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Summary

Motion filtering, is one of the less explored topics in video processing, but has a lot of

potential with many applications. Taking advantage of our ability to isolate motion
in the frequency domain is one of the basic motivations behind this project. This
approach to motion filtering is theorotically elegant but requires detailed understand-
ing of the filters. We have developed a method to understand and test these filters
allowing for ease of implementation and analysis. We have designed and implemented
gabor filters for the detection of motion in a particular direction (1 of 8) at a time.
Two dimensional filters were designed for 2D simulated data followed by 3D filters
for 3D simulated data. These filters were then used on natural images of Boston
University pedestrian traffic. Results show that motion could be filtered but there
were limitations.
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1 Introduction

As our society increases its consumption of video data, the required analysis is also be-
coming more complex. Not only will motion detection in video sequences be required,
but some form of motion analysis will be useful. Monitoring access to a store front in
the midst of high pedestrian activity, gesture recognition [3], anomaly detection and
robotic visual scene interpretation are some of the applications of direction-specific
motion estimation. Motion filtering using frequency domain analysis is not a new
topic but it is not as well developed as time domain methods such as optical flow.
There are many approaches to estimate motion using successive frames but filtering
motion in specific directions is difficult. The HornSchunck and Lucas-Kanade Optical
flow algorithms are common methods that use 2 frames for motion estimation. The
accuracy of the estimates is not dependable because factors like changes in intensity
between frames and the movement of highly textured objects [2]. We explored the
creation of a family of Gabor filters to which motion filtering in 8 directions was ap-
plied. We approached the implementation in a careful manner by first understanding
2 dimensional data and then moved to implementation with 3 dimensional simulated
data. Finally, the implementation with videos of pedestrian traffic around the Boston
University East Campus was analysed.

2 Literature Review

The application of motion filters using multiple frames is desirable. David Heeger’s
thesis [1] is one of the earliest papers dealing with the filtering of movement using
many frames. He uses twelve different Gabor filters to determine velocity on patches
of images over multiple frames. 8 of the filters are to determine velocities in the
left, right, up, down, and four other corners. The four additional filters are for sta-
tionary responses. Several families of these filters could be built to describe various
spatiotemporal-frequency bands, but Heeger opted to use a Gaussian pyramid scheme
similar to the one described by Adelson Et Al [6][7]. Heeger[1][2] uses Parseval’s The-
orem to determine motion energy in various directions. A more recent application
of gabor filters for spatiotemporal motion estimation was used for interpretation of
dynamic hand gestures. Yeasin and Chaudhuri analyze a series of frames that en-
compass a hand gesture like one that represents come here. Gabor filters are used
to determine various motions and a finite state machine developed by the authors is
used to decide which hand gesture is being presented.[5]
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3 Problem Statement

An object moving with a constant velocity is always represented by a plane in the
spatio-temporal frequency domain. The orientation of the plane is dictated by the
velocity of the object. We aim to develop a set of filters that can distinguish between
varying orientations of this plane. Filters were created for differentiating between 8
different motions. Parsevals theorem states that the sum of a square of a function
is equal to the sum of the square of its tranform. This theorem is used to describe
the intersection of a plane that represents an object in motion and a filter.Energy of
the intersection of a plane in the frequency domain with the frequency response of a
motion filter is the same as the energy of the filtered output in space time domain.

oo o0 o0

Z Z Z |f(x,y,t)Pdedydt
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(1)
Our goal would be to design a set of filters which are tuned to 8 directions of

movement (up, down, left, right and 4 diagonals). We will be designing 3 dimensional
Gabor filters to capture the energies of the moving objects in a video sequence.
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4 Implementation

Our approach to defining a specific set of Gabor filters involved creating simulated
data to tune the Gabor filters. We first did this in two dimensions and then repeated
the process for three dimensions. This is what we called ” Ground Truthing”. Finally,
the Gabor filters were applied to real data.

4.1 Ground Truthing in Two Dimensions

We first created a two dimensional pattern out of a one dimensional signal. From
an image we selected a row of 50 pixels. This one dimensional signal was shifted
by one pixel (the end wrapping around to the beginning) and copied to the line
below. This step was repeated until a two dimensional image of 50x50 pixels was
created. The resulting image is a striped one like the one shown below. In a similar
manner, we created images to depict diagonal stripes that were orthogonal to the
previous image. In addition, horizontal and vertical striped images were created. As
a result, we obtained four images that had energy that closely resembled a line in the
frequency domain. For each of these images, the energy in the frequency domain is
represented by a line. The energy of the Sine Gabor filters is shown. Since convolution
in the space-time domain is equivalent to multiplication in the frequency domain, the
amount of energy captured by the filters is well represented with the center frequencies
provided[8]. Similarly for the Cosine Gabor filters.
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Figure 1: The first row shows the 2D simulated patterns created for this study. The
second row shows the absolute value of the Fourier transforms of the test patterns.
The third row shows the energy of four Gabor filters with center Frequencies at (fx0,
fy0) = (-1/v/32,1/V/32), (1/v/32,1/ v/32),(1/4,0),(0,1/4). We kept fZ,+ f2 constant

to ensure that the energies could be compared.
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4.2 Ground Truthing in Three Dimensions

Motion was simulated in a similar manner for ground truthing in three dimensions.
From a highly textured image a small patch was extracted. For each frame the patch
that was captured was shifted in various directions by moving the area down, right,
up, left or diagonally by a pixel. We created 50-frame simulations of 50x50 and
100x100 pixel images. These frames were tested with a family of 8 Gabor filters that
represented the 4 cardinal directions and 4 diagonals. The center frequencies were
selected in a similar manner so that fz? + fy? remained constant. ft was selected to
be 1/4. This was a recommendation that came from Heeger’s paper on Optical Flow
[4]. The images and filters that were tested are shown below.

¥ . *T ‘// \nr # t. / ﬂ'k
o & &

Figure 2: This image was chosen for its structure. 50x50 pixel image patches were
used to simulate motion in 8 directions as indicated by the arrows. (Picture taken
from: http://www.boston.com/bigpicture/2010/02/colorful india.html)

In order to understand the parameters of the filters and to ensure that they were
implemented correctly, we visualized the magnitude of the filters in the frequency
domain. They were normalized to have a max of one and were displayed in an iso-
surface plot where the surface displayed is at iso-surface = .5.

We could then see that any plane representing velocity of an object would pass
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Figure 3: This image was chosen for its minimal high frequency con-
tent.  100x100 pixel image patches were used to simulate motion in vari-
ous directions as indicated by the boxes and arrows. (Picture taken from:
http://www.boston.com/bigpicture/2010/02/colorful india.html)
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> 1/4 0 -1/4 4 4 1

2 1/v32 1/¥32 -1/4 4 4 1
T~ 0 1/4 -1/4 4 4 1
[ -1/v32 1/v32 -1/4 4 4 1
€ 1/4 0 1/4 4 4 1
© 1/v32 1/v32 1/4 4 4 1
¥ 0 1/4 1/4 4 4 1
3 -1/v32 1/v32 1/4 4 4 1

Figure 4: Center frequencies and standard deviations selected for family of 8 Gabor
filters. Note that the first four rows are the same as the last four except for the sign
of ft. Changing the sign of ft changes the directionality of the filter by 180 degrees.
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Figure 5: Iso-surface plot of a Gabor filter with center frequency (fx,fy,ft) =
(0,1/4,1/4) and (0,04, 0¢) = (4,4,1)
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Figure 6: Iso-surface plot of last four Gabor filters described in the table above.

Figure 7: Iso-surface plot of all Gabor filters described in the table above plus an
additional 4 stationary filters.
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Figure 8: This plane represents a velocity in the downward motion. The filter repre-
sents one with center frequencies of (fx,fy,ft) = (0,1/4,1/4) and (0,,0,,0,) = (4,4,1)

through a combination of these filters. The goal would be to design these filters so that
there is minimal ambiguity between the directional filters. The standard deviations
of the filters were selected to this effect.
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5 Experimental Results

One of the goals of our project was to design a system to track the number of people
entering a shop and the number of people walking past the shop. To this end, we
created a scenario (Marsh Chapel Plaza) where there is a high pedestrian density
walking past the plaza and a lower pedestrian density walking across the plaza. We
designed 4 motion filters, 2 of them filtering motion across the plaza and 2 of them
filtering motion past the plaza. The image and the respective filtered image using the
4 motion filters are shown below.

Figure 9: Images in first column are selected frames from the Marsh Chapel video
sequence. Images in second column show the results of the filter for leftward motion.
Images in third column show the results for rightward motion.

The video sequence shown above was captured using a Nikon Camera and a stable
tripod. The goal of the filters was to filter the motion in their respective directions.
The first filter filters out the person moving right to left. The second filter filters out
the person moving left to right as seen in the top portion of the second frame.
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Figure 10: Images in first column are selected frames from the Marsh Chapel video
sequence. Images in second column show the results for upward motion. Images in
third column show the results for downward motion.

The video sequence shown above was captured using a Nikon Camera and a stable
tripod. The goal of the filters was to filter the motion in their respective directions.
The first filter filters out the pedestrian traffic moving from the bottom of the frame
to the top. The highly textured area of the pedestrian’s shirt was detected easily
in the three frames shown. However, there is less texture in the pedestrian’s shirt
moving from the top of the frame to the bottom and has been detected only in the
second frame of the filtered frames.
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Figure 11: Images in the first column are selected frames from the Lokesh walking
video sequence showing deformable object motion and jittery camera motion. Images
in the second column are filtered images for rightward motion.

The video sequence shown above captured using a Nikon Camera. The filter filters
out the person moving right to left. Person’s head is cleary filtered out but the rest
of the body is not detected because of the non-linear motion. The camera is jittery
and hence the filtered image shows some portions of the background. Because of the
small movements in the camera, objects at a distance were detected as moving.
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6

Conclusions

Texture is important for performing motion filtering in the frequency domain.
Analysis in the frequency domain is based on frequencies seen in x and y direc-
tions of an image in an image sequence. An object with little texture will have
low frequencies and it would be tough to find the corresponding shift in the
frequency domain. An object with very high texture will have similar problems
too.

Temporal Aliasing creates a huge hurdle in filtering motion. This kind of aliasing
causes the filter to detect wrong direction of motion.

Setting the right filter design parameters is challenging. Small spatio-temporal
standard deviations cause ambiguity in the frequency domain. Large spatio-
temporal standard deviations can miss certain frequency planes.

Some of the difficulties we faced with the implementation were:

(i) Brightness contrast between moving objects and background is required for
detecting motion.

(ii) Diagonal movements are tougher to filter out since they are a combination
of two planes of motion.

Possible improvements using existing Gabor filters would be to:

a. Estimate motion direction with a subset of Gabor Filters by taking advantage
of the known ambiguities.

b. Use a hierarchical approach by dividing the image into blocks and estimate
dense vector field by using overlapping blocks.
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8 Appendix

8.1 Appendix A: Matlab Code

Gabor Filters Code

function [El,y2]=gab0rf'i'lt0('irrg,fx,fy,ft,sx,sy,st)
%%% 3-D Gabor Filter output Implementation

%%% By Lokesh A, Ravindranathan, Elena Zorn (LM: 04,/10/2010)

for x = -3%sx:3vsy,
far TY' = -3%s5y:13¥sy,
or ©T = -3%sT:3%sT,

G(3%sx+x+1, 3%sy+y+l, 3%st+t+1l) = (1/(sqre(2)=((pida(l.5))*sx*sy*st) )%, .
exp(-((xA2/ (2% (sxA2))0+ (yn2/ (2% (syr2) 0+ (x22/ (2% (stA2) ) ) )+2%pi*li* ((fx

end
end
end
coscaonv = convn(img,real(Gc), 'same’};
sinconv = convn(img, imag(G), "same’);
gaboutl = cosconv;

gabout2 = sinconv:
yl = gaboutl;
y2 = gabout2;

Code for filtering and Threshaldin

[g2C:y iy i) g3(:,:,:0] = gaborfiltoldouble(x),0,1/4,1/4,4
[g7 1) g8(: 1] = gaborfiltoldouble(x),1/4,0 4
[g9C:,:, 1) glo(:, 3] = gaborfilto(double{x}, 0,1/
[gl1(:,:,:) gl2(:,:,:)] = gaborfilto(double(x),1/4,
[g12(:,:,:) gld4(:,:,:)] = gaborfilto(double(x),1/4,

[g15(:, @, 1) gle(:,:,:)] = gaborfilto(double(x),1/4,
[g17(:,:, 1) gl8(:,:,:)] = gaborfilto(double(x),1/4, ;
[giad:,:,:) g20(:,:,:)] = gaborfilto(double(x),1/4,-1/4, -

gi=qg2. 2+g3.n2;
g5=g4. /max(max(max{g4)));
g6 = (g5=0.05);

)+ (Fy*y)+ (FE#E)));
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8.2 Appendix B: Parseval’s Theorem

A 1-Dimensional Gabor odd phase(sine phase) filter is defined as a product of a
Gaussian 51gnal and sine signal of a given frequency:

gs(t) = f €27 sin(27 fot)

A 1-Dimensional Gabor even phase(cosine phase) filter is defined as a product of
a Gaussian 81gnal and cosine signal of a given frequency:

ge(t) = \/21— €207 202 cos (27 fot)

Gabor function can also can be seen as: ¢(t) = Product [hy(t), ha(t)] where hy(t) =
2

ﬁe% and hy(t) = sin(27 fot)

Fourier Transform of Gabor Function is defined as F[g(t)] and can be re-written
as follows: Fg(t)] = F[hqi(t)] * F[ha(t)] — Eqn(1)

2252

Fourier transform of a Gaussian signal is: Fle=*’ (k)] = e~ o — Eqn(2)

Fourier transform of a sine signal of a given frequency is:

Flsin(27 fot)] = £(0(f + fo) — 6(f — fo)) — Eqn(3)

Fourier transform of a cosine signal of a given frequency is:

Fleos(2m fot)] = 5(0(f + fo) +(f — fo)) — Eqn(4)

Substituting Eqn(2), Eqn(3) in Eqn(1),

Go(f) = (7™ 1727 « (EO(f + fo) = 0(f = fo))
Gu(f) = e Uriot ity

For odd phase filter, energy is calculated using Parseval’s theorem by convolving
the ﬁlter with an arbitrary sine vvave

> NGs(fo) * sin(2m f1)[Pdx = [ |F[Gs(fo)]F[sin(2m f1)][2df
) — h(N)][6 (f+f1)—5(f fll?

| g(f
= (5)[9(f) = R(OPES + f1) +0(f = f1) = 20(f + f1)o(f = fi)]
= (39)lo(f1) = h(£)P + (55)lg(=f1) = h(=f1)]?
= (Po(f) = h(H)P

where g(f) = e 277 U=10)* and h(f) = e~2m 7 U+/o)*

For even phase filter, energy is given by,

S22 IFIG(fo)l Flsin(2m f)lPdf = (§)lg(f1) + h(f0)]?

Energy of a Gabor phase is the sum of the energies of odd phase and even phase
filters.

Etotal = (i)[g(f1)2 + h(f1)2]



Motion Filtering

17

::[(%)644w2a%f17ﬁﬂ2]4_[( Je—dn* o (fi+/o)?]

1
4

Extending the concepts to a 3-D Gabor filter,
_( z2 y2
1

2ri i)
g(z,y,t) = m)eTEe 20 203 207 sin (2 frox + 27 fyoy + 27 fiot)

where fy0, fy0, fio are the set of spatial and temporal centre frequencies.

G(fo, fys fr) = (i)6—47r2[0'g2g(fz—fz0)2+05(fy_fy0)2+gt2(ft_ft0)2]
—|—(i)6_47"2[U;QC(fr+fz0)2+0§(fy+fyo)2+af(ft+ft0)2}



