

OMNIDIRECTIONAL IMAGING
David Mabius Jonathan Tang

Dec. 15, 2007

Boston University
Department of Electrical and Computer Engineering

Technical report No. ECE-2007-07

BOSTON
UNIVERSITY

OMNIDIRECTIONAL IMAGING

David Mabius Jonathan Tang

Boston University
Department of Electrical and Computer Engineering

8 Saint Mary’s Street
Boston, MA 02215
www.bu.edu/ece

Dec. 15, 2007

Technical report No. ECE-2007-07

Summary

This project was completed as a part of the course EC 720 entitled “Digital

Image Processing and Communications”. Minimizing the number of network

cameras while maximizing the area of coverage involves maximizing the field of

view for each sensor. Many types of systems exist that capture a much larger field

of view compared to conventional cameras. In this report a system consisting of a

camera and a curved mirror is investigated. Such a system is called a catadioptric

imaging system. The images produced by this system contain information from a

hemispherical region surrounding the mirror. This type of image is referred to as

an omnidirectional image. Omnidirectional images are not easily interpreted and

are generally undesirable for human visualization. The challenge is then to

convert the omnidirectional image to a more familiar form with minimal loss of

data. The particular interest is in using omnidirectional imaging to monitor wildlife

along a shoreline, and the particular challenge is to unwrap the omnidirectional

image into a panoramic image while minimizing distortion.

Contents

1. Background .. 1

2. Literature Review ... 1

3. Problem Statement ... 9

4. Implementation ... 16

5. Experimental Results ... 18

6. Conclusions .. 22

7. Appendix A ... 25

8. Appendix B ... 34

List of figures

Fig. 1 Omnidirectional Imaging System Model taken from [2] 2

Fig. 2 Caustic from [2] 3

Fig. 3 Image Resolution from [2] 3

Fig. 4 Caustic 5

Fig. 5 Fixed Viewpoint 6

Fig. 6 Constant Resolution 7

Fig. 7 Log Polar Image Sensor 8

Fig. 8 Test Setup 9

Fig. 9 Omnidirectional Image 9

Fig. 10 Interpolation 10

Fig. 11 Image Plane to Mirror Points Mapping 12

Fig. 12 Reflected Ray to Incident Ray Mapping 13

Fig. 13 Ray Mapping Diagram 14

Fig. 14 Equi-spaced Ray Mapping 15

Fig. 15 Wrapped Panoramic 17

Fig. 16 1-Foot Omnidirectional Image 18

Fig. 17 6-Foot Omnidirectional Image 19

Fig. 18 Nearest Neighbor Interpolation 20

Fig. 19 Bilinear Interpolation 20

Fig. 20 1-Foot Panoramic Test Image 21

Fig. 21 6-Foot Panoramic Test Image 21

1 Tang, Mabius

1.Background

Minimizing the number of sensors in a camera network while maximizing

the area of coverage involves maximizing the field of view for each sensor. Many

types of systems exist that capture a much larger field of view compared to

conventional cameras. In this report a system consisting of a camera and a

curved mirror is investigated. Such a system is called a catadioptric imaging

system. The images produced by this system contain information from a

hemispherical region surrounding the mirror. This type of image is referred to as

an omnidirectional image. Omnidirectional images are not easily interpreted and

are generally undesirable for human visualization. The challenge is then to

convert the omnidirectional image to a more familiar form with minimal loss of

data.

Professor Little is interested in using a catadioptric imaging system in

order to monitor wildlife along a shoreline. His system consists of a curved mirror

suspended above a CCD camera pointed at the apex of the mirror. The resulting

omnidirectional image contains data from a 360 degree field of view with heavy

distortions. The goal of this investigation is to unwrap the image into a

panoramic image while minimizing distortion.

2. Literature Review

Fixed Viewpoint Constraint

Baker and Nayar [1] discuss a method of choosing mirror shapes that will result

in catadioptric images. In this particular report they choose mirrors that are

constrained by a fixed viewpoint. The fixed viewpoint constraint requires that all

rays captured by the imaging system would have passed through a single point

in 3D space, the effective viewpoint, had it not been reflected by the mirror. A

2 Tang, Mabius

common simplification is to force all points that are captured by the imaging

system to pass through a single point which is called the effective pinhole. The

model of our imaging system can be seen in Illustration 1. There are a number

of different types of mirrors that satisfy the fixed viewpoint constraint including the

planar, ellipsoidal, spherical, conical, and hyperboloidal mirrors. The contents of

this report will focus on the hyperboloidal mirror.

Systems with multiple viewpoints

Swaminathan et. al. [2] explore the effects of using mirrors that do not have a

fixed viewpoint. In such systems all points that are captured in the image plane

would have passed through a point located on the locus of viewpoints called a

caustic had it not been reflected by the mirror. Systems with multiple viewpoints

can be created by using a mirror not of the shapes listed in the previous section

Illustration 1: Omnidirectional Imaging System Model taken from [2]

3 Tang, Mabius

or by slightly displacing the mirror from it's fixed viewpoint configuration, i.e. by

moving the camera off of the 2nd focal point in a hyperboloidal case. This kind of

setup behavior can be seen in Illustration 2. Each incident ray that is reflected

through the pinhole would have intersected the caustic in a tangential manner if

reflection did not take place. There are considerable differences between

multiple viewpoint mirrors and single viewpoints; one such difference is

resolution.

Illustration 2: Caustic from [2]

Illustration 3: Image Resolution from [2]

4 Tang, Mabius

 Illustration 3 above shows how a pixel element of area δA captures a world

region of area δw. Resolution is defined as δA/ δw. A property of caustics in

hyperboloidal mirrors is that they approach the the surface of the mirror as you

travel radially away from the apex. Consequently, the region δw becomes larger

as you travel radially away from the mirror while δA remains the same.

Therefore resolution decreases as distance from the apex increases. The

opposite is true for fixed viewpoint images. For a hyperboloidal mirror with a

fixed viewpoint, rays that were reflected from near the apex of the mirror will have

very low resolution because the focal point is so close to the mirror surface.

However, the distance between viewpoint and mirror surface increases as you

travel radially away from the apex. Therefore for the same δS (mirror area) as in

the multiple viewpoint case, the corresponding δw will be smaller.

Thus, resolution increases as distance from the apex increases; a consequence

that leads to the formation of the mirror used in this report. This is shown in

Illustration 4 and Illustration 5 below.

5 Tang, Mabius

Illustration 4: Caustic

6 Tang, Mabius

Illustration 5: Fixed Viewpoint

Mirror and Image Sensor Design

Decco et. al. [3] have created a partitioned mirror consisting of two hyperboloids.

The inner region was designed to have constant horizontal resolution. Constant

horizontal resolution signifies that equidistant points on the floor of Illustration 6

will be equidistant in the image plane as well. The outer region was designed to

have constant vertical resolution at a fixed distance away from the mirror; 2m in

this case. Decco et. al. [3] also introduce the idea of using a log polar image

sensor. The log polar sensor in Illustration 7 would resolve the resolution issues

7 Tang, Mabius

associated with unwrapping an omnidirectional image by having a denser pixel

concentration near the center and gradually decreasing pixel concentration as

you travel radially outward. Unwrapping omnidirectional images captured with

this device would be trivial as these sensors typically allow the user to read pixels

serially into panoramic images. Unfortunately these sensors are more expensive

and less available than traditional image sensors which have cartesian pixel

arrangements. The image sensor used in this report was a traditional cartesian

image sensor and consequently some image processing must be performed to

unwrap the omnidirectional image.

Illustration 6: Constant Resolution

8 Tang, Mabius

Illustration 7: Log Polar Image Sensor

9 Tang, Mabius

3. Problem Statement

To capture the omnidirectional images we used a setup similar to the one shown

in Illustration 8 below, however, in our setup the camera was suspended from the

tripod facing downward and the mirror was on the smaller tripod facing upward.

This setup led to the image shown in Illustration 9 shown below.

Illustration 8: Test Setup

Illustration 9: Omnidirectional Image

10 Tang, Mabius

There are two types of distortions associated with the omnidirectional image.

The first type of distortion exists rotationally. Straight lines such as the junction

of the floor and wall visible in Illustration 8 become circles in the omnidirectional

image. The second type of distortion exists axially and causes scaling errors

along every diameter of the omnidirectional image. It is difficult to see this type

of distortion in the wrapped image but the effects still exist. Transforming the

omnidirectional image to a panoramic image will require the resolution of both

types of distortions.

Proposed Solution to Rotational Distortion

The mirror used in this setup is rotationally symmetric meaning any side-

view of the mirror yields the same profile. This rotational symmetry ensures that

uniform angular samples in a polar basis will produce uniformly spaced horizontal

samples for the unwrapped panoramic image. However, because the sensor is a

conventional CCD, the original sample space is not polar but Cartesian. In order

to overcome this sampling mismatch, interpolation will be required. Given the

output resolution of the panoramic, a polar sampling lattice can be defined.

Points on this lattice will not coincide with points on the original imaging sampling

lattice, but can be calculated via a form of two dimensional interpolation. Two

common types of 2-D interpolation are nearest neighbor and bilinear

Illustration 10: Interpolation

11 Tang, Mabius

interpolation.

Nearest neighbor interpolation simply replaces an unknown sample point

with the value of the nearest existing sample point. In the case of Illustration 10,

the point P would be given the value f Q12 . This is computationally trivial

and can be quickly implemented but produces jagged steps within the

interpolated image.

Bilinear interpolation takes a weighted average of the four nearest points

on a regular grid to estimate the unknown value. Looking at Illustration 10, the

value at unknown point P can be defined by the function,

Equation 1:

where,

Equation 2:

and

Equation 3:

Proposed Solution to Axial Distortion

 Mapping

The axial distortions cause spacing errors along diameters of the omnidirectional

image. A series of mappings must be developed to correct these axial

distortions. The first mapping links pixels in the image plane to points on the

f R1≈
x2− x
x2−x1

f Q11
x− x1
x2−x1

f Q21

f R2≈
 x2−x
x2− x1

f Q12
x−x1
x2− x1

f Q22

f P≈
 y2− y
y2− y1

f R1
 y− y1
 y2− y1

f R2

12 Tang, Mabius

mirror. In Illustration 11 is a cross section of the mirror suspended above the

image plane.

Since each reflected ray must pass through the point (0,f) the slope of each

reflected ray terminating in a pixel of this particular omnidirectional image

diameter will be f/|ρi|. Knowing a point on a line along with the slope allows the

first mapping equation to be written:

Equation 4:

y= f
ρi
⋅z f

Illustration 11: Image Plane to Mirror Points
Mapping

13 Tang, Mabius

Setting y = f(x) and noting that f(x) includes the height of the mirror from the

ground allows:

Equation 5:

where n is the number of pixels along the diameter of the omnidirectional image.

Also note that xi and consequently f(xi) will take discrete values because ρi is

discrete even though f(x) may be a continuous function. Next the mapping from

reflected ray to incident ray must be developed. Illustration 12 shows a blown up

diagram of the mirror and some properties of the mirror for a given mirror point.

If f(x) is known (or approximated) for each mirror point there exists a mirror slope

 and a mirror normal. The slope of the mirror at each mirror point can be given

by the derivative, f'(x). In Illustration 12 the angle between the slope of the mirror

at a particular point (xi) and a global horizontal line is given as Φ=tan-1(f'(xi)).

f xi= f
ρi
⋅xi f ,i∈[1,2,. .. , n]

Illustration 12: Reflected Ray to Incident Ray Mapping

14 Tang, Mabius

Since the angle between the mirror normal and the mirror slope is 90 and the

angle, the angle between the mirror normal and a negative global horizontal is

90 – Φ. Using Equation 4 the angle between the reflected ray slope and a global

horizontal is θ=tan-1(f'(xi)). Using the property of triangles that all internal angles

must add up to 180, the angle between the reflected tray slope and the mirror

normal is designated as psi = 90 – phi + theta. Since the angle between the

mirror slope and normal is 90, the angle between the mirror slope and reflected

ray is 90 – psi. The Law of Reflection states that the angle between an incident

ray of light and a mirror normal will be equal to the angle between the reflected

ray of light and the normal. From this law falls the relationship that the angle

between the mirror slope and reflected ray must be equal to the angle between

the mirror slope and incident ray. This equality leads to the next mapping

equation:

Illustration 13: Ray Mapping Diagram

15 Tang, Mabius

Equation 6:

The final mapping links mirror points to real world points and thus links the

image plane to the real world. In we see how an image plane point (ρi, 0) maps

to mirror point (xi, f(xi)) and finally to an incident ray of slope θ - 2Φ. The

incident ray must terminate somewhere in the world. To simplify computation we

will assume that our world consists of a cylinder a distance d from the center of

the image plane. Therefore, the mirror point (xi, f(xi)) maps to world point (0,hi).

The final mapping equation is given by:

Equation 7:

angle betweenGlobal Horizontal , Incident Ray=90̊ −ψ−Φ=θ−2Φ whereψ=90̊ −Φθ ,Φ=arctan f ' xi , θ=arctan f / ρi

hi=d ˙tan θ−2Φ f xi

Illustration 14: Equi-spaced Ray Mapping

16 Tang, Mabius

 Correction

Now that the mapping equations have been developed the axial distortions can

be corrected. The implementation is explained in detail Section 4. The general

method is to:

1. Layout equidistant points on the wall that is horizontal distance d from the

origin

2. Find where the equidistant points fall on the image plane

3. Find which actual image plane points are nearest to the equidistant points

4. Shift the actual image plane points to the proper equidistant locations

5. Interpolate

4. Implementation

Rotational Distortions

Overcoming the rotational distortions present in the omnidirectional image

involves unwrapping it from a polar space to a Cartesian one as described in the

previous section. A panoramic image can be considered as points on an

imaginary cylinder at some distance away from the effective viewpoint (see

Illustration 15). Given the omnidirectional image produced by our setup,

unwrapping the image involves mapping points from the image to points on the

imaginary cylinder. As mentioned interpolation is necessary to obtain values at

the desired sample coordinates.

17 Tang, Mabius

Using MATLAB, we made two scripts to effectively unwrap the image to a

panoramic. Both operate by taking a fixed output resolution for the desired

panoramic and find the corresponding coordinates in a polar space in the

omnidirectional image. These points are then sampled via interpolation. One

script uses the nearest neighbor interpolation (see Appendix A), while the other

utilizes bilinear interpolation (see Appendix B). Both utilize the rotational

symmetry of the mirror by sampling at equal angular intervals, but axial symmetry

is ignored by sampling at equal radial intervals as well.

Axial Distortions

As explained in the previous section, the first task is to layout equidistant points

on the wall. We chose the wall to be 1 foot away from the mirror because it was

this test image that seemed to be most affected by this type of distortion. We

found how many rays were captured between heights 10 inches and -9 inches in

Illustration 13. Note that even before axial distortion correction the rays are not

significantly skewed and appear approximately equi-spaced. This is the result of

designing the mirror with constant vertical resolution. However, due to errors

during manufacting and the relatively rough test setup, spacing errors do exist.

Illustration 15: Wrapped
Panoramic

18 Tang, Mabius

Illustration 14 shows rays equi-spaced terminating at the wall 1 foot away.

The most noticeable differences between Illustration 13 and Illustration 14 is the

region close to -9 inches. In Illustration 13 the rays become less dense in this

area while in Illustration 14 the ray density remains constant. Now that we know

where each equidistant point is, we adjust each ray in the original mapping to

match it's corresponding equidistant ray. This leads to pixel shifts in the image

plane since each incident ray is anchored to a unique reflected ray. Since we are

dealing with discretely quantized spaces, shifting pixels to new locations leaves

behind empty holes. To view the unwrapped image without these holes, we used

linear interpolation.

5. Experimental Results

Two test images were acquired and unwrapped, one with an object of interest

placed 1 foot away as shown in Illustration 16 and another image with an object

of interest placed 6 feet away as shown in Illustration 17.

Illustration 16: 1-Foot Omnidirectional Image

19 Tang, Mabius

Interpolation Method

Two types of panoramic images were generated, one that utilized nearest

neighbor interpolation, the other utilized bilinear interpolation. Clearly images

generated using bilinear interpolation produced more desirable results. Looking

at the nearest neighbor implementation (see Illustration 18), jaggedness can be

seen in high contrast diagonal edges, such as the tripod legs and the vertical

edge of the white board. The bilinear implementation, on the other hand (see

Illustration 19), produced much smoother edges. Given the power of MATLAB,

the additional computational cost is trivial.

Illustration 17: 6-Foot Omnidirectional Image

20 Tang, Mabius

Axial Distortion and Object Distance

Two types of images were focused on, one that contained objects of interest

close to the sensor, and one that contained objects of interest farther from the

sensor. One interesting result is that objects near the top and bottom of the

panoramic became heavily distorted. This is very noticeable in the image where

the test grid (our object of interest) was at a distance of about 1 foot from the

Illustration 18: Nearest Neighbor
Interpolation

Illustration 19: Bilinear Interpolation

21 Tang, Mabius

sensor (see Illustration 20). The panoramic where our test grid is about six feet

from the sensor, however (see Illustration 21), is very reasonable. This suggests

that the resolution is fairly uniform in this middle region.

Producing a panoramic image from an omnidirectional image by resolving the

rotational and axial distortions is a useful approach for transforming an otherwise

unfamiliar image into a familiar form. While we did not fully and completely

resolve the axial distortions produced by our catadioptric system, we have

Illustration 20: 1-Foot Panoramic Test Image

Illustration 21: 6-Foot Panoramic Test Image

22 Tang, Mabius

demonstrated a well defined mirror profile can produce a relationship capable of

resolving such distortions. Given the capabilities of MATLAB this approach is

much simpler than designing a custom sensor for a given mirror arrangement.

6. Conclusions

Omnidirectional image systems consisting of a mirror and conventional camera

prove to be a useful technique for broadening the field of view of the conventional

camera. The obtained results will be adequate for monitoring wildlife at relatively

far distances from the camera if the camera is of sufficiently high quality (5

megapixels or more).

The next implementation of our solution would involve resolving axial and

rotational distortions in one step and thus eliminating one stage of interpolation.

This method is more difficult to physically realize but may save computation time

and improve image quality. Furthermore, a more precise setup should be used

to ensure that the mirror is centered with respect to the camera and that the

spacing is all within the specifications of the specific mirror chosen.

Other applications of omnidirectional imaging systems include robotic vision and

3D scene restoration. These popular fields use systems similar to the one found

in this report to steer a robot around a scene, and have it navigate successfully to

some endpoint. Using more than one omnidirectional imaging system in a given

implementation also leads to stereoscopic imaging systems [4]. These types of

systems can reconstruct 3D scenes with accurate sizing of objects based on the

processing of two images of the same scene. They are typically used in

industrial applications where robots navigate warehouses.

Another successful application of omnidirectional imaging systems was created

at Columbia University and is called OMNICAMERA [4]. OMNICAMERA is a

23 Tang, Mabius

system used for video conferencing. The omndirectional imaging system is

placed on the table and members of the conference appear in small perspective

windows after some video processing. These perspective windows are possible

by using systems with a fixed viewpoint. The advantage of this system over

using a single camera without a mirror and attempting to capture all parties

present is that each individual will take up an entire window of view. It will be

easier to capture subtle body language cues which comprise a significant portion

of human interaction.

24 Tang, Mabius

Appendix A

% First Implementation of the Unwrapping Transformation

% Utilizes Nearest Neighbor Interpolation

% Author: Jonathan Tang

clear all;

test1=imread('6_feet.JPG');

test1=rgb2gray(test1);

test1=mat2gray(test1);

figure(1)

imshow(test1, [min(min(test1)) max(max(test1))]);

title('Original');

truesize;

% parameters

RADOUT=700;

RADIN=1;

% using 0 error assumes that the center of the input image is the center of

% the mirror

yerr = 0;

xerr=0;

CENT = [round(size(test1,1)/2)+yerr round(size(test1,2)/2)+xerr];

ANGRES=deg2rad(0.25);

% create polar parameters and relate to cartesian coordinates

angle = 0:ANGRES:2*pi-ANGRES;

[theta,hyp]=meshgrid(angle,RADOUT:-1:RADIN);

% these are flipped from the conventional because the angle is taken with

% respect to -90 degrees not zero.

25 Tang, Mabius

y = hyp.*cos(theta) + CENT(1);

x = hyp.*sin(theta) + CENT(2);

% we will use x and y as matrix indices so they must be integers

% This is necessary to eliminate a rotation that occurs otherwise.

% yint = round(y);

% xint = round(x);

% yintRepeats = round(y);

% xintRepeats = round(x);

%

%

% xycoords=zeros(length(xintRepeats(:)),2);

% xycoords(:,1)=xintRepeats(:);

% xycoords(:,2)=yintRepeats(:);

% %works

% unique_coords = unique(xycoords,'rows');

% unique_coords_index=size(unique_coords,1);

% for i=1:size(unique_coords,1)

% unique_coords_index(i)=find(xycoords(:,1)==unique_coords(i,1) &

xycoords(:,2)==unique_coords(i,2),1,'first');

% % test=[Unique(1,i);Unique(2,i)];

% % rep=find(Unique(1,:)==test(1,1) & Unique(2,:)==test(2,1),1,'first');

% end

%

% xycoords_up=zeros(size(xycoords));

% xycoords_up(unique_coords_index,:)=xycoords(unique_coords_index,:);

%

%

%

%

% yint=zeros(size(yintRepeats));

% xint=zeros(size(xintRepeats));

%

26 Tang, Mabius

%

% xint(:)=xycoords_up(:,1);

% yint(:)=xycoords_up(:,2);

yint=round(y);

xint=round(x);

% this converts x and y coordinates of a matrix to the element location

% within the matrix.

eleloc = (xint-1)*size(test1,1) + yint;

% places zeros in areas outside of the image that are inside of the circle

eleloc(~(yint>=1 & yint<=size(test1,1) & xint>=1 & xint<=size(test1,2)))=0;

nz=find(eleloc);

% creates unwrapped matrix of zeros. The zeros are important because they

% are place holders for the unwrapped image in the areas that are inside of

% the circle but outside of the image

unwrapped = zeros(RADOUT-RADIN+1,length(angle));

unwrapped(nz) = test1(eleloc(nz));

%unwrapped = test1(eleloc);

% figure(2)

% imshow(xint, [min(min(xint)) max(max(xint))]);

% truesize;

%

% figure(3)

% imshow(yint, [min(min(yint)) max(max(yint))]);

% truesize;

unwrapped_upside_down=imrotate(unwrapped,180);

% figure(4)

% imshow(unwrapped, [min(min(unwrapped)) max(max(unwrapped))]);

% truesize;

figure(4)

imshow(unwrapped_upside_down, [min(min(unwrapped_upside_down))

max(max(unwrapped_upside_down))]);

27 Tang, Mabius

truesize;

% Resolve Axial Distortions

% Author: Jonathan Tang

% assume f=2 inch

f=2;

% assume height=4.5 inches

height=4.5;

% place the mirror above the ground at a specified distance

mirr_in_world=y+f+height+1;

mirr_in_world=interp(mirr_in_world,10);

x=-(2.36/2-2.36/length(mirr_in_world)):2.36/length(mirr_in_world):2.36/2;

vres=1000;

ccdlength=7*vres*10^(-4);

pixelen=ccdlength/vres;

p=-(ccdlength/2-pixelen):pixelen:ccdlength/2;

implane=zeros(1,length(p));

%the_mirr_ray_slope is the slope of the line connecting a point on the mirror

%to the focus

% the_pixel_slope is the slope of the line connecting a point on the image

% plane to the focus

%the_mirr_ray_slope scans from left to right, the _pixel_slope scans from right

%to left

%pixel_2_mirr is an index to be used with the_mirr_ray_slope such that

%the_mirr_ray_slope(pixel_2_mirr(i1))=the_pixel_slope(i1)

% also for i=1:length(p) we have

%x(pixel_2_mirr(i)) is the mirror point horizontal distance

%mirr_in_world(pixel_2_mirr(i)) is the mirror point height

% the _mirror_slope (pixel_2_mirr(i)) is the mirror slope at the mirror

% point

28 Tang, Mabius

% the_pixel_slope(i) is the slope of the point on the image plane

% p(i) is the point on the image plane

% furthest points in pixel plane map to 131 and 911 in mirror plane

rayx=linspace(0,10,1040);

tpt=1000;

figure(1)

plot(x,mirr_in_world,'-',p,implane,'o')

line([x(tpt) -12],[mirr_in_world(tpt) 24]);

%grline=line([x(tpt) 0],[mirr_in_world(tpt) f]);

dist=12;

pmin=47;

pmax=415;

axis([-dist dist -dist 10])

the_mirr_ray_slope=(mirr_in_world-f)./x;

j=2:length(x)-1;

% estimate the slope of the mirror using the ratio of the difference of the

% point before and point after

the_mirr_slope(j)=(mirr_in_world(j+1)-mirr_in_world(j-1))./(x(j+1)-x(j-1));

the_mirr_slope(1)=the_mirr_slope(2);

the_mirr_slope(length(x))=the_mirr_slope(length(x)-1);

% slope of the normal at each point on the mirror

the_mirr_norm_slope=tan(atan(the_mirr_slope)-pi/2);

the_mirr_refl_ray_slope=-tan(pi-2*(atan(the_mirr_norm_slope)-atan(the_mirr_ray_slope))-

atan(the_mirr_ray_slope));

j=length(x)/2+1:length(x);

% slope of the reflected ray at each point on the mirror

% only a subset of the points on the mirror will be used

29 Tang, Mabius

the_mirr_refl_ray_slope(j)=tan(-pi/2-atan(the_mirr_norm_slope(j))+atan(the_mirr_ray_slope(j))-

atan(the_mirr_slope(j)));

% sort the refl ray slopes to account for errors

the_mirr_refl_ray_slope(1:length(the_mirr_refl_ray_slope)/2)=sort(the_mirr_refl_ray_slope(1:lengt

h(the_mirr_refl_ray_slope)/2));

the_mirr_refl_ray_slope(length(the_mirr_refl_ray_slope)/2:length(the_mirr_refl_ray_slope))=sort(t

he_mirr_refl_ray_slope(length(the_mirr_refl_ray_slope)/2:length(the_mirr_refl_ray_slope)));

p=-p;

the_pixel_slope=-f./p;

pixel_2_mirr=zeros(1,length(p));

% map pixel indices to mirror indices

for i=1:length(p)/2-1

 pixel_2_mirr(i)=find(the_mirr_ray_slope<=the_pixel_slope(i),1,'first');

end

for i=length(p)/2+1:length(p)

 if ~isempty(find(the_mirr_ray_slope>=the_pixel_slope(i),1,'last'))

 pixel_2_mirr(i)=find(the_mirr_ray_slope>=the_pixel_slope(i),1,'last');

 end

end

tpt=131;

% correct the reflected ray slopes to make uniform for a wall 1 ft away

the_mirr_refl_corrected_ray_slope(pixel_2_mirr(pmin:pmax))=linspace(the_mirr_refl_ray_slope(pi

xel_2_mirr(pmin)),the_mirr_refl_ray_slope(pixel_2_mirr(pmax)),pmax-pmin+1);

i=pmin:pmax;

%o=349:921;

30 Tang, Mabius

o=pixel_2_mirr(pmin):pixel_2_mirr(pmax);

wall_pts(o)=the_mirr_refl_ray_slope(o)*-dist+mirr_in_world(o);

equidist_wall_pts(o)=linspace(12,-9,pixel_2_mirr(pmax)-pixel_2_mirr(pmin)+1);

error_wall_pts=wall_pts-equidist_wall_pts;

the_section=the_mirr_refl_ray_slope(pixel_2_mirr(pmin:pmax));

corr_ind=zeros(1,length(the_section));

adj_ind=zeros(1,pixel_2_mirr(pmax)-pixel_2_mirr(pmin)+1);

newx=zeros(1,pixel_2_mirr(pmax)-pixel_2_mirr(pmin)+1);

adj_ind_pixel_plane=zeros(1,pixel_2_mirr(pmax)-pixel_2_mirr(pmin)+1);

for m=pixel_2_mirr(pmin):pixel_2_mirr(pmax);

 % this tell you how much the index of the real world must move to get

 % from the original image to the corrected image

 horiz_err=abs(wall_pts-equidist_wall_pts(m));

 [c adj_ind(m)]=min(horiz_err);

 newx(adj_ind(m))=x(m);

 if ~isempty(find(pixel_2_mirr==adj_ind(m)))

 adj_ind_pixel_plane(m)=find(pixel_2_mirr==adj_ind(m));

 end

end

%

[XI YI]=meshgrid(1:2*size(IM_OUT,2),1:2*size(IM_OUT,1));

[X Y]=meshgrid(1:size(IM_OUT,2),1:size(IM_OUT,1));

[b,m,n]=unique(adj_ind_pixel_plane,'first');

31 Tang, Mabius

newp=adj_ind_pixel_plane(m);

IM_OUT2=IM_OUT;

new_IM=zeros(newp(length(newp)),size(IM_OUT2,2));

% make the first row of the new image = 1 because the search compares

% values to zero and we need to establish an upper bound

new_IM(1,:)=1;

% unaffected section

for i=1:pmin-1

 new_IM(i,:)=IM_OUT2(i,:);

end

j=pmin;

% affected section

for i= 2:length(newp)

 new_IM(newp(i),:)=IM_OUT2(i,:);

 j=j+1;

end

% perform manual linear interpolation along the vertical axis to fill in

% the zeros

for i=2:size(new_IM,1)

 if sum(new_IM(i,:)==0)

 uj=1;

 dj=1;

 upp=new_IM(i-uj,:);

 while sum(upp)==0

 uj=uj+1;

 upp=new_IM(i-uj,:);

 end

 lo=new_IM(i+dj,:);

 while sum(lo)==0

32 Tang, Mabius

 dj=dj+1;

 lo=new_IM(i+dj,:);

 end

 betw_slope=(new_IM(i-uj,:)-new_IM(i+dj,:))/(dj+uj);

 for k=i-uj+1:i+dj-1

 new_IM(k,:)=new_IM(k-1,:)+betw_slope;

 end

 end

end

% unaffected section

for i= length(newp):size(IM_OUT2,1)

 new_IM(newp(length(newp))-length(newp)+i,:)=IM_OUT2(i,:);

end

% pre filter before downsampling

% new_IM=interp2(X,Y,new_IM,XI,YI);

% new_IM=upsample(new_IM,2);

% f=[0 0.30 0.40 1]; a=[1 1 0 0];

% b=firpm(22,f,a); % obtaining filter coefficients

%

% [impResp,N] = impz(b,1);

% sepImpRespFir2d=compFir2D(impResp);

% new_IM=filter2(sepImpRespFir2d,new_IM);

%new_IM=downsample(new_IM,2);

%new_IM=interp2(X,Y,new_IM,XI,YI);

%new_IM=resample(new_IM,1,2);

figure(3)

%subplot(2,1,1)

new_IM=uint8(new_IM);

imshow(new_IM);%,[min(new_IM(:)) max(new_IM(:))]);

% i=pmin:pmax;

33 Tang, Mabius

figure(2)

% test image

plot(x,mirr_in_world,'-',p,implane,'o')

%line([x(tpt) -12],[mirr_in_world(tpt) 24]);

%grline=line([x(tpt) 0],[mirr_in_world(tpt) f]);

dist=12;

pmin=1;

pmax=415;

axis([-dist dist -dist 10])

the_mirr_ray_slope=(mirr_in_world-f)./x;

for i=1:400

 tpt=pixel_2_mirr(i);

 line([x(pixel_2_mirr(i)) -dist],[mirr_in_world(pixel_2_mirr(i))

the_mirr_refl_ray_slope(pixel_2_mirr(i))*-dist+mirr_in_world(pixel_2_mirr(501))])

end

% for i=pmin:pmax

% tpt=pixel_2_mirr(i);

% line([x(pixel_2_mirr(i)) -dist],[mirr_in_world(pixel_2_mirr(i))

equidist_wall_pts(pixel_2_mirr(i))])

% end

34 Tang, Mabius

Appendix B

function IM_OUT = omni_unwrap2(image_path,t,F)

% omni_unwrap2: takes an located at IMAGE_PATH and

% unwraps it by taking a constant number of samples along concentric

% rings about the center of the image and stores the values in IM_OUT.

% Values are interpolated using a bilinear interpolation algorithm.

% Additionally, approximate height values calculated given the mirror

% profile F at radius t and specifications at the beginning of the code.

% Note that this aspect of the code is not fully developed and therefore

% not included in the report.

%

%

%

%-------------------------------------

% Rev# Date Who Purpose

% ---- -------- --------- ---------

% 000 11/18/07 D.Mabius Original

% 001 11/19/07 D.Mabius Fixed calculation of inner/outer radii. Now

% draws center and inner/ outer circles.

% 002 12/07/07 D.Mabius Added height function

35 Tang, Mabius

% 003 12/09/07 D.Mabius Added temporary section to produce plots for

% the presentation demonstrating sampling

% mismatch.

%

%-------------------------------------

%% Parameters

OUTPUT_RES = [1500 500];

IM_OUT = [];

F0 = 6.6675; %cm

F1 = 8.89; %cm (distance mirror is off the ground

D = 30.48; %cm

f = 1.5; %cm

%% Main

% Attempt to load image

try

 IM_IN = imread([image_path]);

catch

 error('Unable to load image');

36 Tang, Mabius

end

% Convert to grayscale

IM_IN = rgb2gray(IM_IN);

IM_IN = double(IM_IN);

% Display image and ask user for input regarding center and inner/outer

% radii

figure(1);

imshow(IM_IN, []);

title('Original - Grayscale');

pause(0.001);

h = msgbox('Click to indicate the center, followed by the inner radius, then the

outer radius, then the edge of the mirror');

waitfor(h);

[x_in, y_in] = ginput(4);

center = [x_in(1), y_in(1)];

radin = round(dist([x_in(2), y_in(2)], center));

radout = round(dist([x_in(3), y_in(3)], center));

radmax = round(dist([x_in(4), y_in(4)], center));

% Ensure inner radius is smaller than outer radius

37 Tang, Mabius

if (radin >= radout)

 error('The outer radius must be larger than the inner radius');

end

% Display selected center and inner and outer limits

hold on;

plot(center(1),center(2),'g+');

circle(center,radin,1000,'g');

circle(center,radout,1000,'g');

hold off;

% Build radius and angle vectors

radii = radin:(radout-radin)/(OUTPUT_RES(2)-1):radout;

theta = 0:(2*pi)/OUTPUT_RES(1):2*pi-(2*pi)/OUTPUT_RES(1); % don't sample

0 and 2 PI, only 0

% Build transform coordinate matrices

[T,R] = meshgrid(theta,radii);

[XI,YI] = pol2cart(T,R);

XI = XI+center(1);

YI = YI+center(2);

38 Tang, Mabius

% Temporary plots for presentation

%

% disp_step = 10;

% disp_XI = XI(1:disp_step:end,1:disp_step:end);

% disp_YI = YI(1:disp_step:end,1:disp_step:end);

% hold on;

% plot(disp_XI(:),disp_YI(:),'r.','MarkerSize',5);

% hold off;

%

% figure(3);

% imshow(IM_IN, []);

% title('Original - Grayscale');

% hold on;

% plot(center(1),center(2),'g+');

% circle(center,radin,1000,'g');

% circle(center,radout,1000,'g');

% plot(disp_XI(:),disp_YI(:),'r.','MarkerSize',5);

% hold off;

% [disp_X_grid, disp_Y_grid] = meshgrid([1:disp_step:size(IM_IN,2)],

[1:disp_step:size(IM_IN,1)]);

% hold on;

% plot(disp_X_grid(:),disp_Y_grid(:),'b.','MarkerSize',5);

39 Tang, Mabius

% hold off;

% Unwrap image

IM_OUT = interp2(IM_IN,XI,YI);

% Calculate height function

m_radius = t(end);

ti = (radii/radmax)*m_radius;

h = -1*height(t,F,F0,f,D,ti) + F1;

% Display image

figure(2);

imshow(IM_OUT, []);

figure(3);

plot(zeros(1,length(h)),h,'.');

plot(ti,h);

% Convert to uint8 before outputting

IM_OUT = uint8(IM_OUT);

40 Tang, Mabius

%% Subfunctions

function d = dist(P1,P2)

% returns the distance between P1 and P2 where both P1 and P2 are two

% element vectors containing X and Y coordinates

d = sqrt((P1(1)-P2(1))^2 + (P1(2)-P2(2))^2);

function circle(center, radius, NOP, style)

% Plots a circle in current axis

THETA=linspace(0,2*pi,NOP);

RHO=ones(1,NOP)*radius;

[X,Y] = pol2cart(THETA,RHO);

X=X+center(1);

Y=Y+center(2);

plot(X,Y,style);

function h = height(t,F,F0,f,d,ti)

F = F+F0;

Fi = interp1(t,F,ti);

dFi = diff(Fi)./diff(ti);

dFi(end+1) = dFi(end);

h = Fi + ((2.*ti.*dFi-(Fi-f).*(1-dFi.^2))./(2.*(Fi-f).*dFi+ti.*(1-dFi.^2))).*(d-ti);

41 Tang, Mabius

References

[1] Baker, Simon; Nayar, Shree K. “A Tutorial on Catadioptric Image Formation”

available at

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/BAKER/main.html

[2] Swaminathan, Rahul; Grossberg, Michael D.; Nayar, Shree K. “Non-Single

Viewpoint Catadioptric Cameras: Geometry and Analysis available at

http://www.cs.columbia.edu/techreports/cucs-004-01.pdf

[3] Decco, Claudia; Gaspar, Jose; Winters, Niall; Santos-Victor, Jose.

“OMNIVIEWS Mirror Design and Software Tools” IST-1999-29017

September 2001.

[4] Drocourt, Cyril; Delahoche, Laurent et. al. “Mobile Robot Localization Based

on an Omnidirectional Stereoscopic Vision Perception System”. IEEE

International Conference on Robotics & Automation, May 1999.

[5] Nayar, Shree K.; Peri, Venkat. “OMNICAMERA: Omnidirectional Video

Camera” available at http://www1.cs.columbia.edu/CAVE//omnicam/.

http://www1.cs.columbia.edu/CAVE//omnicam/
http://www.cs.columbia.edu/techreports/cucs-004-01.pdf

	Report_formatted.pdf
	1.Background
	2. Literature Review
	3. Problem Statement
	4. Implementation
	5. Experimental Results
	6. Conclusions
	Appendix A
	Appendix B
	References

