop, the -1H b is the “updating term” and at each iteration it

is used for renewing the latest updated motion parameters or in other words, is

standing for the direction at which the gradient descent algorithm is tracing on the

multidimensional surface of the cost function to locate a minima. The stopping

criterion of this iterative procedure is as follows:

• At each iteration, if the magnitude of the update term is sufficiently small

(meaning that it is checked with some predefined threshold and if it is below that

threshold) the iteration is ended. This implies that, the convergence issue of the

gradient descent was considered at this point. Being sufficiently small is equivalent

to convergence.

• However, the algorithm does not have to be convergent. In this case, to get rid

of the infinite loop issue, a maximum number of iteration was defined and above

which the algorithm is not allowed to go.

This iterative procedure starts with an initial guess which is an extremely

important issue. This is because the gradient descent algorithm does not have to

find the global minima but it is very likely for the algorithm that it finds a local

minimum of the cost function. However, in the project, the goal was minimizing the

cost function (MSE) as much as possible which requires finding the global

minima. The gradient descent algorithm will find the closest minimum which way

be a local minimum. To ensure convergence on the global minimum, the initial

estimate must start the motion parameters within the basin of the global minimum.

This is shown in Fig. 2 below. If the initial estimate outputs a motion parameter

indicated by the blue dot, the gradient descent will find the global minimum. If

the initial estimate outputs a motion parameter indicated by a red dot, the gradient

descent algorithm will find a local minimum.

7 Huseyin Ozkan & Jonathan Tang

Fig. 2 Basin of Global Minimum

The initial estimate is found using the phase correlation method described in

[4] and shown below. We chose this method instead of the n step search

proposed in [1] because phase correlation has proven to be a quick and accurate

method of finding shifts in an image. The formulation of phase correlation

method for full pixel accuracy is as follows:

2.3 Algorithm

The final picture of the algorithm implemented in this project is seen in Fig. 3

below:

8 Huseyin Ozkan & Jonathan Tang

Fig. 3 Algorithm Block Diagram

In the above block diagram, “image1” may be the reference frame and

“image2” may be any frame from the video sequence. Phase correlation method

is applied to these images to get the initial guess for the gradient descent

algorithm which applies an iterative procedure for minimizing the cost function

(MSE) with respect to motion model parameters. So at the end, this iterative

procedure gives the final, latest updated motion model parameters between the

images that the whole algorithm started with. Essentially, this motion model

defines a motion vector field between frames which is applied to the frame that is

wanted to be aligned with the reference frame. One important thing here is that,

the motion vectors do not have to point to integer locations. In other words, the

motion vector field offered by the motion model used in this project is defined on

Real Numbers. For this reason, in the process of compensation of the frames,

bi-cubic interpolation was used to estimate the intensity values at non integer

locations. This surely required an intense computation. However, this can be

overcome by down-sampling the whole video sequence before everything and

then up-sampling after everything. In this project, time and computational

9 Huseyin Ozkan & Jonathan Tang

complexity was not considered but we believe down-sampling and up-sampling

will improve computation speed.

Before proceeding with the experimental results, a test result obtained when

the algorithm (4-parameter model) is run with the Barbara image and rotated &

translated Barbara image (rotation : 5 degree counter clock wise and translation:

5 pixels in both vertical and horizontal directions) is shown in Fig. 4 below:

Fig. 4. Barbara Image
It is interesting to note that depth plays a very little role in the accuracy of our

compensation for “Barbara”. For instance, although the book shelf in the image

is behind Barbara (where perspective projection suggests that the shelf must

move less than Barbara under actual camera motion), both Barbara and the book

shelf was moved by the same amount. Therefore, the assumptions of the motion

model do hold perfectly here. For this reason, the MSE for compensated image is

so small when compared to the MSE for the uncompensated one. This result may

seem to be not interesting since the assumptions hold perfectly, but it was

important to see what the algorithm (4-parameter) is capable of doing at most.

Here, 4-parameter motion model was used and so it was able to compensate the

rotation however and obviously, neither the phase correlation method nor the

2-parameter model is able to do that.

10 Huseyin Ozkan & Jonathan Tang

3 Experimental Results

We compare three different algorithms in this paper. The first algorithm is

phase correlation (PC) at full pixel accuracy. This corresponds to using our initial

estimate without improvements from the gradient descent algorithm. The

second algorithm is PC combined with the 2 parameter model which describes

motion at sub-pixel accuracy. This algorithm, like PC alone, can only find image

matches that differ by pure translation. The third algorithm is PC combined with

the 4 parameter model which incorporates the possibility of translation, zoom and

rotation as movements of the camera.

Two quantitative error metrics we used to compare the efficacy of each

algorithm were mean-squared-error (MSE) and pixel progression variance (PPV).

MSE is calculated by taking the sum of squared differences (SSD) between the

current frame and a reference frame and dividing that value by the number of

pixels in the image and the number of frames in the sequence. This is shown

below.

Since squared error is what we are minimizing, MSE was a natural choice for

a numerical metric. Comparatively, lower MSE corresponds to more accurate

algorithms.

PPV describes the behavior of individual pixels through the entire image

sequence. Fig. 5 shown below shows the intensity fluctuations of the pixel

located at row = 121, col = 177 (middle of the image). The mean of the

waveform was subtracted so that the fluctuations are centered on zero. This

particular pixel is well behaved with a standard deviation of only 1.23. In practice

we append the intensity waveform (with the mean subtracted) of each pixel to the

end of the previous pixel for all pixels in the image creating a very long waveform.

11 Huseyin Ozkan & Jonathan Tang

The variance or standard deviation is then taken over the complete waveform and

labeled as PPV (or the square root of PPV as the case may be).

Fig. 5 Pixel Progression Variance

The results of the MSE and PPV for our three different algorithms are shown

in Figure 6 below.

Original PC 2P 4P
0

100
200
300
400
500
600
700
800
900

799.74

182.1
112.11 103.58

MSE

M
S

E

Original PC 2P 4P
0
2
4
6
8

10
12
14
16
18 16.6

10.48

6.43 5.92

sqrt(Pixel Progression Variance)

In
te

ns
ity

Fig. 6 MSE and PPV

The original video sequence has a very large MSE and PPV as expected

due to the jittery nature of the video. PC at full pixel accuracy reduces the MSE

12 Huseyin Ozkan & Jonathan Tang

and PPV significantly. The 2 parameter model further reduces MSE and PPV

and the 4 parameter model reduces these measures further. Note the small gain

between the 2 parameter and 4 parameter models. This small gain indicates the

existence of zoom and rotation is very small and that the global motion in the PTZ

cameras is mostly translation.

4 Conclusions

The results described in the previous section indicate that the motion in the

PTZ cameras on the roof of the Photonics Building suffer from jitter that consists

primarily of translation. Zoom and rotation exist but their effects are miniscule

when compared to the effects of translation.

The primary deficiency in our implementation is run time. We have

implemented the gradient descent algorithm very inefficiently and so it takes

roughly 1 hour to compensate the jitter in 105 frames. By taking advantage of

advanced filter techniques as opposed to calculating values on a pixel-by-pixel

basis, the run time of our algorithm can be significantly reduced, possibly to times

that allow for real-time implementation.

13 Huseyin Ozkan & Jonathan Tang

5 Appendix

% the MATLAB code for the project camera jittering compensation
% by Jonathan and Huseyin

% **************** main ***************
clear all
close all
clc
load ('data.mat');
iternum = 15;
scale = 1;
teta = 0;
n = 105;
parameters = zeros(n,4);
image1 = im_mat(:,:,1);
[X Y] = grids(image1);
for i = 1:n
image2 = im_mat(:,:,i);
r = imcorr(image1,image2); % initial coming from phase correlation
initial = maxima(r,1,X,Y);
initials = [initial(2),initial(1),1,0];
parameters(i,:) = oneframe(image2,image1,initials,iternum,scale); %frame by
frame
processing
end
% ************************* functions **********************
% 1)
function result = oneframe(image1,image2,initials,number,scale)
a = initials';
E = 1000;
for iternum =1:number
[update temp] = Hinvb(image1,image2,a(1),a(2),a(3),a(4));
if (temp > E && scale > 1)
a = a_prev;
scale = ceil(scale / 2)
else
update = update * scale;
a_prev = a;
a = a + update;
E = temp
end
result = a;
end
% 2)
function [result1 result2] = Hinvb(image1,image2,a0,a1,a2,a3

[m n] = size(image2);
mx = ceil(max(abs(a0),abs(a1)))+3;
H = zeros(4,4);
b = zeros(4,1);
E = 0;
count = 0;
for i =1:m
for j = 1:n
result = degis(i,j,a0,a1,a2,a3);
k = result(1);
l = result(2);
if ((k > 2 && k < m-1) && (l > 2 && l <n-1))
e = interpolate(image1,[k,l]) - image2(i,j);
[da0 da1] = derv(image1,[k,l]);
da2 = da0*j+da1*i;
da3 = da0*i-da1*j;
H = H + ([da0 da1 da2 da3]' * [da0 da1 da2 da3]);

14 Huseyin Ozkan & Jonathan Tang

b = b + -1*e*[da0 da1 da2 da3]';
E = E + e^2;
count = count+1;
end
end
end
E =E / count;
E = sqrt(E);
result1 = pinv(H)*b;
result2 = E;
% 3)
function [result] = interpolate(image,point)
m = floor(point(1));
n = floor(point(2));
s = point(1) - m;
A1 = (-1*s^3+2*s^2-s) / 2 ;
A2 = (3*s^3-5*s^2+2) / 2 ;
A3 = (-3*s^3+4*s^2+s) / 2 ;
A4 = (s^3-s^2) / 2;
resultx = [];
for i=0:3
resultx = [resultx,
image(m-1,n-1+i)*A1+image(m,n-1+i)*A2+image(m+1,n-1+i)*A3+image(m+2,n-
1+i)*A4];
end
s = point(2) - n;
A1 = (-1*s^3+2*s^2-s) / 2 ;
A2 = (3*s^3-5*s^2+2) / 2 ;
A3 = (-3*s^3+4*s^2+s) / 2 ;
A4 = (s^3-s^2) / 2;
result = [resultx(1)*A1+resultx(2)*A2+resultx(3)*A3+resultx(4)*A4];
% 4)

function [dx dy] = derv(image,point)
[resultx resulty] = int(image,point);
s = point(2) - floor(point(2));
D1 = (-3*s^2+4*s-1) * 1/2 ;
D2 = (9*s^2-10*s) * 1/2;
D3 = (-9*s^2+8*s+1) * 1/2;
D4 = (3*s^2-2*s) * 1/2;
dx = resultx*[D1 D2 D3 D4]';
s = point(1) - floor(point(1));
D1 = (-3*s^2+4*s-1) * 1/2 ;
D2 = (9*s^2-10*s) * 1/2;
D3 = (-9*s^2+8*s+1) * 1/2;
D4 = (3*s^2-2*s) * 1/2;
dy = resulty*[D1 D2 D3 D4]';
% 5)
function [resultx resulty] = int(image,point)
m = floor(point(1));
n = floor(point(2));
s = point(1) - m;
A1 = (-1*s^3+2*s^2-s) / 2 ;
A2 = (3*s^3-5*s^2+2) / 2 ;
A3 = (-3*s^3+4*s^2+s) / 2 ;
A4 = (s^3-s^2) / 2;
resultx = [];
for i=0:3
resultx = [resultx,
image(m-1,n-1+i)*A1+image(m,n-1+i)*A2+image(m+1,n-1+i)*A3+image(m+2,n-
1+i)*A4];
end
s = point(2) - n;
A1 = (-1*s^3+2*s^2-s) / 2 ;
A2 = (3*s^3-5*s^2+2) / 2 ;
A3 = (-3*s^3+4*s^2+s) / 2 ;
A4 = (s^3-s^2) / 2;
resulty = [];

15 Huseyin Ozkan & Jonathan Tang

for i=0:3
resulty = [resulty,
image(m-1+i,n-1)*A1+image(m-1+i,n)*A2+image(m-1+i,n+1)*A3+image(m-1+i,
n+2)*A4];
end
% 6)
function result = degis(m,n,a0,a1,a2,a3)
l = a0 + a2*n + a3*m;
k = a1 - a3*n + a2*m;
result = [k l];

% 7)
function result = apply_motion(data,parameters)
[m n num] = size(data);
reference = data(:,:,1);
result = zeros(m,n,num);
for frame = 1:num
frame
for i=1:m
for j=1:n
a0 = parameters(frame,1);
a1 = parameters(frame,2);
a2 = parameters(frame,3);
a3 = parameters(frame,4);
image = data(:,:,frame);
temp = degis(i,j,a0,a1,a2,a3);
k = temp(1);
l = temp(2);
if(floor(k) > 1 && floor(k) < m-1 && floor(l) > 1 && floor(l) < n-1)
result(i,j,frame) = interpolate(image,[k,l]);
end
end
end
end
% 8)
function result = imcorr(image1, image2)
f1 = fft2(image1);
f2 = fft2(image2);
f = exp(i*(angle(f2) - angle(f1)));
f = real(ifft2(f));
result = ifftshift(f);
% 9)
function result = maxima(data,n,X,Y)
result = zeros(n,2);
mn = min(min(data));
x = X(:);
y = Y(:);
for i = 1:n
temp = find(data == max(max(data)));
temp = temp(1);
result(i,:) = [y(temp),x(temp)];
data(temp) = mn;
end

function [MSE,frStd]=MSEfrVar(imseq)
% MSE and Inter-Frame Variance
% assumes a Matlab movie input
n=105; % number of frames
sth = 338;
% h = size(imseq(10).cdata(:,:,1),1);
% w = size(imseq(10).cdata(:,:,1),2);
im_mat = zeros(size(imseq(10).cdata(:,:,1),1),size(imseq(10).cdata
(:,:,1),2)-sth,n);
for i=1:n
im_mat(:,:,i)=imseq(i).cdata(:,sth+1:size(imseq(10).cdata
(:,:,1),2),1);
end

16 Huseyin Ozkan & Jonathan Tang

h = size(im_mat,1);
w = size(im_mat,2);
N = w*h;
MSEs=zeros(1,n-1);
for i=2:n
MSEs(i) = sum(sum((im_mat(:,:,i)-im_mat(:,:,1)).^2))/(N);
end
MSE = sum(MSEs)/n;
k=1;
imseqLine=zeros(1,size(im_mat,1)*size(im_mat,2)*size(im_mat,3));
pline = zeros(1,n);
for j=1:size(im_mat,1)
for i=1:size(im_mat,2)
pline(:) = im_mat(j,i,:);
imseqLine(k:k+n-1) = pline - mean(pline);
k=k+n;
end
end
x = 1:length(imseqLine);
%x2 = 1:n:length(imseqLine);
frStd = std(imseqLine);
subplot(3,1,1)
plot(imseqLine(round((w/2))*round((h/2))*n:round((w/2))*round((h/2))
*n+n))
title(['Pixel Intensity for pixel (row=',num2str(round(h/2)),', col=
',num2str(round(w/2)),'). STD = ',num2str(std(imseqLine(round((w/2))
*round((h/2))*n:round((w/2))*round((h/2))*n+n)))])
xlabel('Frame Number')
ylabel('Intensity Fluctuation from Mean')
subplot(3,1,2)
plot(imseqLine(1:length(imseqLine)))
title(['Pixel Intensity STD: ',num2str(frStd)])
subplot(3,1,3)
plot(imseqLine(1:1000:length(imseqLine)))
title('Pixel Intensity (subsampled)')%,num2str(frStd)])

17 Huseyin Ozkan & Jonathan Tang

References

[1] F. Dufaux and J. Konrad. “Efficient, Robust and Fast Global Motion

Estimation for Video Coding”. IEEE Transactions on Image Processing, Vol. 9.

No.3, March 2000.

[2] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,

Numerical Recipes in C: The Art of Scientific Computing, Cambridge Univ. Press,

Cambridge, 1988.

[3] Keys, Robert G. “Cubic Convolution Interpolation for Digital Image

Processing”. IEEE Transactions on Acoustics, Speech, and Signal Processing

Vol. ASSP-29, No.6, Decemer 1981.

[4] Yao Wang, Jorn Ostermann, and Ya-Qin Zhang, Video Processing and

Communications. Prentice-Hall, Inc. New Jersey, 2002.

