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1 Introduction

The field of lens-based photography has existed since the late 16th century [6] and has

seen enormous technological improvements ranging from lens-filled pinholes in dark rooms to

handheld/mobile cameras in today's smartphones. Consistent with this growth in camera

technology, the miniaturization of all electronic and non-electronic components, and the

exponential growth in computing power, photographic methods have consequently split into two

categories: impulse imaging and computational imaging [7]. Impulse imaging techniques are

those solely reproducible through physical camera systems by manual/automatic adjustments to

shutter speed, aperture size, focus, and lens setup, such as extended depth of field (EDOF)

imaging, motion deblurring, spectroscopy, light field capture, and illumination multiplexing. On

the other hand, computational imaging can achieve (to varying levels of success) approximations

of each aforementioned technique, with the addition of novel functionalities unachievable by

conventional impulse imaging systems, such as image refocusing, perspective changes,

omnidirectional field of view, recreation of scene structure through RGB+D cameras, stereo

imaging, defocus, and diffusion [7].

In this exploration, we will be focusing on the novel functionalities granted by

depth-based computational imaging, which has been powering modern technologies like Apple’s

Portrait Mode, introduced on the iPhone 7 plus in 2016, highlighting customer demand for the

ability to control the focus of an image based on depth of field. While the first iteration was not

much different than how a traditional camera blurs the background of a particular subject

utilizing a small f-stop, later developments introduced methods that involve merging two

cameras’ images, or in the case of the TrueDepth camera on the iPhone X, an orthogonal grid of

infrared dots to measure approximate scene depth. Additionally, with the extreme and growing

prevalence of facial recognition software employed by large corporations with the intent of

hyper-targeted marketing, government agencies for criminal identification and overall security,

and even residential buildings with the intent to replace physical keys, one’s identity is becoming

increasingly public [8]. Resulting from this, depth-based computational imaging can be used to

develop a facial recognition “jammer”, applying a form of visual distortion, such as blurring,
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pixelation, and feature morphing, to an individual’s face, preventing it from being detected

entirely by facial recognition software.

2 Literature Review
2.1 Portrait Mode

Projecting light onto an image to create a depth map is not a new concept, Moreno and

Noguer implemented a system that projected a visible dot grid onto a scene, such that when the

subject was photographed the blur and dispersion of the individual dot provides depth

information directly on the image [1]. A drawback to this method was that in order to obtain the

desired subject, the dots needed to be removed and underlying color and brightness information

was interpolated adding distortion. However, this depth information allowed fairly accurate

segmentation of the photo. This procedure allowed for not just refocusing of the foreground but

any significant object in the scene as long as they are presented perpendicular to the camera.

Later Castellanos and Nguyen explored refocusing utilizing the Microsoft Kinect camera

which implements an infrared light grid that would not be detectable to the human eye [2]. The

use of infrared avoids needing to remove a visible grid from an image, however, the camera had

limitations yielding invalid depths at subject edges. To rectify this a hole-filling algorithm was

utilized setting intensity equal to the most intense pixel in a given window. Furthermore, since

the depth information is coming from a different image than the RGB information source the

depth map must be scaled and aligned to map the information prior to refocusing. The edge

information acquired from the depth map is very important when generating focus boundaries

therefore hole filling and alignment procedure accuracies are essential.  Castellanos and Nguyen

also utilize a machine learning alpha matte to determine if part of a scene is in the foreground or

background of a focused object and improves boundary accuracy when applying artificial

blurring. The limitations of this method mainly exist within the limitations of the equipment used

to capture the images. The IR of the Microsoft Kinect is too weak to be applicable in scenes with

heavy sunlight. Additionally, it could not capture a high enough resolution RGB image, the depth

and color information had to be acquired at separate times- meaning this application could not be

used for moving scenes.
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Finally, there has been investigation into generating depth maps purely using information

from the focal plane of an image. In theory, a rapid succession of images taken at increasing

focal depth will provide depth information based on blur qualities of each image in the stack.

Suwajanakorn et al. successfully utilized a common mobile phone, accounting for movement

between images in order to acquire a depth map and refocus the image [4]. Later Wiberg was

able to replicate the approach with a simpler process that consisted of alignment, generating an

all-focused image, and a subsequent depth map with linear interpolation [5]. As computational

tools improve, this method of depth perception is promising as it relies on reproducible and

easily acquired equipment for image capturing when compared to light projection previously

mentioned.

2.2 Privacy Filter
In order to develop a "privacy filter"/facial recognition jammer, it is important to

understand the different methods for facial detection and recognition. Successful face detection

algorithms of the past are heavily based on the geometrical relationships between facial

landmarks, using these as the primary method of extracting facial features. As mentioned in [9],

the success of these methods are highly dependent on the detection and location of these

landmarks in an image, making software quite unstable in the presence of pose variation and

illumination disparities. Moving from the purely geometric approach, facial recognition software

began treating faces as patterns for which a more general one could find faces in an image,

becoming known as the photometric approach [9]. The most successful algorithms/methods to

detect faces in images under the geometric and photometric assumptions were Principal

Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Elastic Bunch Graph

Matching (EBGM). While these methods are still effective, developments in deep neural

networks have demonstrated a major breakthrough in facial recognition and many vision-based

tasks through the use of convolutional neural networks (CNNs) [10]. From these methods, it

remains clear that these methods heavily rely on facial features and landmarks to first, detect a

face, and second, recognize who the person actually is. Based on this fact, a promising method of

facial recognition software deterrence is facial blurring, effectively removing all geometric and

photometric information these pieces of software will typically use to identify someone. In the

event blurring or major distortion is not ideal, facial morphing poses another significant viable
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option as a privacy filter as it introduces high correspondences between more than one person's

face, causing a purposeful non/misidentification to protect one's own identity.

Facial blurring, pixelation, and other destructive methods of concealing one's identity

have been implemented before as seen on television and in research done by [11], however,

visually non-destructive methods of protecting one’s identity are valuable in many cases of

keeping images intact while protecting one’s identity.

3 Problem Statement
3.1 Portrait Mode

Many Smartphones have introduced portrait mode, designed to take a high-quality image

focused on a single subject in a shallow depth of field. Using depth information, could the

application of portrait mode be expanded to multiple subjects at various distances? The

following approach utilizes depth from defocus which uses the focal stack of a scene in order to

obtain depth information to achieve multi-subject portrait mode.

The flow chart in figure 3.1.1 illustrates the sequence of processes completed to solve the

proposed problem.

Figure 3.1.1. Portrait Mode Process Outline

Based on the proposed solution the following assumptions need to be made:

1. The Objects of interest are small and highly textured

2. The Objects of interest do not overlap visually

3. The background/ environment is low in texture
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4. There are no rotational or linear translations between the images in the focal stack

3.1.1 Depth from Defocus

In order to gather optimal depth information from the blur that results from varying focal

lengths of a camera lens, objects intended to be the subject of the image were positioned on the

same horizontal plane at varying distances, 14 to 45 cm away from the camera. After testing a

variety of capturing methods including a DSLR (manually adjusting focus and taking pictures

with a remote), a smartphone (manually adjusting focus and taking pictures with a remote), the

method determined to be the quickest and requiring the least amount of interference with the

camera was using a smartphone via the “Open Camera” Application. The app has a setting called

“Focus Bracketing” where the user is able to enter a distance range and the desired number of

images and the app will iterate through taking an image at each focal length automatically,

essentially creating the unmerged focal stack that will be processed for depth information. The

final setup of the portrait mode scene is seen in figure 3.1.2. One data set consisting of 15 images

with focal lengths ranging from 0.1 m to 1.3 m, was used as an input.

Figure 3.1.2. Portrait Mode Scene Setup
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Stack Image 5                              Stack Image 8                             Stack image 14

Figure 3.1.3. Focal Stack Image results

While the phone was not moved during the acquisition of the focal stack, in order to

adjust the depth of focus, the aperture was closing slightly with each image taken. Because of

this, there is a slight inverse magnification effect and darkening of the scene since less light is

hitting the sensor of the camera, as one travels deeper into the focal stack. figure 3.1.4 shows the

impact on brightness by comparing two colors from the same location in two different stack

images. This was corrected by using Matlab's histogram matching function in order to normalize

the intensity of each image to the first photo in the stack.
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Stack Image 5                                          Stack Image 14

Figure 3.1.4. Color Variation in Focal Stack

The magnification change through the focal stack was estimated using equation 3.1.1.

(3.1.1)𝑀 =  𝑓
𝑑− 𝑓

where f is the focal length and d is the distance of the object from the camera, since the object

positions aren't moving, the magnification could be calculated based on the input range of focus

set in Open Camera, and the number of images taken. Since the change in aperture impacts the

radial positions of the subject, each image in the stack was resized based on its magnification

difference compared to the first image in the stack [12].

Once the images are aligned and color corrected, the amount of blur, or inversely, the

amount of focus needed to be quantified for each pixel, in each image in the focal stack. Since

blur generally has a low-pass filtering effect on an image, a summation of the high frequencies

within a neighborhood of the pixel in question was found. The frequency information was

calculated by convolving the image with an edge detecting kernel defined in equation 3.1.2.

(3.1.2)

This is a discrete approximation of a laplacian which computes the second order derivative of the

x and y directions. The output of the convolution was squared and then summed over a region of

neighboring pixels (equation 3.1.3) [13].
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(3.1.3)𝐵(𝑥, 𝑦) =  
𝑗 =𝑦−𝑛

𝑦+𝑛

∑  
𝑖=𝑥−𝑛

𝑥+𝑛

∑ (𝐼(𝑖, 𝑗) *  𝐾 )2

Larger neighborhoods can be used to pick up frequencies on smoother textures but causes a loss

in the edge accuracy of the depth information. Figure 3.1.5 shows the results of the focus

quantity of the 5th image in the stack with a 3 pixel neighborhood.

Figure 3.1.5. Focus Quantity: Stack Image 5/15

In order to use the focus information to quantify depth, a matrix was generated where each

location corresponds to the position in the focal stack where the corresponding pixel's focus

quantity is the largest, thus giving a relative location of the distance of that region. When

normalized between 0 and 1 a black and white depth map can be produced shown as shown in

figure 3.1.6
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Figure 3.1.6. Object Depth Map

3.1.2 Portrait Mode Generation

Once the depth information is obtained and stored in a depth map, the depth map serves

as a visual for relative depth in the image but also points to the stack location of  focus quantity

maximums. Using the depth map, the color information can be pulled from the focal stack where

each pixel is most in focus and combined together. This creates an “all in focus” image (Figure

3.1.7), where no object sacrifices sharpness based on position.
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Figure 3.1.7. “All in Focus” Image

Finally using the all in focus image, the edge detection convolution was repeated in order

to create a binary image, mapping the location of the objects in the scene.  Matlab functions were

used to dilute and erode the edges until the full region of space each object existed in was

mapped. The results of this manual process are shown in figure 3.1.7.
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Figure 3.1.8. Binary Object Edges and Binary Object Map

Now that information pertaining to object depth as well as object location within the scene

are known, the depth map and object map can be cross-referenced to return the final deliverable.

Using a desired distance range, an object or group of objects could be identified. A gaussian blur

was applied to the “all in focus image” and the pixels that fall within the distance range desired,

and object map concurrently, would remain in focus. This produces a final “portrait mode” image

that can contain more than one focal length as seen in section 5.1

3.2 Privacy Filter
With the extreme and growing prevalence of facial recognition software employed by

large corporations with the intent of hyper-targeted marketing, government agencies for criminal

identification and overall security, and even residential buildings with the intent to replace

physical keys, one’s identity is becoming increasingly public [8]. Resulting from this,

depth-based computational imaging can be used to develop a facial recognition “jammer”,

applying a form of visual distortion, such as blurring, pixelation, and feature morphing, to an

individual’s face, preventing it from being detected entirely by facial recognition software. Our

proposed solution to achieve facial recognition “jamming” is conducted via three distinct

processes, demonstrated below in figure 3.2.1.
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Figure 3.2.1: Proposed Privacy Filter Solution

3.2.1 Image Acquisition

In this critical stage, standard high-resolution RGB and RGB+D images are captured from an

iPad Pro 2nd generation’s main camera and LiDAR sensor respectively. In order for this privacy

filter to be accurate and effective, a key assumption is made that corresponding RGB and

RGB+D images are taken simultaneously, mitigating the possibility of image misalignment,

dynamic changes in the environment such as illumination, object movement, etc., and the

presence of additional noise. Unfortunately, due to the lack of availability of a specialized

application to perform the aforementioned simultaneous capture, this assumption does not hold

very well in practice as even slight disturbances will have a drastic impact on the output quality.

To capture high-quality images, the following constraints were imposed on image acquisition:

presence of only one subject in-frame, sufficiently illuminated environments, no obstructions

present in the line-of-sight from the camera to the person’s face, and no excessive deviation from

a straight-facing pose to ensure the remaining two processes would function well. Examples of

captured images can be seen below in Figure 3.2.2
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Figure 3.2.2: Image Acquisition Examples

3.2.2 Facial Recognition Pipeline

In order to verify a facial recognition jammer’s effectiveness, the ability to facially recognize a

person is just as critical as image acquisition. For this task, the choice of using a region-based

covariance matrix matcher was employed [14]. This method was chosen purely because of its

mathematical foundation, allowing for its quick and verifiable implementation, as well as

foregoing a potentially arduous and time-consuming training process under a deep

learning-based approach. To recognize faces in a query image, a database of faces that comprises

the searchable set of faces must be constructed. Constructing this face database involved using

the high-resolution RGB images in the image acquisition step as training data, manually cutting

out faces using a standard clipping tool (Figure 3.2.3).

Figure 3.2.3: Facial Database

Once these training images are obtained, they can be transformed into covariance matrices that

represent them, enabling comparison amongst other covariance matrix representations of query
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faces. To do this, an image is first converted into a higher-dimensional tensor through a mapping

function.

𝐹(𝑥, 𝑦) = 𝑥    𝑦    𝑅(𝑥, 𝑦)    𝐺(𝑥, 𝑦)    𝐵(𝑥, 𝑦)    ∂𝐼(𝑥,𝑦)
∂𝑥

|| ||    
∂𝐼(𝑥,𝑦)

∂𝑦
|| ||    

∂2𝐼(𝑥,𝑦)

∂𝑥2
|||

|||    
∂2𝐼(𝑥,𝑦)

∂𝑦2
|||

|||
⎡⎢⎣

⎤⎥⎦

⊤

With this higher-dimensional tensor of the form W x H x 9 from W x H x 3, we can calculate the

covariance matrix of a region that is a subset of using integral images. The𝐹(𝑥, 𝑦),  𝑅 ⊂ 𝐹

covariance matrix to be used takes the form:

where is a 9-dimensional feature point inside , which can be constructed using the first𝑧
𝑘
(𝑖) 𝑅

and second order integral images:

9𝑃 𝑥', 𝑦',  𝑖( ) =
𝑥≤𝑥', 𝑦≤𝑦'

∑ 𝐹(𝑥, 𝑦, 𝑖)      𝑖 = 1…

9𝑄 𝑥', 𝑦',  𝑖,  𝑗( ) =
𝑥≤𝑥', 𝑦≤𝑦'

∑ 𝐹(𝑥, 𝑦, 𝑖)𝐹(𝑥, 𝑦, 𝑗)      𝑖, 𝑗 = 1…

Using these equations, the covariance matrix of any region can be computed very efficiently as

these integral images can be computed in a single pass over the image. The final covariance

matrix can be calculated using the following equation:

where is the top left corner of the region and is the bottom right corner of the𝑥', 𝑦'( ) 𝑥", 𝑦"( )

region. These covariance matrices are then stored to be used as a facial recognition database.

To extract a query image of a face, the Viola-Jones facial detection algorithm was used to

extract a bounding box around the detected face (Figure 3.2.4). This box was then converted into

its covariance matrix representation using the integral images process just described. With a

covariance matrix database and the newly computed one, a similarity test is required to ascertain

who the face represents. Covariance matrices do not lie in Euclidean space because they are not
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closed under multiplication by a negative scalar [16]. As such, they are converted to the

Euclidean

Figure 3.2.4: Facial detection bounding boxes from the Viola-Jones (Haar Cascade) Detector

space by first taking the singular value decomposition (SVD), obtaining three matrices .𝑉,  𝐷,  𝑉⊤

Using the matrix, representing the eigenvalues of the original covariance matrix, the𝐷

element-wise logarithm is taken, and matrix multiplication is performed to obtain the

transformed covariance matrix. With these transformed matrices, the standard Euclidean distance

can be taken to find the minimum distance between a face in the database and the queried face.

Figure 3.2.5 demonstrates the output of facial recognition using this nearest neighbor approach.

Figure 3.2.5: Facial recognition using Nearest-Neighbor covariance matrix

3.2.3 Facial Outlining Pipeline

Incorporating the depth information into the facial recognition jammer, we begin with the output

of the Viola-Jones (Haar Cascade) facial detection algorithm. The two-dimensional bounding

boxes’ coordinates are transferred into the RGB+D image under the assumption that it has the

same resolution as the standard RGB image. This is a necessary assumption due to the actual
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resolution of the RGB+D image standing at a mere 231x173 points versus the RGB’s

4032x3024. With this assumption in place, the facial bounding box defines the face of a

rectangular prism in three dimensions that is extended to the farthest depth in the image,

encapsulating many points that include the face, hair, and most likely some background points

(Figure 3.2.6). To achieve the initial goal of minimal face distortion from the future-applied

Gaussian blur, we must remove the spurious points that constitute the background (Figure 3.2.7).

To do this, a 5-bin histogram is constructed of the depth of each point, thresholding it at any

point within the first two bins.

Figure 3.2.6: Facial detection bounding box translated into RGB+D image

Figure 3.2.7: Removal of background points via 5-bin histogram thresholding

With thresholding complete, the coordinates of these 3D points must be converted into their

respective 2D coordinates through the camera’s projection matrix. Assuming the world

coordinates are centered at the camera, with x and y axes corresponding to the image plane, and

+z-axis along the outward direction through the optical axis, we use the camera’s intrinsic

matrix, K, to project these points back onto the image. To find K, a well-known

chessboard-calibration algorithm was run to estimate the values of the focal length in the x and y

directions, as well as the optical center’s point in the image, known as the principal point. Using
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the 2D distribution of these face pixels, a concave hull was calculated to find the minimum shell

defined by the set of points, thus becoming the blurring facial mask of the person (see figure

3.2.8).

Figure 3.2.8: Concave hulls of the projected 2D points. Blurring facial masks.

From this point, the face mask would be overlaid onto the RGB image and applying Gaussian

blur of differing sigma values to the region defined by the facial mask. This therefore minimally

distorts the image to only blur the facial region.

4 Implementation
4.1 Portrait Mode

As described in section 3.1, the proposed portrait mode solution will utilize an original

setup of objects that meet the scenery assumptions. The google store application “open camera”

is used to obtain a focal stack of the scene, varying the focal length of the smartphone camera

automatically without the need to touch it and introduce misalignment. All following processing

steps are performed in MatLab using image processing functions such as imread, imfitl, im2gray,

imfill, etc, in addition to original code that implements the described mathematical calculations

and collects the functions into a linear sequence.

4.2 Privacy Filter
As described in section 3.2, the proposed privacy filter solution was implemented through

a python Jupyter Notebook making extensive use of the popular libraries, Numpy, OpenCV, and

SciPy. Numpy and SciPy allowed for the implementation of the region-based covariance matrix

detector through Numpy’s matrix operations and SciPy’s SVD function. Numpy was also used

for the Facial Outlining Pipeline, creating the depth-based histograms, as well as storing the
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point cloud data retrieved. OpenCV was used to perform the iPad’s camera calibration

procedure, as well as facial detection and blurring. It is important to note that the region-based

covariance detection code was found online, but altered from the research paper’s original

implementation [15].

5 Experimental Results
5.1 Portrait Mode

The implementation of section 4.1 was performed on one scene of objects, and two

portrait mode images were produced. Figure 5.1.1 shows the portrait mode image of the

mid-distance object, distance range between 0.4 and 0.6.

Figure 5.1.1. Portrait Mode “Mid Distance” Object
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Figure 5.1.2 shows the portrait mode images of the closest and furthest distance objects, distance

range less than 0.3 and greater than 0.7.

Figure 5.1.2. Portrait Mode “Short and Long Distance” Objects

These preliminary results successfully meet the goal of the project, to create

multi-distance multi-subject portrait mode images using depth from defocus. The largest

variation from the intended results has to do with the automation of the process. Since this image

generation process requires object detection, the current object mapping procedure would require

manual adjustment with any change in scenery, which is not ideal. Additionally in the final

portrait mode images show some background particles around the edges of the objects in focus.

An implementation of an alpha matte would treat that effect and produce higher-quality images.
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5.2 Privacy Filter
With facial recognition in place, the experimental goal of the privacy filter was to

determine how much distortion is required to throw off the output, incorrectly registering a

person’s identity. This was done in two stages: the first is the re-detection stage where it was

tested if facial detection can first find a face given a predefined level of distortion. This stage is

important because if there is no facial detection, there cannot be any facial recognition.

Performing the re-detection stage involved finding faces in an image by applying the Viola-Jones

detector defined in section 3.2. Once a face was found, the facial outlining pipeline was

conducted, blurring the facial mask of the individual in the image. Unfortunately, due to the

disparities in RGB and RGB+D resolutions, the facial mask was not able to align perfectly, thus

becoming mostly unusable. To compensate for this, the entire bounding box detection was used

to simulate what blurring and facial recognition would encounter. As mentioned earlier, a

Gaussian blur was applied with a sigma value ranging from 1 to 5, thus increasing blur in the

facial region as the sigma value increased. Once blur was applied to the facial region, the image

was re-run through facial detection, testing to see if the face could still be detected. Figures 5.2.1

and 5.2.2 below demonstrate how facial detection is quite robust to heavy blur, having faces

remain detected even with a sigma value of 5. It is important to note that only the images where

the subject’s face was oriented mostly straight to the camera would be detected in this manner,

suggesting pose has a strong effect on this as well.

Figure 5.2.1: Sigma value of 1, faces still detected at every pose
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Figure 5.2.2: Left Group: Sigma value of 4. Right Group: Sigma value of 5

Once this re-detection stage was completed, the second stage of re-identification was performed

where the blurred facial region images were sent through the Facial Recognition Pipeline. This

test demonstrated (Figures 5.2.3 and 5.2.4) that facial recognition is extremely sensitive to

distortion in the facial region, most likely due to its implementation details involving the

covariance matrix of features such as the gradient magnitude and second derivative of intensity

magnitude. These results are more or less consistent with the original goal of minimally

distorting a face to prevent facial recognition from accurately identifying an individual. Despite

the imbalance in resolution in the RGB and RGB+D image, the process proved successful and

would have produced the results intended had the facial mask region aligned in the RGB image.

Figure 5.2.3: Facial recognition of blurred facial regions, sigma of 1.
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Figure 5.2.4: Facial recognition of blurred facial regions, top row: sigma of 3. bottom row: sigma of 4

6     Conclusions and Possible Improvements
6.1  Portrait Mode

Since it is commonplace for today's smartphones to be able to obtain depth information,

the process of using depth from defocus for this application would not likely be the most viable.

Depth from defocus, and especially this methodology is highly restrictive to settings in which it

is effective. Using smaller, highly textured objects that do not overlap in low-frequency settings

is too specific for a wide use case, however, depth from defocus is still commonly used in

microphotography so the practice is not obsolete. On the other hand, a smartphone portrait mode

capability that could focus on subjects at various distances is something that could be

implemented using existing technology. The biggest challenge would be object detection which

most likely would require real-time machine learning to allow the user to select regions they

want to focus on. Alternatively, there could be an open-loop setting that allows for an input of a

desired focal length range, not unlike the ones called out in section 5.1. With respect to this

project, the largest weakness is the lost information in the depth map due to low frequency

regions. The best improvement that would allow this project to have a wider range of

applications would be improvement of the depth map, one way to do this would be to linearly

interpolate distance on top of the additional depth information from focus.
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Additionally, the impact alignment and color correction had in the generation of a high

quality output, was one of the most surprising outcomes of the process.  Figure 6.1.1 shows the

result of the all focused image without either of those processing steps.

Figure 6.1.1. All in Focus Image Without Alignment or Color Correction

Despite how digitized the average person's experience with photography is today, it is

enlightening to appreciate the smartphone camera as a mechanical system and how that system

still dictates the end image result.

6.2 Privacy Filter

Analyzing the results of the privacy filter experiment, it is evident that it is quite simple

to cause facial recognition to claim an incorrect identity once a small level of distortion is

applied to one’s face. Again, this is most likely due to the implementation details of the facial

recognition system being highly dependent on features that change drastically in the presence of

a blurring filter like the gradient and second derivative of intensity. Some improvements that

could be made to the privacy filter include obtaining a denser depth map as the lower resolution

point cloud disallowed the facial mask from fitting over the original image’s facial region. A

further improvement would be a more robust facial recognition algorithm that is potentially

deep-learning-based at the cost of higher training setup and time which could handle higher

levels of distortion that are more likely to be implemented in real-world settings.
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