

CRAB COUNTER

Chuangang Ren and Wei Lin

Dec. 15, 2007
Boston University

Department of Electrical and Computer Engineering
Technical report No. ECE-2007-05

BOSTON
UNIVERSITY

CRAB COUNTER

Chuangang Ren and Wei Lin

Boston University
Department of Electrical and Computer Engineering

8 Saint Mary’s Street
Boston, MA 02215
www.bu.edu/ece

Dec. 15, 2007

Technical report No. ECE-2007-05

Summary

This report describes a project completed in the course EC520 entitled

“Digital Image Processing and Communications”. The goal of this project was to

develop an algorithm for the detection of hermit crabs roaming a beach using

video cameras. An algorithm consisting of three steps: background subtraction,

post-processing and counting, was implemented. The background subtraction

step was implemented in one version using median temporal filtering, and in

another version using probability density estimation. The algorithm based on

median filtering produced more accurate crab counts, however turned out to be

more sensitive to background movements. Further work is needed to accomplish

accurate crab counting from video sequences.

Contents

1. Introduction .. 1

2. Proposed approach ... 1

3. Comparison of two methods and further improvement............ 14

4. References.. 14

5. Appendix... 15

List of figures and tables

Fig. 1 Frame from original video sequence and result of background

subtraction 1

Fig. 2 Intensity value over time of pixels representing land and water 2

Fig. 3 Block diagram of the proposed background subtraction 3

Fig. 4 Absolute deviation from the median 4

Fig. 5 Absolute deviation from the median after low-pass filtering 4

Fig. 6 Absolute deviation from the median after low-pass filtering 5

Fig. 7 Final binary result of step 1 in method A 6

Fig. 8 Result of background subtraction using the density estimation 8

Fig. 9 Result of background subtraction using the density estimation 9

Fig. 10 Post-processed results of background subtraction using median

subtraction and probability density estimation 11

Fig. 11 Post-processed and morphologically-corrected results of background

subtraction using median subtraction and probability density estim. 12

Fig. 12 Number of crabs estimated over time. Blue curve: Result computed by

background subtraction method; Red curve: Result obtained by us. 13

Fig. 13 Number of crabs estimated over time. Blue: Result computed by

probability density estimation method; Red: Result obtained by us 13

1 Chuangang Ren & Wei Lin

1. Introduction

The task we undertook was to design a system to help scientists in monitoring

and enumeration of crabs on a beach using video cameras.

Key steps of the proposed algorithm are:

1) Obtain binary image sequence to enable the detection of moving objects.

We present two methods: Background Subtraction and Density Estimation.

2) Post-processing.

3) Enumeration of the objects.

2. Proposed approach

Step I: Obtain binary image sequence

Method A: Background Subtraction

Background subtraction is a method typically used to segment moving regions in

image sequences taken from a static camera by comparing each new frame to a

model of the scene background. For example, one of the simplest background

subtraction techniques is to calculate a median image of the scene, subtract each

new frame from this image and threshold the result. Fig.1 shows one frame (#16)

from the original video sequence with 800 frames and the result of background

subtraction.

Fig. 1. Frame from original video sequence and result of background subtraction

2 Chuangang Ren & Wei Lin

The binary image above is obtained using the same threshold at every pixel in

one frame. This is not flexible when we deal with different areas (water and land)

in an image, thus leading to wrong detections (this is obvious in water area in

Fig.1, where ripples on water surface are wrongly detected as objects).

In order to fix this problem, we look into intensity value of one pixel over time, and

determine a particular threshold for this pixel according to the feature of intensity

value changing in time. In this crab-counting case, different parts in the video

have obviously different features. Fig.2. shows the intensity values of two different

pixels (one pixel, drawn as the red curve, is on land, the blue curve is in the water)

changing from Frame #400 to 800).

400 450 500 550 600 650 700 750 800
60

80

100

120

140

160

180

land
water

Fig. 2. Intensity value over time of pixels representing land and water (red line:

pixel on land with coordinates (100,400); blue line: pixel in water with coordinates

(450,400)).

Obviously, intensity fluctuations of the water pixel are greater than those of the

land pixel. Based on this, we use the variance of intensity to control the magnitude

of threshold, thus allowing adaptive thresholding. In order to eliminate the sudden

jumps in magnitude caused by noise or small background object movement, we

filter the above time-variant signal using a low-pass filter.

3 Chuangang Ren & Wei Lin

Let , ()i jP n be intensity value of pixel with coordinates (,)i j over time. 1 2, ... nB B B

are the image sequence outputs. Then, we have the output nB :

, , ,() (())i j i j i jU n P n M H= − ∗ ;

,
,

,

0, ()
()

1, ()
i j

i j
i j

U n
V n

U n
ασ

ασ

≤= >

, ()n i j
i j

B V n=∑∑

In which, ,i jM is the median of , ()i jP n . σ is the standard deviation of , ()i jP n ,

with multiplication of coefficient α as the threshold. H is a length 15 low pass

filter. ,i jU is the output of low pass filter, and ,i jV is ,i jU after threshold. Fig 3

shows a block diagram of our system.

400 450 500 550 600 650 700 750 800
0

20

40

60

80

100

120

400 450 500 550 600 650 700 750 800
0

10

20

30

40

50

60

70

80

90

100

400 450 500 550 600 650 700 750 800
0

10

20

30

40

50

60

70

80

90

400 450 500 550 600 650 700 750 800
0

50

100

150

200

250

300

ασ
σ

, ()i jP n

,i jU
1,2...nB

,i jV

Fig. 3. Block diagram of the proposed background subtraction

For the pixels shown in Fig.2. with coordinates (100,400) and (450,400), Fig. 4

shows the absolute deviation from the median. Fig.5 shows the land pixel

(100,400) after filtering against the threshold of ασ =8.7. Fig.6 shows the water

pixel (450,400) after filtering against its own threshold of ασ =11.9. In both cases

α =1.5.

4 Chuangang Ren & Wei Lin

400 450 500 550 600 650 700 750 800
0

10

20

30

40

50

60

70

land
water

Fig. 4. Absolute deviation from the median (blue line: pixel in water(100,400); red

line: pixel on land (450,400)).

400 450 500 550 600 650 700 750 800
0

5

10

15

20

25

30

35

X: 400 Y: 99
Index: 139
RGB: 0.549, 0.549, 0.549

Fig. 5. Absolute deviation from the median after low-pass filtering shown against

the computed threshold (8.7), and original frame with pixel at (100,400) identified.

At frame#420, an object is passing through this pixel.

5 Chuangang Ren & Wei Lin

400 450 500 550 600 650 700 750 800
0

5

10

15

20

25

30

35

X: 450 Y: 400
Index: 156
RGB: 0.616, 0.616, 0.616

Fig. 6. Absolute deviation from the median after low-pass filtering shown against

the computed threshold (11.9), and original frame with pixel at (400,450)

identified.

Apparently, in Fig.5, a crab passed by through pixel (100,400) around frame

#420, which appears to be a peak in magnitude of intensity value. In Fig.6, there

are no crabs crossing pixel (450,400) in the duration of the 400 frames, which

corresponds to no intensity exceeding the threshold.

If we collect all the pixels in image planes and in time, we can construct a binary

image sequence, and subsequently apply noise suppression and enumeration.

Fig 7 displays one of such binary image frames.

6 Chuangang Ren & Wei Lin

Fig. 7. Final binary result of step 1 in method A

Method B: Density Estimation Model

Stage I.

The method mentioned above could be perfectly implemented for absolutely static

background videos. However, the background of the scene contains many

non-static objects and even very small movement of the camera could result in

large false detections. Thus, we implement another method. In this method, the

probability of observing a particular pixel intensity is estimated based on sample

intensity values for each pixel captured in time. That is, each single sample of the

N samples is considered to be a Gaussian distribution (0,)N Σ by itself. This

allows us to estimate the density function more accurately and depending only on

recent information from the sequence.

Let 1 2, ,..., Nx x x be recent samples of intensity values for a pixel. Using these

samples, the probability density function that this pixel will have intensity value tx

at time t can be non-parametrically estimated using the kernel estimator K as

follows:

1

1() ()
N

r t t i
i

P x K x x
n =

= −∑

7 Chuangang Ren & Wei Lin

If we assume independence between the different color channels with different

kernel bandwidths, then

2
1

2
2

2
3

0 0
0 0
0 0

σ
σ

σ

Σ =

And the density estimation is reduced to:

2

2

()1
2

2
1 1

1 1()
2

it jj

j

x x
dN

r t
i j j

P x e
N

σ

πσ

−
−

= =

= ∑∏

Above, the Kernel width is estimated based on the median m of 1| |i ix x +− for

each consecutive pair 1(,)i ix x + of samples. They are calculated independently for

each color channel. The standard deviation of the first distribution can be

estimated as

0.68 2
mσ =

We set the threshold as a global threshold over all images that can be adjusted to

achieve a desired percentage of false positives.

Stage II. False alarm suppression:

If the background moves to occupy a new pixel, but it was not part of the model for

that pixel, then it will be detected as a foreground object. This happens mostly in

the case of slight movement of the camera. We decide if a detected pixel is

caused by a background object that has moved by considering the background

distributions in a small neighborhood of the detection.

8 Chuangang Ren & Wei Lin

In this stage, we check whether a pixel detected as object is caused by moving

objects or the changes of background. Let tx be the observed value of a pixel,

and if tx be detected as the foreground pixel by the first stage of the background

subtraction at time t . We define ()tN x as the neighbor of tx , the estimated

probability computed in stage I as ()r tP x .

We replace ()r tP x with probability ()N tP x estimated in a small neighborhood.

()N tP x is defined as:

{ () }
() max ()

t
N t ry N x x

P x P y
∈ ∪

=

where ()rP y is calculated using the kernel function estimation in stage I. We

define the neighbor area ()N x as a n n× rectangular. Fig.8 shows one result of

the above false positives suppression.

9 Chuangang Ren & Wei Lin

tx

tx3 3×

Fig. 8. Result of background subtraction using the density estimation model

before (top) and after (middle) false positives suppression using a 3*3

neighborhood, and the original image (bottom) with the used neighborhood of tx

Fig. 9 shows another example when serious movement of the camera occurs

(extracted from Frame #16).

10 Chuangang Ren & Wei Lin

Fig. 9. Result of background subtraction using the density estimation model

before (top) and after (middle) false positives suppression using a 3*3 and 7*7

neighborhood, and the original image (bottom).

The model can handle situations where the background of the scene is cluttered

and not completely static but contains small motions. The model adapts quickly to

changes in the scene which enables very sensitive detection of moving targets.

Step II: Post Processing

Once we get the binary images, we can see that there is still a lot of noise present.

To reduce the noise, we use the filter mask K to filter the images.

K=

K is an averaging filter.

11 Chuangang Ren & Wei Lin

For pixel R(i,j) in the image, we can define its 3-by-3 neighborhood as follows:

R(i,j)=

We convolve the image with the filter K, to get a filtered image; every pixel A(i,j) in

the new image is the average value of the neighborhood of the corresponding

pixel R(i,j) in the old image.

Then, we compare the two corresponding pixels:

R(i,j)=

The equation above indicates that if a pixel is surrounded by pixels with mostly

different values, we change the value of this pixel, however if the pixel has the

same value as most of the pixels in the neighborhood, it will remain the same.

Fig.9 shows the result based on the first and the second method.

Fig. 10. Post-processed results of background subtraction using median

subtraction (left) and probability density estimation (right).

After filtering, we apply morphology operations to the images. Morphology is a

broad set of image processing operations that process images based on shapes.

The most basic morphological operations are dilation and erosion.

12 Chuangang Ren & Wei Lin

Dilation adds pixels to the boundaries of objects, while erosion removes pixels

from object boundaries. The combination of dilation and erosion is usually called

the “open” operation. In this case, we first erode the image, and then dilate it.

Between these two steps, we also remove some isolated pixels.

Fig. 11. Post-processed and morphologically-corrected results of background

subtraction using median subtraction (left) and probability density estimation

(right).

Step III: Enumeration and result comparison.

Based on the images we obtained in the previous steps, we can count the number

of white regions that indicate locations of the crabs. The main idea of counting is

labeling every white region in the images. The results of this counting for the 2

methods are shown in Fig.10 and Fig.11.

Erosion Remove some DilatioImage New

13 Chuangang Ren & Wei Lin

Fig. 12. Number of crabs estimated over time. Blue curve: Result computed by

background subtraction method; Red curve: Result obtained by us.

Fig. 13. Number of crabs estimated over time. Blue curve: Result computed by

probability density estimation method; Red curve: Result obtained by us

14 Chuangang Ren & Wei Lin

3. Comparison of two methods and further improvement
The proposed adaptive threshold background subtraction method can obtain very

high accuracy (accuracy of 90% compared with the probability estimation method

that shows only 70% accuracy) but is sensitive to background movement.

Probability density estimation method is robust to background change. However,

it appears to be blind to water. The reason is because the Gaussian model we

established in this project is unable to adapt quickly enough to the background

change. The selection of model parameters is crucial here since we face the

following tradeoff. If the background model adapts too slowly to changes in the

scene, we will construct an inaccurate model that will have low detection

sensitivity. On the other hand, if the model adapts too quickly, the moving objects

would be very likely detected as background movement. In order to solve these

problems, more experiments and analysis would need to be carried out.

4. References

[1] Otsu, N. "A Threshold Selection Method from Gray-Level Histograms," IEEE

Transactions on Systems, Man, and Cybernetics, Vol. 9, No. 1, 1979, pp. 62-66.

[2] Elgammal A, Harwood D, Davis L. “Non- parametric Model for Background

Subtraction”. Proceedings of the 6th European Conference on Computer Vision,

2000:751-767.

15 Chuangang Ren & Wei Lin

Appendix: Matlab source code of the key methods we used or tried:

Matlab source code we used to collect frames and calculate background model.

function [Frames , bg] = collectframes2(filename,high)

% format: e.g. [Frames , bg] = collectframes2('crabs',50);

% the # of elements is double 'high'.

for n = 1:high

 readimages = aviread(filename,n);

 imshow(readimages.cdata);

 Frames(n) = getframe;

end

movie(Frames,0,12);

% Background Calculation

figure;

for i = 1:length(Frames(1).cdata(:,1,1))

 for n=1:high

 M1(n,:) = Frames(n).cdata(i,:,1);

 M2(n,:) = Frames(n).cdata(i,:,2);

 M3(n,:) = Frames(n).cdata(i,:,3);

 end

 bg(i,:,1)=round(median(M1));

 bg(i,:,2)=round(median(M2));

 bg(i,:,3)=round(median(M3));

end

imshow(uint8(bg));

16 Chuangang Ren & Wei Lin

Matlab source code that has the same effect for collecting frames and

background calculation, meanwhile, it removes sawtooth edges caused by

camera shooting.

function [Frames , bg] = collectframes(filename,high)

% format: e.g. [Frames , bg] = collectframes('crabs',50);

% the # of elements is double 'high'.

for n = 1:high

 readimages = aviread(filename,n);

 imshow(readimages.cdata);

 PreFrames(n) = getframe;

end

movie(PreFrames,1,12);

% ensure image height evens

for n= 1: high

 PreFrames(n).cdata(length(PreFrames(n).cdata(:,1,1)),:,:)=[];

end

% Lowpass Filter

f = [0 0.45 0.55 1];

a = [1 1 0 0];

lowpass = firpm(17,f,a); % experiments proove that order's better be odd!

% reconstruct vedio and saving to 'Frames'

Frames=PreFrames;

for n = 1:high

 Frames(2*n).cdata(:,:,1) = reconstr(PreFrames(n).cdata(:,:,1),lowpass);

 Frames(2*n).cdata(:,:,2) = reconstr(PreFrames(n).cdata(:,:,2),lowpass);

 Frames(2*n).cdata(:,:,3) = reconstr(PreFrames(n).cdata(:,:,3),lowpass);

17 Chuangang Ren & Wei Lin

 Frames(2*n-1).cdata(:,:,1)=

reconstr2(PreFrames(n).cdata(:,:,1),lowpass);

 Frames(2*n-1).cdata(:,:,2)=

reconstr2(PreFrames(n).cdata(:,:,2),lowpass);

 Frames(2*n-1).cdata(:,:,3)=

reconstr2(PreFrames(n).cdata(:,:,3),lowpass);

end

movie(Frames,1,24);

% Background Calculation

figure;

for i = 1:length(Frames(1).cdata(:,1,1))

 for n=1:high

 M1(n,:) = Frames(n).cdata(i,:,1);

 M2(n,:) = Frames(n).cdata(i,:,2);

 M3(n,:) = Frames(n).cdata(i,:,3);

 end

 bg(i,:,1)=round(median(M1));

 bg(i,:,2)=round(median(M2));

 bg(i,:,3)=round(median(M3));

end

imshow(uint8(bg));

Calculate Difference Images from the background, the simplest background

subtraction method.

function Diff = Calcu_DiffImage (Frames, bg, high)

% Calculate difference images

% e.g. Diff = Calcu_DiffImage (Frames, bg400, high)

18 Chuangang Ren & Wei Lin

Diff=Frames;

for n = 1:high

 Diff(n).cdata(:,:,1) = Frames(n).cdata(:,:,1) - bg(:,:,1);

 Diff(n).cdata(:,:,2) = Frames(n).cdata(:,:,2) - bg(:,:,2);

 Diff(n).cdata(:,:,3) = Frames(n).cdata(:,:,3) - bg(:,:,3);

end

movie(Frames,0,24);hold;

movie(Diff,0,24);

Background subtraction method using adaptive threshold.

function bw = gray_time (Frames, windowlength)

% bw = gray_time(Frames,20);

[row,col] = size(Frames(1).cdata);

for i=1:row

 for j=1:col

 for n=1:400

 curve(n)=Frames(n).cdata(i,j);

 end

 mean = median(curve);

 thresh = var(curve);

 curve=abs(curve-mean);

 windowSize = windowlength;

 filt_curve = filter(ones(1,windowSize),windowSize,double(curve));

 mm=zeros(1,length(curve));

 mm(find(filt_curve>2*sqrt(thresh))) = 1;

 bw(i,j,:)= mm(20:10:60);

19 Chuangang Ren & Wei Lin

 end

end

Probability Density Estimation Method

function P = Self_Adapt_Diff(Frames, high, N, threshold)

% P = Self_Adapt_Diff(Frames,35,30,0.1);

% N: # of frames used to calculate probability distribution

for i= N+1:high

% calculate kernel width estimation

 for n=1:N

 I1{n}=(abs(Frames(i+1-n).cdata(:,:,1)-Frames(i-n).cdata(:,:,1)));

 I2{n}=(abs(Frames(i+1-n).cdata(:,:,2)-Frames(i-n).cdata(:,:,2)));

 I3{n}=(abs(Frames(i+1-n).cdata(:,:,3)-Frames(i-n).cdata(:,:,3)));

 end

 % calculate median of |xi-xi+1|

 for m = 1:length(Frames(1).cdata(:,1,1))

 for n=1:N

 A1(n,:) = I1{n}(m,:); %Frames(n).cdata(m,:,1);

 A2(n,:) = I2{n}(m,:);

 A3(n,:) = I3{n}(m,:);

 end

 M1(m,:)=double(mean(A1));

 M2(m,:)=double(mean(A2));

 M3(m,:)=double(mean(A3));

 end

 Q1=(M1./(0.68*1.414));

 Q2=(M2./(0.68*1.414));

 Q3=(M3./(0.68*1.414));

 for m= 1:length(Frames(1).cdata(:,1,1))

20 Chuangang Ren & Wei Lin

 for n= 1:length(Frames(1).cdata(1,:,1))

 if Q1(m,n)==0

 Q1(m,n)=0.1;

 end

 if Q2(m,n)==0

 Q2(m,n)=0.1;

 end

 if Q3(m,n)==0

 Q3(m,n)=0.1;

 end

 end

 end

 P{i}=0;

 for n=1:N

 II1 =

(1./sqrt((2*pi*Q1.^2))).*exp((-1/2)*double(Frames(i).cdata(:,:,1)-Frames(i-n).cdata

(:,:,1)).^2./Q1.^2);

 II2 =

(1./sqrt((2*pi*Q2.^2))).*exp((-1/2)*double(Frames(i).cdata(:,:,2)-Frames(i-n).cdata

(:,:,2)).^2./Q2.^2);

 II3 =

(1./sqrt((2*pi*Q3.^2))).*exp((-1/2)*double(Frames(i).cdata(:,:,3)-Frames(i-n).cdata

(:,:,3)).^2./Q3.^2);

 III = II1.*II2.*II3;

 P{i} = P{i}+III;

 end

 P{i}=P{i}./N;

end

21 Chuangang Ren & Wei Lin

Noise Suppression

for m =1+mar : row-mar%%%%%%%%%%%%

 for n = 1+mar : col-mar%%%%%%%%%%%%

 if P_bw{i}(m,n)

 continue;

 else

 k=1;

 for p = m-mar : m+mar

 for q = n-mar : n+mar

 mask(k) = Frames(i).cdata(p,q);

 k=k+1;

 end

 end

 for p = 1:k-1

 X(p) = 0;

 for q=1:N

 II =

(1./sqrt((2*pi*Q1(m,n).^2))).*exp((-1/2)*double(mask(p)-Frames(i-q).cdata(m,n)).^

2./Q1(m,n).^2);

 X(p) = X(p)+II;

 end

 X(p) = X(p)./N;

 end

 P{i}(m,n) = max(X);

 end

 end

 end

 P{i}=im2bw(P{i},threshold);

end

22 Chuangang Ren & Wei Lin

%post processing

N=zeros(1,100);

for k=1:1:100

 K=[1/8 1/8 1/8

 1/8 0 1/8

 1/8 1/8 1/8];

 D=double(S(:,:,k));

 A=conv2(D,K);

 C=A(2:1:482,2:1:722);

 for i=1:1:481

 for j=1:1:721

 if abs(D(i,j)-C(i,j))>0.5

 S(i,j,k)=1-S(i,j,k);

 end

 end

 end

 %morphology operation

 SE=strel('square',3);

 S(:,:,k)=imerode(S(:,:,k),SE);

 S(:,:,k)=bwareaopen(S(:,:,k),8);

 S(:,:,k)=imdilate(S(:,:,k),SE);

 [I num]=bwlabel(S(:,:,k));

 N(1,k)=num;

end

%play

%Draw the plot

plot(N,'b')

axis([1 100 0 35])

title 'Number of crabs from the 401st frame to the 500th frame'

xlabel('Frames')

23 Chuangang Ren & Wei Lin

ylabel('Number')

hold;

t(1,1:8)=31;t(1,9:11)=30;t(1,12:13)=29;t(1,14:16)=31;t(1,17:32)=28;t(1,33:46)=27;

t(1,47:66)=26;t(1,67:76)=25;t(1,77:100)=24;

plot(t,'r');

legend('Counted by computer','Couted by eyes')

Method 2

for i=1:1:100

 S(:,:,i)=P{i+15};

end

for i=1:1:481

 for j=1:1:721

 S(i,j,:)=1-S(i,j,:);

 end

end

%postprocessing

N=zeros(1,100);

for k=1:1:100

 K=[1/8 1/8 1/8

 1/8 0 1/8

 1/8 1/8 1/8];

 D=double(S(:,:,k));

 A=conv2(D,K);

 C=A(2:1:482,2:1:722);

 for i=1:1:481

 for j=1:1:721

 if abs(D(i,j)-C(i,j))>0.5

 S(i,j,k)=1-S(i,j,k);

 end

 end

24 Chuangang Ren & Wei Lin

 end

 %morphology operation

 SE=strel('square',6);

 S(:,:,k)=imerode(S(:,:,k),SE);

 S(:,:,k)=bwareaopen(S(:,:,k),12);

 S(:,:,k)=imdilate(S(:,:,k),SE);

 [I num]=bwlabel(S(:,:,k));

 N(1,k)=num;

end

%Draw the plot

plot(N,'b')

axis([1 100 0 50])

title 'Number of crabs from the 401st frame to the 500th frame'

xlabel('Frames')

ylabel('Number')

hold;

t(1,1:8)=31;t(1,9:11)=30;t(1,12:13)=29;t(1,14:16)=31;t(1,17:32)=28;t(1,33:46)=27;

t(1,47:66)=26;t(1,67:76)=25;t(1,77:100)=24;

plot(t,'r');

legend('Counted by computer','Couted by eyes')

