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Summary 
 

 

This project was completed as a part of the course EC 720 entitled “Digital 

Video Processing”. The objective of this project was to compensate the jitter 

found in the PTZ cameras on the roof of Photonics. Since the jitter inherent in the 

capture process can be viewed as global motion, we implemented a global motion 

compensation method which is based on perspective projective modeling of the 

motion. Because this motion model ignores the dept variations in a scene, we 

assumed that the observation in a video is sufficiently away from the camera 

center so that assuming planarity in the scenes is reasonable. The implemented 

technique in this project was designed to minimize the mean square error (MSE) 

between the frames of a video sequence and a chosen reference frame among 

them with which all of the other frames are to be aligned. To achieve this, gradient 

descent algorithm was applied because of the nonlinearity of the minimization. 

And lastly, since the jitter in the cameras is due to small amounts of camera 

movements: track-boom-pan-tilt-roll, it may be approximated, to a great amount, 

as mostly global translations and less rotations in the imaging plane of the 

cameras. This, indeed, was proved by our simulation results. 
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1 Introduction  
  

Camera Jitter is an issue with practically all video acquisition setups. The 

result is shaky video that is both unpleasing to the eye and detrimental to the 

performance of local motion estimation, motion detection, and a host of other 

video processing algorithms. Successfully compensating for the jitter will smooth 

out the video and improve the performance of the aforementioned algorithms. Our 

project focuses on compensating the jitter in the cameras installed on the roof of 

the Photonics building.  

 

 

Fig. 1  PTZ Cameras 

Fig. 1 shows the PTZ cameras that overlook Commonwealth Avenue and 

MIT.  Note the rigid mounting structure.  This particular setup will restrict the 

motion of the cameras and this highly constrained movement can be accurately 

modeled by a relatively simple model of motion. 

 

1.1 Literature Review 

 

In [1] a basic layout for the global motion estimation is proposed.  Our work 

mimics the main ideas of this paper with a few small variations that will be 
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discussed in the Problem Statement and Implementation sections.  In the 

paper, there were four stages implemented to achieve global motion 

compensation.  First the input images were downsized.  On each of the 

downsized image pairs an initial matching was performed using a modified n-step 

search.  The initial estimate provides a starting point for the gradient descent 

algorithm.  Upon convergence of the gradient descent algorithm at one level, the 

motion parameters were scaled to correspond to the up-sampled image pairs and 

the gradient descent algorithm was repeated.  This procedure was repeated 

once more forming a 3 level pyramid approach to global motion estimation.  

Convergence of the gradient descent algorithm was achieved when one of two 

conditions was met: The update term of the previous iteration was less than some 

threshold or the number of iterations surpassed some threshold.   

The ideas in [2] provided valuable insight in the actual implementation of the 

gradient descent algorithm, however; since we implemented our algorithm using 

MATLAB’s pre-built functions, most of the techniques proposed in this paper were 

not necessary. 

The interpolating kernel proposed in [3] provided the foundation of our 

gradient descent algorithm.  The derivative of the kernel,  

 
can be used to create the Hessian matrix needed for the update term in the 

gradient descent algorithm that will be discussed in Implementation.   

 

1.2  Problem Statement 
 

Our task is to compensate the jitter found in the PTZ cameras shown in Fig. 

1 above.  Due to the highly constrained movement of the cameras combined with 

the long distance at which we are capturing video, we expect that the jitter 

inherent in the capture process consists mostly of translation.  To prove this point 
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we will assume different degrees of motion complexity and compare the results of 

each implementation. 

 

2 Implementation 
 

In this project, the implemented technique is designed to minimize the mean 

square error (MSE) between the chosen reference frame and the other “motion 

compensated” frames in a given video sequence which is suffering from camera 

jittering. MSE is given as follows: 

 

 

In the above expression,  

( , ) denotes the spatial coordinates of the i  pixel in the referance frame and similarly,
( ' , ' ) denotes the location of corresponding pixel in the compansated frame. The summation
 is carried o

th
i i

i i

x y
x y

ut over N pairs of pixels.
 

Hence, basically, an error minimization problem was attempted to solve a 

defined mapping between the pairs ( , ) & ( ' , ' ).i i i ix y x y This mapping stems from a 

perspective motion model which is, in the most general case, an 8-parameter 

non-linear model. 

 

2.1  Motion Model 
 

In the project, the relationship between the pairs ( , ) & ( ' , ' )i i i ix y x y or the 

camera jittering was described by a perspective projective motion model which is 

defined as follows: 
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where 0 7( ,..., )a a are the motion parameters. Obviously, the model here is not 

dependent on the depth variations, whereas, perspective projection suggests that 

it must be so. Therefore, as the model implies, the depth variations in the 3-D 

space were neglected under the following assumptions: 

•  The scene in the video sequence is far away from the camera center. 

•  The objects in the scene (actually, the scene itself) are almost planar. 

So that, the above model does not suffer from depth issues and becomes a 

suitable approximation. 

Moreover; when the set up of the Photonics cameras are considered and 

when some sample video sequences are carefully watched, it is easy to conclude 

that the cameras go under a motion which is a combination of small amounts of 

track-boom-pan-tilt-zoom (and maybe a little bit of roll). All of these camera 

movements, under the above assumptions and when they are not large 

movements, can be regarded as a combination of simple global translation, 

rotation, and zoom on the imaging plane. So for such cases, it is useful to apply 

the following reductions to the above 8-parameter motion model: 

2-parameter model: If one sets 2 5 3 4 6 71,  0a a a a a a= = = = = = , the most 

general case reduces to 2-paramter model which only accounts for simple global 

translation on the imaging plane. 

Similarly, 

4-parameter model: If one does the necessary eliminations (a2=a5, a3=-a4, 

a6=a7=0), then the 8-parameter model turns out to be 4-parameter model which 

only accounts for simple global translation-rotation and zooming activity on the 

imaging plane. 

Hence, in the project, 2-parameter and 4-parameter models are assumed 

and an MSE minimization algorithm implemented on each. 
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2.2  Gradient Descent 
 

Based on the above motion model, the goal of the project was solving for the 

motion parameters via minimizing the following cost function which is essentially 

the MSE between the chosen reference frame and compensated frames in a 

given video sequence suffering from camera jittering. 

 
The dependency of this cost function on motion parameters are resulted 

from the relation between the pairs ( , ) & ( ' , ' )i i i ix y x y  which is given by the above 

motion model. It is easy to notice that, this cost function is a non-linear function of 

the motion parameters and so minimization with respect to these parameters is 

not trivial. Therefore, gradient descent algorithm was applied to solve this 

non-linear minimization problem. This can be given by the following iterative 

procedure:  
( 1) ( )

( 1) ( )
0where  and  denote the motion parameters, ( ,..., ), suggested by the iterations t+1

and t respectively.  is an  matrix equals to one-half times of the Hessian matrix of

t t

t t
na a

nxn

+

+

= + -1a a H b
a a

H   and
is usually referred to as the curvature matrix,  is an n-element vector equals to minus one-half
times the gradient of ,  and n refers to the number of the parameters of the model. More specific

E
b

E ally, 

 

 

 
The approximation in the calculation of the Hessian matrix of E does hold 

when the second order derivatives are significantly smaller then the first order 

derivatives and the latter equality in the calculation of gradient vector of E does 

hold when the cost function is in the form of ‘sum of squares’. Both are the valid 

cases in this project and so with these modified formulas, the gradient descent is 
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called Newton-Ralphson method which is widely used in error minimization 

problems. 

In this iterative loop, the -1H b  is the “updating term” and at each iteration it 

is used for renewing the latest updated motion parameters or in other words, is 

standing for the direction at which the gradient descent algorithm is tracing on the 

multidimensional surface of the cost function to locate a minima.   The stopping 

criterion of this iterative procedure is as follows: 

•  At each iteration, if the magnitude of the update term is sufficiently small 

(meaning that it is checked with some predefined threshold and if it is below that 

threshold) the iteration is ended. This implies that, the convergence issue of the 

gradient descent was considered at this point. Being sufficiently small is equivalent 

to convergence. 

•  However, the algorithm does not have to be convergent. In this case, to get rid 

of the infinite loop issue, a maximum number of iteration was defined and above 

which the algorithm is not allowed to go. 

This iterative procedure starts with an initial guess which is an extremely 

important issue. This is because the gradient descent algorithm does not have to 

find the global minima but it is very likely for the algorithm that it finds a local 

minimum of the cost function. However, in the project, the goal was minimizing the 

cost function (MSE) as much as possible which requires finding the global 

minima. The gradient descent algorithm will find the closest minimum which way 

be a local minimum.  To ensure convergence on the global minimum, the initial 

estimate must start the motion parameters within the basin of the global minimum.  

This is shown in Fig. 2 below.  If the initial estimate outputs a motion parameter 

indicated by the blue dot, the gradient descent will find the global minimum.  If 

the initial estimate outputs a motion parameter indicated by a red dot, the gradient 

descent algorithm will find a local minimum. 
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Fig. 2 Basin of Global Minimum 
 

The initial estimate is found using the phase correlation method described in 

[4] and shown below.  We chose this method instead of the n step search 

proposed in [1] because phase correlation has proven to be a quick and accurate 

method of finding shifts in an image.  The formulation of phase correlation 

method for full pixel accuracy is as follows: 

 
 

2.3  Algorithm 
 

The final picture of the algorithm implemented in this project is seen in Fig. 3 

below: 
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Fig. 3 Algorithm Block Diagram 
 

In the above block diagram, “image1” may be the reference frame and 

“image2” may be any frame from the video sequence. Phase correlation method 

is applied to these images to get the initial guess for the gradient descent 

algorithm which applies an iterative procedure for minimizing the cost function 

(MSE) with respect to motion model parameters. So at the end, this iterative 

procedure gives the final, latest updated motion model parameters between the 

images that the whole algorithm started with. Essentially, this motion model 

defines a motion vector field between frames which is applied to the frame that is 

wanted to be aligned with the reference frame. One important thing here is that, 

the motion vectors do not have to point to integer locations. In other words, the 

motion vector field offered by the motion model used in this project is defined on 

Real Numbers. For this reason, in the process of compensation of the frames, 

bi-cubic interpolation was used to estimate the intensity values at non integer 

locations. This surely required an intense computation. However, this can be 

overcome by down-sampling the whole video sequence before everything and 

then up-sampling after everything. In this project, time and computational 
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complexity was not considered but we believe down-sampling and up-sampling 

will improve computation speed.  

Before proceeding with the experimental results, a test result obtained when 

the algorithm (4-parameter model) is run with the Barbara image and rotated & 

translated Barbara image (rotation : 5 degree counter clock wise and translation: 

5 pixels in both vertical and horizontal directions) is shown in Fig. 4 below: 

 

Fig. 4. Barbara Image 
It is interesting to note that depth plays a very little role in the accuracy of our 

compensation for “Barbara”.  For instance, although the book shelf in the image 

is behind Barbara (where perspective projection suggests that the shelf must 

move less than Barbara under actual camera motion), both Barbara and the book 

shelf was moved by the same amount. Therefore, the assumptions of the motion 

model do hold perfectly here. For this reason, the MSE for compensated image is 

so small when compared to the MSE for the uncompensated one. This result may 

seem to be not interesting since the assumptions hold perfectly, but it was 

important to see what the algorithm (4-parameter) is capable of doing at most. 

Here, 4-parameter motion model was used and so it was able to compensate the 

rotation however and obviously, neither the phase correlation method nor the 

2-parameter model is able to do that.  
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3 Experimental Results 

 

We compare three different algorithms in this paper.  The first algorithm is 

phase correlation (PC) at full pixel accuracy.  This corresponds to using our initial 

estimate without improvements from the gradient descent algorithm.  The 

second algorithm is PC combined with the 2 parameter model which describes 

motion at sub-pixel accuracy.  This algorithm, like PC alone, can only find image 

matches that differ by pure translation.  The third algorithm is PC combined with 

the 4 parameter model which incorporates the possibility of translation, zoom and 

rotation as movements of the camera. 

Two quantitative error metrics we used to compare the efficacy of each 

algorithm were mean-squared-error (MSE) and pixel progression variance (PPV).  

MSE is calculated by taking the sum of squared differences (SSD) between the 

current frame and a reference frame and dividing that value by the number of 

pixels in the image and the number of frames in the sequence.  This is shown 

below. 

 
Since squared error is what we are minimizing, MSE was a natural choice for 

a numerical metric.  Comparatively, lower MSE corresponds to more accurate 

algorithms.   

PPV describes the behavior of individual pixels through the entire image 

sequence.  Fig. 5 shown below shows the intensity fluctuations of the pixel 

located at row = 121, col = 177 (middle of the image).  The mean of the 

waveform was subtracted so that the fluctuations are centered on zero.  This 

particular pixel is well behaved with a standard deviation of only 1.23.  In practice 

we append the intensity waveform (with the mean subtracted) of each pixel to the 

end of the previous pixel for all pixels in the image creating a very long waveform.  



11  Huseyin Ozkan & Jonathan Tang 

The variance or standard deviation is then taken over the complete waveform and 

labeled as PPV (or the square root of PPV as the case may be).   

 

Fig. 5 Pixel Progression Variance 

 

The results of the MSE and PPV for our three different algorithms are shown 

in Figure 6 below. 
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Fig. 6 MSE and PPV 

 

The original video sequence has a very large MSE and PPV as expected 

due to the jittery nature of the video.  PC at full pixel accuracy reduces the MSE 
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and PPV significantly.  The 2 parameter model further reduces MSE and PPV 

and the 4 parameter model reduces these measures further.  Note the small gain 

between the 2 parameter and 4 parameter models.  This small gain indicates the 

existence of zoom and rotation is very small and that the global motion in the PTZ 

cameras is mostly translation. 

 

4 Conclusions 
 

The results described in the previous section indicate that the motion in the 

PTZ cameras on the roof of the Photonics Building suffer from jitter that consists 

primarily of translation.  Zoom and rotation exist but their effects are miniscule 

when compared to the effects of translation.     

The primary deficiency in our implementation is run time.  We have 

implemented the gradient descent algorithm very inefficiently and so it takes 

roughly 1 hour to compensate the jitter in 105 frames.  By taking advantage of 

advanced filter techniques as opposed to calculating values on a pixel-by-pixel 

basis, the run time of our algorithm can be significantly reduced, possibly to times 

that allow for real-time implementation.   
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5   Appendix 
 
% the MATLAB code for the project camera jittering compensation 
% by Jonathan and Huseyin 
 
% **************** main *************** 
clear all 
close all 
clc 
load ('data.mat'); 
iternum = 15; 
scale = 1; 
teta = 0; 
n = 105; 
parameters = zeros(n,4); 
image1 = im_mat(:,:,1); 
[X Y] = grids(image1); 
for i = 1:n 
image2 = im_mat(:,:,i); 
r = imcorr(image1,image2); % initial coming from phase correlation 
initial = maxima(r,1,X,Y); 
initials = [initial(2),initial(1),1,0]; 
parameters(i,:) = oneframe(image2,image1,initials,iternum,scale); %frame by 
frame 
processing 
end 
% ************************* functions ********************** 
% 1) 
function result = oneframe(image1,image2,initials,number,scale) 
a = initials'; 
E = 1000; 
for iternum =1:number 
[update temp] = Hinvb(image1,image2,a(1),a(2),a(3),a(4)); 
if (temp > E && scale > 1) 
a = a_prev; 
scale = ceil(scale / 2) 
else 
update = update * scale; 
a_prev = a; 
a = a + update; 
E = temp 
end 
result = a; 
end 
% 2) 
function [result1 result2] = Hinvb(image1,image2,a0,a1,a2,a3 

[m n] = size(image2); 
mx = ceil(max(abs(a0),abs(a1)))+3; 
H = zeros(4,4); 
b = zeros(4,1); 
E = 0; 
count = 0; 
for i =1:m 
for j = 1:n 
result = degis(i,j,a0,a1,a2,a3); 
k = result(1); 
l = result(2); 
if ((k > 2 && k < m-1) && (l > 2 && l <n-1)) 
e = interpolate(image1,[k,l]) - image2(i,j); 
[da0 da1] = derv(image1,[k,l]); 
da2 = da0*j+da1*i; 
da3 = da0*i-da1*j; 
H = H + ([da0 da1 da2 da3]' * [da0 da1 da2 da3]); 
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b = b + -1*e*[da0 da1 da2 da3]'; 
E = E + e^2; 
count = count+1; 
end 
end 
end 
E =E / count; 
E = sqrt(E); 
result1 = pinv(H)*b; 
result2 = E; 
% 3) 
function [result] = interpolate(image,point) 
m = floor(point(1)); 
n = floor(point(2)); 
s = point(1) - m; 
A1 = (-1*s^3+2*s^2-s) / 2 ; 
A2 = (3*s^3-5*s^2+2) / 2 ; 
A3 = (-3*s^3+4*s^2+s) / 2 ; 
A4 = (s^3-s^2) / 2; 
resultx = []; 
for i=0:3 
resultx = [resultx, 
image(m-1,n-1+i)*A1+image(m,n-1+i)*A2+image(m+1,n-1+i)*A3+image(m+2,n- 
1+i)*A4]; 
end 
s = point(2) - n; 
A1 = (-1*s^3+2*s^2-s) / 2 ; 
A2 = (3*s^3-5*s^2+2) / 2 ; 
A3 = (-3*s^3+4*s^2+s) / 2 ; 
A4 = (s^3-s^2) / 2; 
result = [resultx(1)*A1+resultx(2)*A2+resultx(3)*A3+resultx(4)*A4]; 
% 4) 

function [dx dy] = derv(image,point) 
[resultx resulty] = int(image,point); 
s = point(2) - floor(point(2)); 
D1 = (-3*s^2+4*s-1) * 1/2 ; 
D2 = (9*s^2-10*s) * 1/2; 
D3 = (-9*s^2+8*s+1) * 1/2; 
D4 = (3*s^2-2*s) * 1/2; 
dx = resultx*[D1 D2 D3 D4]'; 
s = point(1) - floor(point(1)); 
D1 = (-3*s^2+4*s-1) * 1/2 ; 
D2 = (9*s^2-10*s) * 1/2; 
D3 = (-9*s^2+8*s+1) * 1/2; 
D4 = (3*s^2-2*s) * 1/2; 
dy = resulty*[D1 D2 D3 D4]'; 
% 5) 
function [resultx resulty] = int(image,point) 
m = floor(point(1)); 
n = floor(point(2)); 
s = point(1) - m; 
A1 = (-1*s^3+2*s^2-s) / 2 ; 
A2 = (3*s^3-5*s^2+2) / 2 ; 
A3 = (-3*s^3+4*s^2+s) / 2 ; 
A4 = (s^3-s^2) / 2; 
resultx = []; 
for i=0:3 
resultx = [resultx, 
image(m-1,n-1+i)*A1+image(m,n-1+i)*A2+image(m+1,n-1+i)*A3+image(m+2,n- 
1+i)*A4]; 
end 
s = point(2) - n; 
A1 = (-1*s^3+2*s^2-s) / 2 ; 
A2 = (3*s^3-5*s^2+2) / 2 ; 
A3 = (-3*s^3+4*s^2+s) / 2 ; 
A4 = (s^3-s^2) / 2; 
resulty = []; 
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for i=0:3 
resulty = [resulty, 
image(m-1+i,n-1)*A1+image(m-1+i,n)*A2+image(m-1+i,n+1)*A3+image(m-1+i, 
n+2)*A4]; 
end 
% 6) 
function result = degis(m,n,a0,a1,a2,a3) 
l = a0 + a2*n + a3*m; 
k = a1 - a3*n + a2*m; 
result = [k l]; 

% 7) 
function result = apply_motion(data,parameters) 
[m n num] = size(data); 
reference = data(:,:,1); 
result = zeros(m,n,num); 
for frame = 1:num 
frame 
for i=1:m 
for j=1:n 
a0 = parameters(frame,1); 
a1 = parameters(frame,2); 
a2 = parameters(frame,3); 
a3 = parameters(frame,4); 
image = data(:,:,frame); 
temp = degis(i,j,a0,a1,a2,a3); 
k = temp(1); 
l = temp(2); 
if(floor(k) > 1 && floor(k) < m-1 && floor(l) > 1 && floor(l) < n-1) 
result(i,j,frame) = interpolate(image,[k,l]); 
end 
end 
end 
end 
% 8) 
function result = imcorr(image1, image2) 
f1 = fft2(image1); 
f2 = fft2(image2); 
f = exp(i*(angle(f2) - angle(f1))); 
f = real(ifft2(f)); 
result = ifftshift(f); 
% 9) 
function result = maxima(data,n,X,Y) 
result = zeros(n,2); 
mn = min(min(data)); 
x = X(:); 
y = Y(:); 
for i = 1:n 
temp = find(data == max(max(data))); 
temp = temp(1); 
result(i,:) = [y(temp),x(temp)]; 
data(temp) = mn; 
end 

 

function [MSE,frStd]=MSEfrVar(imseq) 
% MSE and Inter-Frame Variance 
% assumes a Matlab movie input 
n=105; % number of frames 
sth = 338; 
% h = size(imseq(10).cdata(:,:,1),1); 
% w = size(imseq(10).cdata(:,:,1),2); 
im_mat = zeros(size(imseq(10).cdata(:,:,1),1),size(imseq(10).cdata 
(:,:,1),2)-sth,n); 
for i=1:n 
im_mat(:,:,i)=imseq(i).cdata(:,sth+1:size(imseq(10).cdata 
(:,:,1),2),1); 
end 
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h = size(im_mat,1); 
w = size(im_mat,2); 
N = w*h; 
MSEs=zeros(1,n-1); 
for i=2:n 
MSEs(i) = sum(sum((im_mat(:,:,i)-im_mat(:,:,1)).^2))/(N); 
end 
MSE = sum(MSEs)/n; 
k=1; 
imseqLine=zeros(1,size(im_mat,1)*size(im_mat,2)*size(im_mat,3)); 
pline = zeros(1,n); 
for j=1:size(im_mat,1) 
for i=1:size(im_mat,2) 
pline(:) = im_mat(j,i,:); 
imseqLine(k:k+n-1) = pline - mean(pline); 
k=k+n; 
end 
end 
x = 1:length(imseqLine); 
%x2 = 1:n:length(imseqLine); 
frStd = std(imseqLine); 
subplot(3,1,1) 
plot(imseqLine(round((w/2))*round((h/2))*n:round((w/2))*round((h/2)) 
*n+n)) 
title(['Pixel Intensity for pixel (row=',num2str(round(h/2)),', col= 
',num2str(round(w/2)),'). STD = ',num2str(std(imseqLine(round((w/2)) 
*round((h/2))*n:round((w/2))*round((h/2))*n+n)))]) 
xlabel('Frame Number') 
ylabel('Intensity Fluctuation from Mean') 
subplot(3,1,2) 
plot(imseqLine(1:length(imseqLine))) 
title(['Pixel Intensity STD: ',num2str(frStd)]) 
subplot(3,1,3) 
plot(imseqLine(1:1000:length(imseqLine))) 
title('Pixel Intensity (subsampled)')%,num2str(frStd)]) 



17  Huseyin Ozkan & Jonathan Tang 

References 
 

[1] F. Dufaux and J. Konrad.  “Efficient, Robust and Fast Global Motion 

Estimation for Video Coding”.  IEEE Transactions on Image Processing, Vol. 9. 

No.3, March 2000. 

[2] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, 

Numerical Recipes in C: The Art of Scientific Computing, Cambridge Univ. Press, 

Cambridge, 1988. 

[3] Keys, Robert G. “Cubic Convolution Interpolation for Digital Image 

Processing”. IEEE Transactions on Acoustics, Speech, and Signal Processing 

Vol. ASSP-29, No.6, Decemer 1981. 

[4] Yao Wang, Jorn Ostermann, and Ya-Qin Zhang, Video Processing and 

Communications.  Prentice-Hall, Inc. New Jersey, 2002. 

 


