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1 Introduction

The Microsoft Kinect is a low cost device that combines an RGB camera with a
depth sensor. Depth information is inferred by comparing a scene illuminated by a
structured IR speckle dot pattern against a calibrated reference. Specifically, a depth
image is calculated internally by comparing the spacing of the returned dots against
known values at specific depths [1]. The end result is an inexpensive RGB-D (red,
green, blue, and depth) sensor, a device that has proven useful in various Human

Computer Interface problems from finger counting to gesture recognition.
1.1 Problem Statement

One particularly interesting application of such sensors is the classification of
gestures for automatic sign language recognition. Implementations have been created
for various sign language alphabets and words including Greek, English, and Japanese [2].
While such sign language dictionaries are well beyond the scope of this project, our goal
is to implement a Kinect based gesture recognition system that is capable of resolving
numerical digits from 0 through 5 as well as more general single hand gestures.

2 Literature Review

Numerous papers have been written on the subject of generalized hand gesture
recognition using RGB-D sensors. One technique considered early on was proposed by
Du [3]. The idea is to trace the contours of a hand silhouette and detect concavities and
convexities. The convexity points correspond to the finger tips, while the concavity
points define the region between fingers. A simple classifier is defined for the digits 0
to 5 by counting the number of these points. However, this descriptor and classification
scheme are already applied to Kinect sensor information for gesture recognition. So,
instead, the Malima [4] paper is considered. As with the Du method, the scheme
proposed in Malima has simple, yet robust feature selection and classification. In
addition, it is scale, translation, and rotation invariant. However, their method is applied
to images captured with an RGB camera, where segmentation is performed by
thresholding the color channels based on skin color values. In principle, though, the

circle-based descriptor is applicable to depth images as well. This is one of the
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descriptors implemented as part of the project. It is described in greater detail in the
following section.

Unfortunately, although simple and relatively robust, the Du and Malima systems
are limited to the counting digits, 0 to 5. They are both analyzing local contour features
of the hand outline, but do not recognize the shape of the hand as a whole. So, more
generalized gesture methods were explored.

One such paper is the covariance matrix approach in Guo [7]. This approach
performs human action recognition by looking at a sequence of whole body silhouettes
over time, a silhouette tunnel, captured by the Kinect. A 13 dimensional feature vector
is defined, where 3 values are row, column, and time, 8 values are based on the shape of
the silhouette (described later), and the last 2 are a measure of the temporal similarity.
However, this feature vector is general enough to work with hand silhouettes in addition
to full bodies. So, it is possible to modify the shape feature vector to work with static
hand gestures by reducing the dimensionality. This can be accomplished by removing
the time dependence and temporal similarity terms. The result is a generalized 10
dimensional feature vector applicable to static shape recognition. The specific
implementation and classification details are defined in the next section.

Fourier descriptors were also researched. A nice survey of Fourier based shape
representations is provided in [6]. Out of all the methods surveyed, the centroid (central)
distance Fourier descriptor provides the best results. This method is then used by
Kulshreshth [5] to perform gesture recognition with the Kinect. Surprisingly, however,
they limit themselves to just recognizing digits as in finger counting. It is implied that the
comparatively low resolution of the depth images from the Kinect is the limiting factor.
In addition, there is no testing done on the optimal number of contour points to sample.

So, we chose to explore the central distance Fourier descriptor further.
3 Methods

The development environment consisted of the Microsoft Kinect for image capture,
the OpenCV library for image processing, OpenNI for interfacing with the Kinect, and a
third party NITE library for hand tracking.
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3.1 Preprocessing

The preprocessing steps include: image capture, hand localization, silhouette
generation, and finding the center of the hand. There are three available stream sources
for image capture from the Kinect: RGB, the raw infrared (IR) dot pattern, and the
processed depth image.

IR Stream:

Our initial method used the raw IR stream for image capture. Hand localization is
performed by cropping to a rectangle around the hand coordinates provided by the NITE
library. A 3x3 median filter is applied to the resulting image, followed by global
thresholding with Otsu’s Method [8] using the openCV function, cv2.threshold().

Otsu’s Method is a binary thresholding scheme that separates the intensity values into
two classes (foreground and background in this case). The problem is that the intensity
ranges of the two classes may overlap in the histogram of the image. Intuitively, the
basic idea is to find the value which best splits the histogram into two distinct,
well-separated histogram regions. Practically, this is done by finding the threshold
value on the histogram, k € {0 ...255}, which maximizes the between-class variance,
a?(k), [9]:

arg max
k

where o?(k) = Pg (k)P (k)(mg(k) — mp(k))?
Pg(k) = ¥X ,p; = prob pixel assigned to background

a?(k)

Pr(k) = Y25 ..p; = 1— Py = prob pixel assigned to foreground

mg(k) = iz’i‘zo ip; = mean of the background pixels

mp(k) = Pi 25 L ip; = mean of the foreground pixels
F

However, although processing the IR stream produces useful hand silhouette images,
there is no depth information included. Segmentation is based on the intensity values of
the IR image itself, which is quite dim. So, this segmentation method only provides
good results in the case where the user’s hand is separated far enough from the body and
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is shown against a white background. Instead, we switched to using the resolved depth
stream.

Depth Stream:
Image Capture

Fig 1 — Raw Depth Image
1. Capture a raw depth image from the Kinect and quantize to 0 through 255
2. Background Elimination [3]
a. Invert the depth values
b. Assign the background pixels to 0
c. (0 =background, 255 = foreground)

Fig 2 — Processed-bepth Image

Hand Localization:

e Finer Thresholding
a. Use hand location provided by NITE tracker (Px, Py)
b. Find the average depth value in 3x3 window centered at (Px, Py)

c. Threshold to a certain range around this average depth value (empirical)
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d. Crop to box around hand using depth at (Px, Py) [5]

13000
Depth(Px,Py)

I. Scale =
1. Constant 13000 found empirically
2. Proportional to the area of bounding box
ii. Top Left Pixel = (Px — 10 * Scale * 0.5, Py — 10 * Scale * 0.6)
1. This formula scales an initial 10x10 box centered at (Px, Py) to
the appropriate dimensions based on the depth
2. Constants 0.5 and 0.6 take into account that most hand
silhouettes are more tall than wide

iii. Width = Height = 10*Scale

Fig 3 — Cropped Hand

Generate Silhouette:

1. Trace the contours using OpenCV'’s findContour function.
2. Only keep the contour with the largest area

3. Fill in the contour to generate a hand silhouette

Fig 4 — Hand Silhouette
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Locate Center of Hand Silhouette (COG):

k k
i=0Xi i=0 Vi

Xctr = T:yctr = I

where (Xi,yi) = silhouette coordinates, (Xctr, Yetr) = Center of hand, and k = total number of

pixels in the hand.

3.2 Circle Method

This detection method is based on Malima et al [4]. The idea is to draw a circle
centered at (Xcr, Yer), Which cuts through all the fingers of the hand. The radius of this
circle needs to be large enough that it encompasses more than just the palm, but small
enough that no fingers are missed. The intersection of the circle with the silhouette
forms the basis of the finger detection scheme. The circumference of the circle is traced
for discrete values of theta from 0 to 360. For each theta, the algorithm assigns a value
of 0 or 1 depending on whether or not the underlying pixel is in the silhouette of the hand.
The result, shown in Fig 5, is a 1D vector (descriptor) for each gesture. (Note: The

vectors on the right have been stretched out in two dimensions for visualization purposes

only.)
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Fig 5 — Circle Method Descriptor

Classification Steps:

1.

Find the distance between the center of the hand at (X, Ycr) and the furthest point on
the silhouette

Define five circles with radii scaled at 0.65, 0.67, 0.7, 0.73, 0.75 of this maximum
distance

Generate feature vector defined previously for each circle

Count the number of discontinuities and map to the appropriate finger count for each
circle

Apply majority rule to classify the gesture

Because the decisions are based on a scaled value of the distance computed in Step 2,

this classification scheme is scale invariant. Rotation invariance is the result of using a

circle for feature selection. This method is robust given a perfectly segmented hand.

However, the classifier is limited to counting the numbers between 0 and 5 and not

adaptable to more generalized gestures. Therefore, we tested other methods such as

covariance matrix and Fourier descriptor.
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3.3 Covariance Matrix Approach

As previously stated in the Literature Review, the Covariance Matrix approach
proposed in Guo [7] can be easily adapted for use with static hand gestures.
Create the Feature Vector
1. Compute the 10-dimensional feature vector adapted from Guo [7]:
2. f(x,y) = [xy,de, dw,dn,ds,dne,dsw, dse, dnw]
o x=col,y=row
o0 d = Euclidean distance from (x,y) to the nearest boundary point in the specified
direction
i. east, west, north, south, northeast, southwest, southeast, northwest
3. Scale Invariance

o Divide each spatial feature by the square root of the silhouette area
4. Compute the Covariance Matrix:

0 cov(f(8)) = = SiemesFEY) — up)(f 6, y) — pp)T

S|
0 S = areaofsilhouette

0 Up= Z(x’y)esﬁf(x, y) = mean feature vector for silhouette

Build a Dictionary

For a set of images of the same gesture, compute the Covariance Matrix and add it to
the dictionary with the same label. Repeat for all desired gestures.
Classification

As noted in Guo [6], the set of all covariance matrices lie on a Riemannian
manifold. So, a Euclidean distance measure cannot be used. Instead, the distance

between two covariance matrices on this manifold is defined as:

10
d(C,C) = \/Zk=1(lnlk(6,6’))2

where 4, (C,C") are the generalized eigenvalues of C and C'
C = Covariance Matrix of new sample,C' = Reference from Dictionary

The label of the minimum distance gesture is used for classification.

Pros: Con:
1. Complex Gestures 1. Not rotation invariant
2. High accuracy
3. Scale invariant
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3.4 Fourier Shape Descriptor

The Fourier Shape descriptor used in this paper is based on the work in Kulshreshth
[5]. The basic idea is to first create a set of Euclidean distances between the center of the
hand and equidistant points along the contour [see Fig 6]. The magnitude of the Fourier
Transform of this set forms a unique shape signature, which can be used for generalized
gesture classification.

In addition, this descriptor is rotationally invariant. Shifts in the silhouette contour
points, which is the cause of rotation, will be appear as phase delays in frequency
domain. However, since only the magnitude of the Fourier coefficients is considered,
the phase (or equivalently, the rotation) is ignored. So, this method is rotationally

invariant while remaining computationally fast.

Displacement
=

Contour Samples

Fig 6 — Centroid Displacement Diagram (Full contour before sampling)
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Generating the Fourier Descriptor:
1. Sample N = 16 equidistant points along the full contour of the hand (Fig 6)
2. Calculate Euclidean distance between each sample point and the center of the hand
r[n] forn=1...N
3. Take the magnitude of the N point DFT of these points
abs(FT{r[n]}) = a[m] form=1...N
4. Normalize the Fourier coefficients by the DC value (Scale Invariance)
5. Keep the first 7 normalized coefficients (skip DC, which is always 1)

This is the Fourier Descriptor for a single shape.
Make a Dictionary
For a set of images of the same gesture, compute the average Fourier shape descriptor

and add it to the dictionary with the same label. Repeat for all desired gestures.

Classification
Compute the Fourier descriptor for each new sample. Compare it with each stored
gesture in the dictionary using a Euclidean distance measure. The label of the minimum

distance is the desired gesture.

4 Experimental results

Comparison between Covariance Matrix and Fourier Descriptor

Testing Setup:

e Covariance Matrix and Fourier Descriptor Methods implemented in MATLAB
e 600 images = 6 gestures, labeled 0 to 5, 100 images per gesture

e Vertical Orientation (No Rotation)
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Confusion matrices for the Covariance Matrix and Fourier Descriptor Methods:

Predicted (CCR = 89.5%)

0 1 2 3 4 5

0 1 0 0 0 0 0
% 1 0 0.85 0 0.11 0 0.04

o 2 0 0 0.85 0.15 0 0

S 3 0 0 0.13 0.87 0 0
< 4 0 0.08 0 0 0.84 0.08
5 0 0 0 0.04 0 0.96

Table 1 - Confusion Matrix for Covariance Matrix Method
Predicted (CCR = 90. 6%)

0 1 2 3 4 5

- 0 1 0 0 0 0 0

< 1 0 1 0 0 0 0

= 2 0 0.04 0.85 0.11 0 0

g 3 0 0 0 0.88 0.12 0

< 4 0 0 0 0.07 0.93 0
5 0 0 0 0 0.22 0.78

Table 2 - Confusion Matrix for Fourier Descriptor
Results:

As is evident in the tables above, both methods are quite effective. However, during
additional testing, we found that rotation in the input images decreased the effectiveness of
the covariance matrix method. This result is reasonable since the covariance matrix is not
rotationally invariant. One simple solution is to first find the orientation of the hand,
re-center the silhouette vertically, and then run the covariance matrix method. However,
because the Fourier descriptor is already rotationally invariant and much faster
computationally, it was chosen as the primary shape signature and subsequently ported to

C++/OpenCV for real time classification with the Kinect.

Determining the Optimal DFT Length

Testing Setup (MATLAB):

e 600 images = 6 gestures, labeled 0 to 5 (Same as previous test)
e N =16, 32, 64, and 128 point DFT

e N/2-1=7,15, 31, 63 Coefficients kept
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Gestures
= 0 1 2 3 4 5 CCR
(@)
o
E 16 1 1 0.85 0.88 0.93 0.78 0.906
S
% 32 1 1 0.88 0.80 0.74 0.66 0.85
=
ks 64 1 1 0.88 0.73 0.29 0.25 0.69
5
(@]
L 128 0.73 0.87 0.46 0.46 0.03 0.14 0.45
pd

Table 3 - Decisions made with N/2-1 of Coefficients

Results:

The 16 point DFT results in the highest correct classification rate (CCR), where CCR
is calculated as the average of the values in each row (i.e. across all gestures).
Interestingly, additional testing revealed that the global optimum for our testing data was
actually an 18 point DFT. However, we kept N = 16, a power of 2, to maximize the
efficiency of the Fourier transform computation.

Recall that N is also the number of points along the contour of the hand silhouette.
Surprisingly, increasing the number of samples actually decreases the CCR. This is a bit
counter intuitive. So, we decided to investigate methods for utilizing a higher order DFT

while maintaining lower dimensionality.

Investigating Fourier Coefficient Pruning

One suggested alteration is to only keep the first few coefficients of a 128 point DFT.
The idea is that throwing out Fourier coefficients of such a high order DFT will make the

overall contours smoother (remove noise), while retaining the overall shape.
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Gesture

0 1 2 3 4 5 CCR

g 7 0.80 0.76 0.42 0.38 0.07 0.04 0.41
§ %’ 15 0.76 0.76 0.42 0.38 0.07 0.04 0.40
§ - 31 0.71 0.75 0.41 0.40 0.07 0.04 0.40
63 0.73 0.87 0.46 0.46 0.03 0.14 0.45

Table 4 - Results of 128 Point DFT Coefficient Pruning
Results:

From the table above, it appears that the suggested alteration is ineffective. One
reason may be that there simply aren’t enough contour points (i.e. N > # contour points).
For example, when the hand is far from the camera, the resulting silhouette is small,

resulting in fewer contour points.

Additional Gestures (beyond counting fingers)

Testing Setup (C++/OpenCV):

e Fourier Descriptor

e 4000 images, 10 gestures, 400 images per gesture Dictionary
e IR Depth Images (prior to using the Depth Stream)

e Real time testing with the Kinect using IR segmentation scheme

Results:

The Fourier shape description method was implemented using the IR depth data.
The segmentation was poor when the user held the hand in front of the body. However,
for the limited case where the hand was positioned away from the body against a remote
background, we were able to create a fairly accurate gesture recognition system which
included more generalized shapes. This was due in part to the comparatively higher
resolution silhouettes captured by the processed IR images. The lack of depth integration
in the segmentation ultimately forced us to abandon this approach. However, it provided
compelling evidence that the Fourier descriptor has great potential when paired with a

higher resolution depth sensor.
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5 Conclusions

In conclusion, the centroid Fourier descriptor method was able to perform gesture
recognition with a CCR of 90.6% in MATLAB. Furthermore, we were able to
implement it in C++/OpenCV to run in real time. In addition, we successfully
implemented temporal dampening to minimize fluctuations in the classification by
buffering the results and showing the mode over the last 30 frames (one second).

Unfortunately, because of time constraints, we were unable to add more gestures
beyond the usual counting numbers from 0 to 5 after switching from the IR channel to the
Depth stream. The only additional gestures added were alternate versions of the same 0O
to 5 digits to account for the different ways that people might perform those gestures.
Even so, we believe that this codebase could form the basis of a generalized gesture
recognition system. Unlike the Du and Malima methods, the Fourier descriptor is
looking at the overall shape, not just local contour information. So, the fact that it can
successfully resolve any group of 6 shapes suggests that, in principle, there should be no
issues adding any new gestures to the dictionary (provided they have a different enough

silhouette).
5.1 Future Plans

We foresee several avenues for improvement:

e Applying a threshold method for unassigned gestures

e Ability to add new gestures to the dictionary

e Trying a new distance metric (Mahalanobis)

e Trying a more sophisticated Classification scheme

e Using two hands simultaneously for combined gestures

e Adding more gestures from the single hand sign language alphabet
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Appendix

#include <opencv\cv.h>

#include <opencv\highgui.h>
#include <iostream>

#include <OpenNI.h>

#include <opencv2\imgproc\imgproc.hpp>
#include <NiTE.h>

#include <NiteSampleUtilities.h>
#include <string>

#include <sstream>

#include <iomanip>

#include <cmath>

using namespace cv;
using namespace std;
using namespace openni;
using namespace nite;

Point findCenter(Mat);
Mat calcFourierDescriptor(Mat);
int classifier(vector<Mat>, Mat);

int main(){
openni: :Device device;
openni::Status rc = openni::STATUS_OK;

VideoStream ir; // IR VideoStream Class Object
VideoFrameRef irf; //IR VideoFrame Class Object
VideoMode vmode; // VideoMode Object

nite::HandTracker handTracker;
nite::Status niteRc;
niteRc = handTracker.create();
handTracker.setSmoothingFactor(0.0f);
handTracker.startGestureDetection(nite: :GESTURE_WAVE);

// handTracker.startGestureDetection(nite::GESTURE_CLICK);
handTracker.startGestureDetection(nite: :GESTURE_HAND_RAISE);
nite::HandTrackerFrameRef handTrackerFrame;

rc = openni::OpenNI::initialize(); // Initialize OpenNI
rc = device.open(openni::ANY_DEVICE); // Open the Device

rc = ir.create(device, openni::SENSOR_DEPTH); // Create the VideoStream for IR
rc = ir.start(); // Start the IR VideoStream
Mat result(240, 320, CV_8UC1, cv::Scalar::all(e)); // Display

detected Gesture

int h, w; // Height
and Width of the IR VideoFrame

const uintl6_t* imageBuffer;

double maxVal=0,minVal=0;
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RNG rng(12345);

bool keepTracking = true;
int fileNum = 0;

LIT11T10017700777777777777171111771117
// Load Library

L1117 77 7777177777777 7777777777777777
FileStorage lib("lib.xml", FileStorage::READ);

vector<Mat> dictionary;
lib["traininglLibrary"] >> dictionary; // load library into mat vector
lib.release();

IITTTTTT70 77070777 7777777177777777177

// Continually Process images

[ITTT77707777777177777777777777771771177

// Buffer size

int bufferSize = 30, nextIdx = @, maxGestures = 20;
std::vector<int> buffer;
buffer.reserve(bufferSize);

std::vector<int> hist(maxGestures, 0);

while(1)
{
niteRc = handTracker.readFrame(&handTrackerFrame);
rc = ir.readFrame(&irf); // Read one IR VideoFrame at a time

vmode = ir.getVideoMode(); // Get the IR VideoMode Info for this video stream.
// This includes its resolution, fps and stream format.

Mat depth(480,640,CV_16UC1, (void*)irf.getData(), 2*6490);

Mat frame;
cv::normalize(depth, frame, 0, 255, CV_MINMAX, CV_8UC1);
frame = 255 - frame;

// shadow elimination
for(int ii = @; ii < frame.rows; ii++)
for(int jj = 0; jj < frame.cols; jj++ )
if(frame.at<uchar>(ii,jj) == 255)
frame.at<uchar>(ii,jj) = 0;
double minVal, maxVal;
minMaxLoc (frame, &minVal, &maxVal, NULL, NULL);

const nite::Array<nite::GestureData>& gestures =
handTrackerFrame.getGestures();
for (int i = @; i < gestures.getSize(); ++1i)
{
if (gestures[i].isComplete())
{
nite::HandId newId;
handTracker.startHandTracking(gestures[i].getCurrentPosition(),
&newlId);
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}

const nite::Array<nite::HandData>& hands = handTrackerFrame.getHands();
for (int i = ©; i < hands.getSize(); ++i)
{

const nite::HandData& hand = hands[i];

if (hand.isTracking() && keepTracking == true)

{

float pX = @, pY = 0;
handTracker.convertHandCoordinatesToDepth(hand.getPosition().x,
hand.getPosition().y, hand.getPosition().z, &pX, &pY);
float zz = hand.getPosition().z;

Point ctrLoc = Point(pX, pY); // hand location
int ctrval = frame.at<uchar>(ctrLoc); // depth value at hand location
double meanVal = 0;

for(int ii = -1; ii <= 1; ii++)
for(int jj = -1; jj <= 1; jj++)
if(((pX + ii) < frame.cols) && ((pX + ii) >= 0©) && ((pY + jj) < frame.cols)
&& ((pY + jj) >= 0))
meanVal += frame.at<uchar>(Point(pX + ii,pY + jj));

meanVal /= 9;

// Extract window around detected hand
double winConst = 13000.0f; // defines the relative size of the bounding box
double scale = winConst/zz;

// Define coords for bounding box
double colStart = max(@, pX - 10*scale*0.5);
double colEnd = min(frame.cols, colStart + 1@*scale);
double rowStart = max(@, pY - 10*scale*0.6);
double rowkEnd = min(frame.rows, rowStart + 10*scale);

// crop image to roi
Mat num = frame.rowRange((int)rowStart,
(int)rowEnd).colRange((int)colStart, (int)colEnd);

Mat wdw;
num. copyTo(wdw) ; // make working copy
wdw.convertTo(wdw, CV_8U);

vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
threshold( wdw, wdw, meanVal*@.98f, 255, CV_THRESH_BINARY );

L1110 07 7777777777717 77777777777177

//  Compute Fourier Descriptor

IITT1T7707 77777777 7777777777771777177

Mat ft; // Fourier descriptor vector
int dist; // store the label of the minimum distance neighbor

ft = calcFourierDescriptor(wdw);// compute the Fourier Descriptor for this image
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[17177077177777777177177177777177771777
//  Find Nearest Neighbor

[I177177777777777777777777777777717777
dist = classifier(dictionary, ft); // returns detected gesture from dictionary

// Implement Buffer for "temporal dampening” (i.e. take mode of values in the buffer)
if (nextIdx >= buffer.size()) {// initial fill of the first bufferSize
number of values
buffer.push_back(dist);

hist[dist]++; // produce histogram, © = unknown gesture
}
else { // subsequent overwrites
hist[buffer[nextIdx]]--; // delete previously found index from histogram
buffer[nextIdx] = dist; // overwrite buffer with new value
hist[dist]++; // update the histogram
}
++nextIdx;
if (nextIdx >= bufferSize) // reset the next index (circle back)
nextIdx = 0;

// Find the mode of the histogram (should be fast, since histogram size is limited to
maxGestures, which is typically small
dist = std::max_element( hist.begin(), hist.end() ) - hist.begin();

[I17777777777777777777777777717777771771717
// Output results to the Screen

HITTTTTT7 77077777777 7771777777777777

result.setTo(cv::Scalar::all(9)); // clears the output
window

ostringstream displaystream; // output
stream

if (dist == 6)
displaystream << "1";

else if(dist >= 1 && dist <= 5)
displaystream << dist;

else if(dist == 7)
displaystream << "3";

else if(dist == 8)
displaystream << "3";

else if(dist == 9)
displaystream << "0";

else if(dist == 13)
displaystream << "2";

else if(dist == 12)
displaystream << "2";

else if(dist == 11)
displaystream << "1";

putText(result, displaystream.str(), Point(75,225),
FONT_HERSHEY_COMPLEX, 10.8, cvScalar(200,0,0), 4, CV_AA);
namedWindow("Result", 2); // Create a named window
imshow("Result",result); // Show the IR VideoFrame in this window
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namedWindow("drawing", 2); // Create a named window
imshow("drawing",wdw); // Show the IR VideoFrame in this window

char key = waitKey(10);

if( key == 27 ) // escape key

break;

else if(key == 32) { // space bar

ostringstream fileName;

fileName << "../Data/" << setw(5) << setfill('0') << fileNum++ << ".tiff";
imwrite(fileName.str(), wdw);

}

else

char key = waitKey(10);
cvDestroyWindow("Result");
cvDestroyWindow("drawing");}

}

// Convert to 8-bit data for display
frame.convertTo(frame, CV_8U);

char key = waitKey(10);

if( key == 27 ) // escape key
break;

namedWindow("frame",1); // Create a named window

imshow("frame", frame); // Show the IR VideoFrame in this window
}
ir.stop(); // Stop the IR VideoStream
ir.destroy();
device.close(); // Close the PrimeSense Device

nite::NiTE: :shutdown();

return 0;
} // end main()
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// Find center of mass for hand silhouette

[171770771777771777777177177717171777
Point findCenter(Mat wdw) {

// find the center position of the hand

double colSum = @.f, rowSum = @.f, totSum = 0.f;
int ctrRow = @, ctrCol = 0;

Point ctrPt;

for(int ii=@; ii < wdw.cols; ii++){
for(int jj=0; jj < wdw.rows; jj++){
if (wdw.at<uchar>(Point(ii,jj))!=0){
colSum = colSum + ii;
rowSum = rowSum + jj;
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totSum++;

}
¥

// center of the hand in cartesian coords
ctrPt.x = static_cast<int>(colSum/totSum);
ctrPt.y = static_cast<int>(rowSum/totSum);

return ctrPt;
} // end findCenter()

Mat calcFourierDescriptor(Mat wdw) {

// Find the center position of the hand
Point ctrPt;
ctrPt = findCenter(wdw);

// Find the contours of the silhouette

vector<vector<Point> > contours;

vector<Vec4i> hierarchy;

findContours( wdw, contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE

)
/// Approximate contours to polygons + get bounding rects and circles
vector<vector<Point> > contours_poly( contours.size() );

vector<Rect> boundRect( 1 );

double maxArea = 0.0f; // store the max area of all the convex hulls
int maxInd = 0; // store contour id of max area

for( int i = ©; i < contours.size(); i++ )

{
approxPolyDP( Mat(contours[i]), contours_poly[i], 3, true );
double currArea = cv::contourArea(contours_poly[i]);
if( currArea > maxArea) {
maxInd = i;
maxArea = currArea;
}
¥
int lineThickness = -1;

// blank out the window
wdw(Range: :all(),Range::all()) = 0;

// maxInd = largest contour
drawContours( wdw, contours, maxInd, 255, lineThickness, 8, vector<Vec4i>(), o,
Point() );

Mat frame;
wdw.copyTo(frame); // Make working copy

IIT711777777717777777717

// Repeat previous steps

[1111777717171771111777

ctrPt = findCenter(frame);
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// Find the contours of the silhouette
contours.clear();
hierarchy.clear();

findContours( frame, contours, hierarchy, CV_RETR_EXTERNAL,
CV_CHAIN_APPROX_SIMPLE );

// Remove contours that are along the bottom edge of the window

size_t diml = contours[@].size(); // number of
contour points

int r = wdw.rows, ¢ = wdw.cols;

for(int ii = @; ii < diml; ii++)
if((contours[@][ii].x == @) || (contours[@][ii].x == c-1) ||
(contours[@][ii].y == @) || (contours[@][ii].y == r-1) )
contours[@].erase (contours[@].begin()+ii);

// Find equidistant points along the contour

int N = 16; // N point DFT
// size_t diml = contours.size();

size_t dim2 = contours[@].size(); // number of
contour points

int shift = static_cast<int>(floor((dim2/(N)) + ©.5)); // delta between
contour samples along the contour

Vector<Point> K; // vector to store

the sample contour points

// Find and store equidistant points along the contour

for(int ii = @; ii < N; ii++) { // Get N
samples along the contour
if(shift*ii > dim2) {
break;
}
else {

K.push_back(contours[@][shift*ii]);

}
}

vector<double> rt; // Euclidean distance vector
for(int ii = 0; ii < K.size(); ii++) {
// find distance from each point to the hand center
K[ii] -= ctrPt;
// compute Euclidean distance, r(t)
rt.push_back(norm(K[ii]));
¥

// take the magnitude of the N point FFT

Mat img = Mat(rt);

Mat planes[] = {Mat_<double>(img), Mat::zeros(img.size(), CV_64F)};
Mat complexI;

merge(planes, 2, complexI);

dft(complexI, complexI, DFT_COMPLEX_OUTPUT);

split(complexI, planes); // planes[@] = Re(DFT(I), planes[1]
magnitude(planes[0@], planes[1], planes[©@]); // planes[@]
Mat f_all = planes[0].t();

Im(DFT(I))
magnitude

// Normalize by the f@ (DC value)



23 Cliff Chan, Seyed Sepehr Mirfakhraei

f_all /= f_all.at<double>(9); // Note: This depends on the data type of
planes[] (BOTH parts of the constructor)

// Only store the first (N/2) unique coefficient values (excludes the DC coeff, which
is always 1)
// Ex: If N = 16, then keep 8 of the coeffs.

int offset static_cast<int>(floor((N/2) + 0.5)+1); // offset =
round(N/2) + 1;
Mat ft = f_all.colRange(Range(1l,offset)); // Note: Adding 1 to

get all unique coeffs

return ft;
} // end calcFourierDescriptor()
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// Basic classifier using Euclidean distance
// Inputs:

// 1lib = Lib loaded from premade dictionary
// src = Fourier descriptors for input image

// Outputs:
// Mat = Euclidean distance between the src Fourier descriptor and each label in the
dictionary

[I177777777177777777777771777777777717
int classifier(vector<Mat> dict, Mat src) {

int ctr = 1;

int minIdx = -1;

double minVal = 999999999;
double currval;

// Iterate through Dictionary
for (vector<Mat>::iterator it = dict.begin() ; it != dict.end(); ++it) {
currVal = norm(*it, src, NORM_L2); // compute Euclidean distance

if(currval < minval) {
minVal = currVal;
minIdx = ctr;
¥
ctr++;
}
return minIdx;
} // end classifier()



