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Summary 
Dynamic Range, the ratio of maximum radiance to the minimum radiance, of a highly 

illuminated scene cannot be represented by conventional Low Dynamic Range (LDR) 

imaging systems. Therefore there is a need for a system which can capture all the 

information in these scenes and which can represent this information. High dynamic Range 

Imaging (HDRI) is a process which is composed of three parts, acquisition, recovery of 

radiance map, and displaying this High Dynamic Range (HDR) radiance map on LDR 

displays. The first part aims acquiring information about different parts of the scene, 

different details of the scene with different images. The second part aims fusing the details 

coming from different images into a single radiance map. The last part is a compression 

step where the HDR information of radiance map is compressed so that it can be 

represented on LDR displays.  

This project mainly focuses on the second part, the recovery of radiance map. The 

purpose of the project is to review and to compare some of the methods in the literature for 

the recovery of radiance map. We also propose a new method which will combine different 

details for a scene in one single image without recovering the radiance map.
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1 Introduction 
 

 Dynamic Range (DR) , which can be referred as the ratio of maximum radiance to the 

minimum radiance, of a real life scene can be up to 500000:1, whereas DR for human eye is 

10000:1 and for a LCD 1000:1. Therefore, High Dynamic Range (HDR) of a highly illuminated 

scene cannot be represented by conventional Low Dynamic Range (LDR) imaging systems. For 

example, in a sunny day it not possible to take an image which both captures the details in sunny 

areas and in dark shadowy areas. Either the sunny areas will be overexposed or the dark areas 

will be underexposed. Therefore there is a need for a system which can capture all the information 

in these scenes and which can represent this information. High dynamic Range Imaging (HDRI) is 

a process which is composed of three steps, acquisition, recovery of radiance map, and displaying 

this High Dynamic Range (HDR) radiance map on LDR displays.  

 
Fig. 1.1 HDRI Process 

 

The acquisition process is taking making multiple images with different exposure times; 

therefore representing details about different parts of a scene. The second part aims fusing the 

details coming from multiple images with different exposure times into a single radiance map 

whose pixel values are proportional to true radiance values in the scene. Since the radiance map 

has a high dynamic range, we cannot display it efficiently on LDR displays. The last part, tone 

mapping, is a compression step where the HDR information of radiance map is compressed so that 

it can be represented on LDR displays.  

 

Acquisition 
Recovery of 
 Radiance  
   Map 

Tone      
Mapping 
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2 Related Work 
 

Scene radiance plays an important role in various kinds of computer vision problems since 

obtaining this information is required for explore the interaction of light with scene objects. 

Application such as shape from shading requires accurate scene radiance to determine the 

orientation of surface normal[13]; photometric stereo algorithms estimate the scene structure 

using the difference of radiance between various images[14]; color constancy algorithms separate 

the effect of illumination from the reflectance in the scene by study the change of radiance[15]; 

in the field of computer visualization, an accurate scene radiance permit realistic merging of 

computer rendered object and real scene objects[16].  

Camera response function provides the necessary information we need to accurately 

reconstruct the scene radiance. For a specific camera, its camera response function indicates how 

will it response to the irradiance of the scene in terms of pixel value. Once the response function 

is known, we can recover the true irradiance of the scene [17]. A conceptually simple way to 

generate such a function would be camera calibration. Use camera to capture a set of known 

radiance values (I) and record the measured pixel values (Z). From these pairs (I, Z) of data, we 

can get a table that represents the function f. This is the basis of methods that are called 

chart-based, because they usually employ a calibration chart, such as the Macbeth chart [18], 

which include patches of known relative reflectance. Nevertheless, placing a chart in the scene 

can be inconvenient or difficult in the field. For instance, the response function will change when 

the camera is in another condition, say, aperture or temperature. Recording all the response 

function for any setting of a specific camera is infeasible unless we use simplified approximation 

of this function. 

Methods that do not use calibration charts are called chartless. The chartless recovery of f 

from observed data has been extensively studied in recent years. Those techniques are more 

interested because of their flexibility and possibility to integrate calibration methods. Chartless 

methods resort to a collection of differently exposed images captured without any prior 

knowledge and restrictions of the radiances in the scene, and try to recover the function purely 

based on the pixel values that are recorded by the camera. 

Main efforts of recovery of f have been focused on exploiting a sequence of images of the 

same scene taken at different exposures. By comparing corresponding intensity values between 
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images in the sequence, Mann and Picard demonstrated constraints on f [19] which allowed them 

to determine the response at a sequence of points with the help of known exposure ratios between 

the images.  Debevec and Malik also assumed the ratio of exposures is known, but their 

approach does not require a parametric form for the response [20]. Instead, they imposed a 

smoothness constraint on the response. Mitsunaga and Nayar assumed that the inverse response 

function can be closely approximated by a polynomial [21]. Then, they estimated the coefficients 

of the polynomial and the exposure ratios starting with a rough estimate using an iterative 

method which alternates between recovering the response and estimating the exposure ratios. 

Tsin et al. [23] and, separately, Mann [14] recovered the response and exposure ratios by 

combining the iterative approach from [21], with the nonparametric recovery in [20]. All 

chartless methods use the assumption that between a pair of images of a static scene, all 

irradiances change by the same exposure ratio base while recovering the response function [19], 

[20], [24], [21], [23]. Grossberg and Nayar use intensity mapping function, which describe how 

pixel value in one image maps to that in other images to find the response function. Their 

approach can decompose into two steps: 1. the recovery of the intensity mapping function from 

images and 2.the recovery of the combination of the response and exposure ratios using the 

intensity mapping function. 

Another approach to make HDR image is directly combining images into high dynamic 

range synthesis image using fusion technique. This technique has been introduced to the problem 

of multi-exposure image fusion by Burt et al. since 1993 [9]. Various of fusion techniques such 

as spline fusion[8] and poisson blending [10] works visually very well for either image domain 

or gradient domain [11].  

 

3 Overview 
 

The project mainly focuses on the second step of HDRI process, the recovery of radiance 

map. This is basically modeling the process from scene radiance to LDR digital images, pixel 

intensities. The image acquisition pipeline for digital camera and and film camera is modeled by 

Figure 3.1 in [1]. The mapping from scene radiance to sensor irradiance is linear and if we 

consider short exposure time, then the integration in the shutter can be modeled by a 

multiplication, 
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tEX ∆= *                                     (3.1) 

where X is the sensor exposure and E is the sensor irradiance and ∆t is the exposure time. Either 

you use a digital camera or a film camera, different nonlinear mappings can occur from sensor 

exposure to final digital values, pixel intensities. For example in film camera development 

process has an S shaped nonlinear response to light or scanning process can have a nonlinear 

response. In digital camera digitization, remapping, gamma correction can introduce nonlinear 

mapping. The goal is to model the overall nonlinearity by a single function, called camera 

response function, which is assumed to be monotonic or semi-monotonic. Therefore, by using 

inverse of this function, inverse camera response function, we can map pixel intensities to 

radiance map which is a scale factor of scene radiance. 

 
Fig. 3.1 Image Acquisition Pipeline 

 First of all, we will implement 3 different methods in the literature for determining the 

inverse camera response function and we will try t o compare these methods. Secondly, we will 

propose a third method to represent the all information in HDR scene without recovering the 

radiance map in a final single image.   

 

4 Method 1 
 

The first method is proposed by Debevec and Malik [1], it is a very popular method in HDR 

reconstruction and it is based on determining inverse camera response function using multiple 

pictures with different exposure time and their exposure time and with this function determining 

the radiance map. 

The authors claim that the response of a film to variations in exposure can be summarized 

by the characteristic curve which is the graph of optical density D against the logarithm of 

exposure X. X is the product of irradiance E and the exposure time ∆t. Let Z be the pixel intensity 
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obtained after nonlinear operations such as development, scanning, digitization. Therefore, Z is a 

nonlinear function of the exposure X at the pixel. 

Let Z=f ( X ), then f is the camera response function and if we assume that f is 

monotonically increasing, its inverse is well defined, and X = f -1( Z ), where X is the sensor 

exposure and Z is the pixel intensity. The steps of the algorithm are first to compute logarithm of 

the inverse camera response function, and finally the sensor irradiance E, which is proportional 

to radiance in the scene L. For color photography, each color channel can be treated separately. 

The algorithm assumes static scenes and it is based on pixel correspondences. In other 

words, the pixels with same position in different images correspondences to the same point in the 

scene. The inputs to the algorithm are a number of digitized photographs with different exposures 

and their exposure times ∆tj, and  

Zij = f ( Ei ∆tj )                   (4.1) 

where i is the spatial index and j is the exposure time index. 

f -1 ( Zij )=  Ei ∆tj                 (4.2) 

ln f -1 ( Zij )= ln Ei + ln ∆tj               (4.3) 

Let g = ln f -1 then 

g ( Zij )= ln Ei + ln ∆tj             (4.4) 

The aim is to recover g and the irradiances Ei that best satisfy the set of equations arising 

from equation (4.4) in a least-squared error sense. Recovering g means recovering the finite set 

of values that g(Z) can take, since Z can take finite number of values. 

Let N be the number of pixel locations, P the number of photographs, then the problem 

becomes finding (Zmax - Zmin +1) values of g(Z) and the N values of ln Ei that minimizes the 

following quadratic objective function: 
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jiij zgtEZg λθ            (4.5) 

The first term in equation (4.5) ensures that the solution satisfies the set of equations arising 

from equation (4.4). The second term ensures the smoothness of g and g’’ is given by, 

)1()(2)1()('' ++−−= zgzgzgzg                    (4.6) 

λ in equation (4.5) is chosen according to noise experimented in Zij. 

Singular value decomposition is proposed to find the solution for the minimization. 

In order to improve the solution, additional clarifications are proposed: 
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a) The solution for g(z) and Ei can be found up to a scale factor α, therefore they 

put an extra constraint, g(Zmid)=0, where Zmid = (Zmin + Zmax )/2. 

b) In order to emphasize the smoothness and fitting terms towards the middle of 

the curve, a weighting function w(z) is proposed. 





>−
≤−

=
mid

mid

ZzzZ
ZzZz

zw
            
            

)(
max

min                 (4.7) 

This weighting function determines the confidence of pixel intensities. It gives zero weight 

to overexposed and underexposed pixels values. 

Then the objective function becomes: 
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To ensure a sufficiently overdetermined system N*(P-1) should be greater than (Zmax - Zmin ), 

hence to use every pixel location is impractical due to computational complexity. Pixels can be 

sampled from the regions of image with low intensity variance. The authors claim that the reason 

why they did not put a constraint for a monotonic g is that by their experience the smoothness 

constraint is enough to make g monotonic. 

After recovering g, the irradiance values can be found in two ways, either by using a single 

image; ln Ei = g ( Zij )- ln  ∆tj, or by using all images and the weighting function; 
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Using multiple exposures reduces the noise in the recovered irradiance values and reduces 

the effect of imaging artifacts. Additionally, since the weighting function ignores the saturated 

pixel intensities “blooming” artifacts have little impact. 
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5 Method 2 
 

The second method is proposed by Mitsunaga and Nayar [2], as the first method this is also 

pixel based. They approximate the inverse camera response function by higher order of 

polynomial of degree N. 

Let E be the sensor irradiance and L the scene radiance, then they can be related by, 

φπ 4
2

cos
4







=

h
dLE             (5.1) 

where h is focal length, d diameter of aperture and φ  angle subtended by the principal ray from 

the optical axis. 

The linear radiometric response of the system can be expressed by, 

X = L k e                 (5.2)  

where X is sensor exposure, k = cos4φ  / h2, e = (πd2/4)∆t.  

Many stages of image acquisition introduce nonlinearities. The pixel intensity can be related 

to the sensor exposure by, 

Z = f ( X )                   (5.3) 

Then f is the camera response function.   

The unknowns are the scene exposures, hence the inverse camera response function g = f -1 

which will give X = g (Z) should ne determined. The authors claim that any response function 

can be modeled by a higher order polynomial.   

 ∑
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n ZcZgX
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)(         (5.4) 

To determine g means to determine the coefficients and the order N.  

Assume there are two images taken with different exposures ∆tq, ∆t q+1, then the ratio of 

image exposures become 
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By using equation (5.11), the ratio of scaled radiance at any given pixel p becomes 
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The inverse response function can be related to exposure ratios by, 

 1,
1,

,
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+
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= qq
qp

qp R
Zg
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                              (5.7) 

If the images are ordered such that 1+∆<∆ qq tt , then 10 1, << +qqR , and the polynomial 

model for the inverse response function is substituted in equation (5.7), the following equation is 

obtained: 
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Note that if we use the function (5.8) to recover g and R jointly, from equation (5.7), we 

also have ( )( ,qpZg / )( 1, +qpZg )u = (Rq,q+1)u. therefore, we can recover g, R pairs up to an 

exponent. If all measurements are normalized such that 10 ≤≤ M , the indeterminable scale can 

be fixed using f (1)=1, and this can be used as an additional constraint to the algorithm. 

 ∑
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The algorithm will first assume that there is an initial good estimate for R and then makes 

the estimation of R part of the algorithm with an iterative process.  

By using equation (5.8) then the objective function to minimize is  
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where Q is the total number of images and P is the number of pixel locations. 

The coefficients can be found by solving the system of linear equations that result 

from 0=
∂
∂

nc
ε . Then, the coefficients can be used to update the ratios Rq,q+1, 

 ∑
∑

∑
=

=
+

=+
+ =

P

p
N

n

n
qp

k
n

N

n

n
qp

k
n

k
qq

Mc

Mc

P
R

1

0
1,

)(

0
,

)(

)1(
1,

1                     (5.11) 

The convergence condition for the algorithm is  

 MepsMfMf kk ∀<− − ,)()( )1()(                    (5.12) 



9  B. Abanoz, M. Wang 

To determine the order of polynomial an upper bound is determined and then the order 

which gives the minimum error ε can be chosen.  

 

6 Method 3 
   The third method proposed by Grossberg and Nayar [3] is a two stage, parametric, histogram 

based method. In their paper, they define the intensity mapping function as the function that 

correlates the measured brightness values of two differently exposed images given by, 
3

1
1

2 ))(()( dHHd −=τ                                   (6.1) 

6.1 Intensity mapping 

Grossberg and Nayar developed the intensity mapping theorem, saying that the histogram 

h1(u) of one image, the histogram h2(u) of a second image (of the same scene) is necessary and 

sufficient to determine the intensity mapping function τ.” [3]  

They develop an algorithm to recover the camera response function based on exposure ratios 

and the intensity mapping function. The recovery of the response decomposes into two parts: the 

recovery of the intensity mapping function from images, and the recovery of the combination of 

the response and exposure ratios from the intensity mapping function.  

The authors state the following theorem: “Given the histogram of one image, the histogram 

of the second image is necessary and sufficient to determine the intensity mapping function.” 

They prove this in three steps: 

Normalize all images to have unit area. Compute the cumulative histogram for each image:  

∫=
B

duuhBH
0

)()(
                                (6.2)     

Let τ be the intensity mapping function which maps each intensity B2 in the second image to 

intensity B1 in the first image: B1 = τ (B2). The set of image points in the first image with 

intensity less than B1, must be the same as the set in the second image with intensity less than B2 

since they correspond to the same set of scene points. Therefore, )())(( 2221 BHBH =τ  

This means that the intensity mapping function and the first histogram determine the 

second histogram. If one replaces B1 with u and solves for τ,  

))(()( 1
1

2 uHHu −=τ                            (6.3) 
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This completes the proof for the theorem. The algorithm can be summarized in the 

following steps: Compute the cumulative histograms for all images. Invert the cumulative 

histograms using linear interpolation. For each pair of consecutive images, compute intensity 

mapping function (by histogram specification).  

6.2 Recovery of inverse response function  

For recovering the inverse response function, the Grossberg and Nayar assume that the 

inverse response is a polynomial function [2]. The pairs ( n/255, τ (n/255)) for 2550 ≤≤ n are 

combined with the pairs (τ-1(n/255), n/255). Each pair ( B1, B2 ) gave a constraint from  

g ( B2 ) = k g( B1 )                         (6.4) 

where g is the inverse camera response function and k is the exposure ratio. The certainty 

about the estimated intensity mapping function depends on the amount of pixels in the images 

with these intensities. Hence, the pair ( B1, τ (B1)) with the number of pixels with value equal to 

B1, in other words with C = h1 ( B1 ). To weight the least squares problem, the constraint   

g ( τ (B) ) = k g( B )                             (6.5) 

 is multiplied by squared root of C. Similarly, the constraints for pairs  

(τ-1( B2 ), B2 ) with  

)( 22 BhW =                              (6.6) 

g is assumed to be a sixth order polynomial and with all constraints together, a linear system for 

the coefficients for g is solved. 

 

7 Method 4 
For the specific purpose of HDR image synthesis, delicate calculation of irradiance of the 

scene is over complete for this task. Other ways to directly get image from input LDR images are 

proposed by many researchers since original work of Burt and Kolczynski [102]. Their approach 

targeted on combining different images and rendering an seamless image, regardless the true 

content and irradiance in the scene. 

 Here we propose a new way to accomplish this using independent component analysis. By 

carefully scrutiny of the different LDR images and camera response function found using 

previous methods, we find that in the middle exposed region, i.e. properly exposed areas, the 

content of the image change little, while the over exposed and under exposed areas have some 
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scene objects visible in some LDR image and disappear (washed out) in other LDR image, we 

regard each LDR image is a mixture of different contents, some of which appear in one or more 

LDR images. Our goal is separate the different contents contained in LDR images, then combine 

together to synthesis HDR images. This view point of HDRI bring us a more principled way to 

analysis the underlying objects, which are under different lighting conditions. 

Though ICA method is out of the focus of this paper, a basic idea of ICA is needed to understand 

why we choose this tool. 

ICA is a computational method for separating a multivariate signal into additive 

subcomponents supposing the mutual statistical independence of the non-Gaussian source signals 

[104].The data is represented by the random vector  

                      (7.1) 

and the components as the random vector  

             (7.2) 

The task is to transform the observed data x, using a linear static transformation W as 

        (7.3) 

In the context of our problem, xi represent individual LDR images and si the different 

exposure component. After we separate the exposure components, we use conventional fusion 

techniques to synthesis the final HDR images. Because in each exposure component, there are a 

lot of uniform area which is separated by ICA method, a proper threshold should be chosen to 

eliminate those uniform areas. Then we just sum those exposure components with a weight to 

render the HDR image. The weight is calculated according to the value on the rims of each 

exposure area. 

 

8 Experimental Results 

          

     We used 4 different sets of images for testing the methods. The first set is the dataset 

including a series of images of the Stanford Memorial Church. This is the set which was used in 

[1] and it can be downloaded from [5]. The .png images were taken from PhotoCD scans of film 

pictures taken on Kodak Gold 100 ASA film and then the scans were decoded to 512x768 pixel 

resolution. The pictures were manually registered using feature points and homographies using 
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the Facade photogrammetric modeling system. The pure blue color indicates shifted image 

border areas. The exposure times for the images are given in Table. 8.1. 

Image Name 
1/exposure time 
(1/sec.) 

memorial0061.ppm 0.03125
memorial0062.ppm 0.06250
memorial0063.ppm 0.12500
memorial0064.ppm 0.25000
memorial0065.ppm 0.50000
memorial0066.ppm 1.00000
memorial0067.ppm 2.00000
memorial0068.ppm 4.00000
memorial0069.ppm 8.00000
memorial0070.ppm 16.00000
memorial0071.ppm 32.00000
memorial0072.ppm 64.00000
memorial0073.ppm 128.00000
memorial0074.ppm 256.00000
memorial0075.ppm 512.00000
memorial0076.ppm 1024.00000

 

Table 8.1 Exposure times for memorial image set 

 

 The second set is from [6]. This set also is composed of multiple images of the same scene 

taken with different exposure times. Their resolution is 1024x768 pixels. The exposure times are 

listed on Table 8.2.  

Image Name 
exposure time 

(sec.) 
İmg01.jpg 13.00000 
İmg02.jpg 10.00000 
İmg03.jpg 4.00000 
İmg04.jpg 3.20000 
İmg05.jpg 1.00000 
İmg06.jpg 0.80000 
İmg07.jpg 1/3 
İmg08.jpg 1/4 
İmg09.jpg 1/60 
İmg10.jpg 1/80 

 

Table 8.2 Exposure times for second image set 
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The third image set is taken in the 9th floor of Photonics Building and the exposure times are 

given in Table 8.3. The resolution for this set is 2272x1704 pixels. 

Image Name 
exposure time 

(sec.) 
P1010015.jpg 1/13 
P1010016.jpg 1/8 
P1010017.jpg 1/2 

 

Table 8.3 Exposure times for third image set 

The last set is also a series of images that we took. The resolution for this set is 640x480. 

The exposure times for this set is given in Table 8.4. 

 

Image Name 
exposure time 

(sec.) 
P1010007.jpg 1/15 
P1010008.jpg 1/8 
P1010009.jpg 1/5 
P1010010.jpg   1/3 
P1010011.jpg 1 

 

Table 8.4 Exposure times for fourth image set 

The images in these four data sets are given in Appendix. 

 
2.1 Method 1 
 

We tested the first method on the memorial image set. Since we could not use all pixels in 

the images, we needed to eliminate some of them. Therefore, we first down sampled the images 

by 4 and then discarded the edges detected by sobel edge detection of matlab. Then, we 

calculated the g function for each channel using the memorial images, “memorial0063.ppm, 

memorial0064.ppm, memorial0065.ppm, memorial0066.ppm” with lambda value equal to 1000. 

The g function calculated for each channel is shown in figure 8.1. Then, we used 9 images to 

calculate the radiance map, “memorial0062.ppm, memorial0063.ppm, memorial0064.ppm, 

memorial0065.ppm, memorial0066.ppm, memorial0067.ppm, memorial0071.ppm, 

memorial0072.ppm, memorial0073.ppm”.  
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Figure 8.1 G function of method 1 for each channel for memorial set 

 
 Since this method can use multiple images to calculate the g function and we could use 9 

images to calculate radiance map, the dynamic range of the radiance map was very high. 

Therefore, we used two different tone mapping methods to display the radiance map. The first 

one linear tone mapping and the second one is histogram adjusted tone mapping [7] .   

 Linear tone mapping uses the equation: 

( )
min

min dR
R

ww
d d

w

+
−

=                                 (8.1) 

where ( )minmax wwRw −=  and ( )minmax ddRd −= , R representing the radiance map values, d 

representing the pixel intensities that we are mapping radiance map to. 

 Histogram adjusted tone mapping uses the equation: 

 min)( dRwPd d +=           (8.2) 

where  
)(

)()(
maxwH
wHwP = , H(w) is the cumulative histogram. 

 These mappings are applied to all channels together, not separately.  

The resulting images, for linear tone mapping and for histogram adjusted tone mapping are 

image 8.1 and image 8.2, respectively. 
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Image 8.1 Linear tone mapped radiance map of method 1 for memorial set 

 

 
Image 8.2 Histogram adjusted tone mapped radiance map of method 1 for memorial set 
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 We also tested method 1 on images that we took; third data set and fourth data set. The g 

function for each channel for third data set is given in Figure 8.2 and for the fourth data set in 

Figure 8.3. The resulting images from linear tone mapping and from histogram tone mapping are 

image 8.3 and image 8.4 respectively for third data set, image 8.5 and image 8.6 for the fourth 

data set. 

 
Figure 8.2 G function of method 1 for each channel for third set 

 

 
Image 8.3 Linear tone mapped radiance map of method 1 for third set 
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Image 8.4 Histogram adjusted tone mapped radiance map of method 1 for third set 

 

 
Figure 8.3 G function of method 1 for each channel for fourth set 
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Image 8.5 Linear tone mapped radiance map of method 1 for fourth set 

 
Image 8.6 Histogram adjusted tone mapped radiance map of method 1 for fourth set 

 

The matlab codes are given in Appendix. 
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8.2 Method 2  
 

We tested method 2 with two sets of images, memorial data set and second data set. We 

tested the algorithm with two images as input and with more than two images as input. Whereas 

the algorithm converged when it takes two images as input, it did not converge with more than 

two images. Additionally, we needed to discard some of the pixels. Firstly, we discarded the 

edges as we did in the first method. Secondly, since the algorithm does not apply any weighting 

according to confidence value of pixels, we discarded some pixels with thresholding the ones 

below 0.05 and above 0.97. 

For the memorial data set when the convergence check value was 0.02, polynomial order 

was 6 for each channel, and initial R value vas 0.4 with images “memorial0063.ppm, 

memorial0065.ppm”, we obtained the inverse camera response function in Figure 8.4 and the 

linear tone mapped radiance map in image 8.7. 

 

 
Figure 8.4 Inverse Response Function for each channel for memorial set with method 2 
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Image 8.7 Linear tone mapped radiance map for memorial set for method 2 

 While testing the method on the second data set we used the images “img07.jpg, 

img04.jpg”, and initial R value 0.45, convergence check value 0.01 and polynomial order 7, for 

all channels, respectively. The resulting inverse camera response function is given in Figure 8.5, 

linear tone mapped radiance map in image 8.8, histogram adjusted tone mapped radiance map in 

image 8.9. 

 

Figure 8.5 Inverse Camera Response Function for each channel for second data set for method 2 
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Image 8.8 Linear tone mapped radiance map for second data set for method 2 

 

Image 8.9 Histogram adjusted tone mapped radiance map for second data set for method 2 

8.3 Method 3 
For the third method, firstly we use two images from ‘memorials’ image sequence and 

recover the f function by resort to the zigzag path on the two accumulated histogram graph in 6. 

Each point is on this camera response function. If we calculate all the points using all the images 
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for 3 color channels, we can get many points on the response function. A polynomial regression 

is used to fit all the point to one curve. 

 

 
 

 
 

 
After we calculate the camera response function, we use two images to calculate the HDR 

image. The following image is the result of this synthesis. To display this HDR image, linear 

tone mapping is used. It does contain both details in both over and under exposed areas in 

individual LDR images. Both we also notice that there are some hue changes in the image, this is 

due the fact that we calculate the camera response function for each color channel separately, if 

one or more channel have an inaccurate response, that color component will mapped to a wrong 

radiance the hue will change. 

 

Figure 8.6 Radiance and pixel value points

Figure 8.7 Polynomial fitting for 3 channels 
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Image 8.10 Linear tone mapped radiance map for method 3 for memorial set 
 

8.4 Method 4 
For ICA method, we try this method on ‘memorial’ image set and the images we took at the 

9th floor of Photonics Center. 

 
Image 8.11 Three lighting components, exposure components and HDR image for ICA 
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For the office image set, we use 3 images as the input for ICA. The first row of the image 

above shows the ICA yield 3 lighting components: low mild and high. The second row shows the 

exposure components after we eliminate the uniform area in those images (which is due to the 

ICA separated the contents in those areas). 

The last image is the synthesized HDR image by summation of over-exposure area and 

under-exposure area together with the mild lighted component. 

We also test this method on ‘memorial’ images. In the figure below, the left three images 

are the three exposure area from ICA and threshold, and the right image is the summation of the 

three images with weights. 

 

 

 

 

 

 

 

 

 

 

9 Conclusion 
We have implemented three different methods to recover the inverse camera response 

function and the radiance map, and two different tone mapping methods to show the radiance 

map on LDR displays. We also proposed a new ICA based HDR method which can represent the 

information on HDR without recovering the radiance map. All these four methods van accurately 

find the camera response function using image sets composed of static scenes.  

We found that method 1 is less sensitive to input images since it applies some weighting 

according to confidence of pixel values and some regularization which controls the smoothness 

Image 8.12 Image result of ICA method 
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of inverse camera response function. With method 1 and method 3 we managed to use multiple 

images in calculating the inverse camera response function, but with method 2 the algorithm 

converged only with 2 images. 

We also found out that histogram based tone mapping gives more preferable results than 

linear tone mapping.  

 

10 Appendix 
 

 
Image 1 memorial0061.ppm Image 2 memorial0062.ppm 
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Image 3 memorial0063.ppm Image 4 memorial0064.ppm 

 

 

 
Image 5 memorial0065.ppm Image 6 memorial0066.ppm 
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Image 7 memorial0067.ppm Image 8 memorial0068.ppm 

 
Image 9 memorial0069.ppm Image 10 memorial0070.ppm 

 

 



28  B. Abanoz, M. Wang 

 
Image 11 memorial0071.ppm Image 12 memorial0072.ppm 

 

 
Image 13 memorial0073.ppm Image 14 memorial0074.ppm 
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Image 15 img04.jpg 

 
Image 16 img05.jpg 



30  B. Abanoz, M. Wang 

 
Image 17 img06.jpg 

 
Image 18 img07.jpg 
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Image 19 P1010015.jpg 

 
Image 20 P1010016.jpg 
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Image 21 P1010017.jpg 

 
Image 22 P1010007.jpg 
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Image 23 P1010008.jpg 

 
Image 24 P1010009.jpg 
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Image 25 P1010010.jpg 

 
Image 26 P1010011.jpg 

 

Method 1: 
 
 The main function: 
 
clear all; 



35  B. Abanoz, M. Wang 

N=4;%number of input images 
l=200*N; %lambda 
%exposure times 
memorial0061=0.03125;  
memorial0062=0.0625;   
memorial0063= 0.125;   
memorial0064=0.25;     
memorial0065=0.5;      
memorial0066=1;        
memorial0067=2;        
memorial0068=4;        
memorial0069=8;        
memorial0070=16;       
memorial0071=32;       
memorial0072=64;       
memorial0073=128;      
memorial0074=256;      
memorial0075=512;      
memorial0076=1024;     
  
%logarithm of expososure times 
 R=[ log(1/memorial0063);...  
     log(1/memorial0064);...  
     log(1/memorial0065);... 
     log(1/memorial0066)]; 
  
 %read the images 
M1(:,:,:,1)=imread('C:\Users\TOSHIBA\Desktop\Memorial_SourceImages\memorial006
3.png'); 
M1(:,:,:,2)=imread('C:\Users\TOSHIBA\Desktop\Memorial_SourceImages\memorial006
4.png'); 
M1(:,:,:,3)=imread('C:\Users\TOSHIBA\Desktop\Memorial_SourceImages\memorial006
5.png'); 
M1(:,:,:,4)=imread('C:\Users\TOSHIBA\Desktop\Memorial_SourceImages\memorial006
6.png'); 
% 
M1(:,:,:,5)=imread('C:\Users\TOSHIBA\Desktop\Memorial_SourceImages\memorial006
6.png'); 
% 
M1(:,:,:,6)=imread('C:\Users\TOSHIBA\Desktop\Memorial_SourceImages\memorial006
7.png'); 
% 
M1(:,:,:,7)=imread('C:\Users\TOSHIBA\Desktop\Memorial_SourceImages\memorial007
1.png'); 
% 
M1(:,:,:,8)=imread('C:\Users\TOSHIBA\Desktop\Memorial_SourceImages\memorial007
2.png'); 
% 
M1(:,:,:,9)=imread('C:\Users\TOSHIBA\Desktop\Memorial_SourceImages\memorial007
3.png'); 
  
%crop the blue parts 
M=M1(30:710,30:470,:,:); 
  
% calculate g function for each channel 
for i=1:3 
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    [g(:,i)]=HDR2_multi(M,4,i,R,l); 
    i 
end 
  
  
figure(1) 
plot([20:250],g(20:250,:),'*') 
  
w=[[0:127], [127:-1:0]]; 
w=w.*w; 
  
%initialize radiance map 
output=zeros(size(M(:,:,3,:),1),size(M(:,:,3,:),2),3); 
for col=1:3 
for i=1:size(M(:,:,col,:),2), 
     
    for j=1:size(M(:,:,col,:),1) 
        sumdiv=0; 
        for imn=1:N 
            
output(j,i,col)=output(j,i,col)+(w(M(j,i,col,imn)+1))*(g(M(j,i,col,imn)+1,col)
-R(imn)); 
            sumdiv=sumdiv+w(M(j,i,col,imn)+1); 
        end 
        output(j,i,col)=output(j,i,col)/sumdiv; 
    end 
     
end 
end 
  
%radiance map 
figure(2) 
imshow(exp(output)) 
  
%log of radiance map 
figure(3) 
imshow(output) 
  
%linear tone mapping 
figure(4) 
Itmp=255*(exp(output)-min(min(min(exp(output)))))/(max(max(max(exp(output))))-
min(min(min(exp(output))))); 
imshow(uint8(Itmp)) 
  
%histogram adjusted tone mapping 
    nbins=1000000; 
   channel=exp(output(:)); 
    map=cumsum(hist(channel,nbins+1)); 
    minc=min((channel)); 
    maxc=max((channel)); 
    rangec=maxc-minc; 
     
for col=1:3 
    for i=1:size(output,1) 
        for j=1:size(output,2) 
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recons(i,j,col)=map(round(((exp(output(i,j,col))-minc)/rangec)*nbins+1))/map(n
bins+1)*255; 
        end 
    end 
end 
figure(5) 
imshow(uint8(recons)) 
  
  
HDR2_multi function: 
 
function [g]=HDR2_multi(Iin,N,color,B,l) 
  
I=[]; 
I=Iin; 
  
[h,w]= size(I(1:4:end,1:4:end,1)); 
  
mask=zeros(h,w); 
tmp=zeros(h,w,N); 
  
I=I(:,:,color,:); 
for i=1:N 
     
    tmp(:,:,i)=I(1:4:end,1:4:end,i); 
    mask=or(mask,abs(gradient(tmp(:,:,i)))>1.5); 
end 
I=tmp; 
mask=not(mask); 
  
totalnumber=sum(sum(mask)); 
  
  
Imask=zeros(totalnumber,N); 
Iout=zeros(totalnumber,N); 
    good=0; 
    for i=1:w 
        for j=1:h 
            if (mask(j,i)) 
                good=good+1; 
                for imn=1:N 
                    Imask(good,imn)=I(j,i,imn); 
                end 
            end 
        end 
    end   
     
w=[[0:127], [127:-1:0]]; 
[g,lE]=gsolve(uint8(Imask),B,l,w); 
  
  
gsolve.m given in [1]: 
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% 
% gsolve.m ? Solve for imaging system response function 
% 
% Given a set of pixel values observed for several pixels in several 
% images with different exposure times, this function returns the 
% imaging system¡¯s response function g as well as the log film irradiance 
% values for the observed pixels. 
% 
% Assumes: 
% 
% Zmin = 0 
% Zmax = 255 
% 
% Arguments: 
% 
% Z(i,j) is the pixel values of pixel location number i in image j 
% B(j) is the log delta t, or log shutter speed, for image j 
% l is lamdba, the constant that determines the amount of smoothness 
% w(z) is the weighting function value for pixel value z 
% 
% Returns: 
% 
% g(z) is the log exposure corresponding to pixel value z 
% lE(i) is the log film irradiance at pixel location i 
% 
function [g,lE]=gsolve(Z,B,l,w) 
n = 256; 
A = zeros(size(Z,1)*size(Z,2)+n+1,n+size(Z,1)); 
b = zeros(size(A,1),1); 
%% Include the data?fitting equations 
k = 1; 
for i=1:size(Z,1) 
for j=1:size(Z,2) 
wij = w(Z(i,j)+1); 
A(k,Z(i,j)+1) = wij; A(k,n+i) = -wij; b(k,1) = wij * B(j); 
k=k+1; 
end 
end 
%% Fix the curve by setting its middle value to 0 
A(k,129) = 1; 
k=k+1; 
%% Include the smoothness equations 
for i=1:n-2 
A(k,i)=l*w(i+1); A(k,i+1)=-2*l*w(i+1); A(k,i+2)=l*w(i+1); 
k=k+1; 
end 
%% Solve the system using SVD 
x = A\b; 
g = x(1:n); 
lE = x(n+1:size(x,1)); 
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Method 2: 
 
Main function: 
 
%% constance setting 
clear all; 
R=0.45; %choose a suitable value for R (~0.5) 
%% first read in two image 
% 
I3in1=imread('C:\Users\TOSHIBA\Desktop\Memorial_SourceImages\memorial0065.png'
); 
% 
I4in1=imread('C:\Users\TOSHIBA\Desktop\Memorial_SourceImages\memorial0063.png'
); 
% 
%I2in=imread('C:\Users\TOSHIBA\Desktop\Memorial_SourceImages\memorial0065.png'
); 
% 
%I1in=imread('C:\Users\TOSHIBA\Desktop\Memorial_SourceImages\memorial0068.png'
); 
% I3in=I3in1(20:720,20:480,:); 
% I4in=I4in1(20:720,20:480,:); 
I3in=imread('C:\Users\TOSHIBA\Desktop\exposures\img07.jpg'); 
I4in=imread('C:\Users\TOSHIBA\Desktop\exposures\img04.jpg'); 
  
%polynomial  order 
P=[7, 7, 7]; 
  
%find the coefficients of the polynomial for each channel 
for i=1:3 
    [c(1:P(i)+1,i),Rnew(i)]=HDRfunc(I3in,I4in,i,R,P(i)); 
    i 
end 
  
%% we have the inverse cam. resp. now, calculate the radiance value for each pixel 
in the scene. 
  
[h,w]= size(I3in(:,:,3)); 
Iout=zeros(h,w,3); 
Iout1=zeros(h,w,3); 
Iout2=zeros(h,w,3); 
Iout3=zeros(h,w,3); 
Iout4=zeros(h,w,3); 
Ioutder1=zeros(h,w,3); 
Ioutder2=zeros(h,w,3); 
Ioutder3=zeros(h,w,3); 
Ioutder4=zeros(h,w,3); 
Iout1tot=zeros(h,w,3); 
Iout2tot=zeros(h,w,3); 
Iout3tot=zeros(h,w,3); 
Iout4tot=zeros(h,w,3); 
weight1=zeros(h,w,3); 
weight2=zeros(h,w,3); 
weight3=zeros(h,w,3); 
weight4=zeros(h,w,3); 
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for col=1:3 
  
    for i=1:P(col)+1 
        %     
Iout1(:,:,col)=Iout1(:,:,col)+c(i,col)*im2double(I1in(:,:,col)).^(i-1); 
        %     
Iout2(:,:,col)=Iout2(:,:,col)+c(i,col)*im2double(I2in(:,:,col)).^(i-1); 
        Iout3(:,:,col)=Iout3(:,:,col)+c(i,col)*im2double(I3in(:,:,col)).^(i-1); 
        Iout4(:,:,col)=Iout4(:,:,col)+c(i,col)*im2double(I4in(:,:,col)).^(i-1); 
    end 
  
  
  
end 
for col=1:3 
  
    for i=1:P(col)+1; 
        k(i,col)=c(P(col)+2-i,col); 
    end 
    fder(:,col)=polyder(k(:,col)); 
    %fder(:,col)=polyder(k(1:P(col)+1,col)); 
end 
  
  
for col=1:3 
  
    for i=1:P(col) 
  
        
Ioutder3(:,:,col)=Ioutder3(:,:,col)+fder(P(col)-i+1,col)*im2double(I3in(:,:,co
l)).^(i-1); 
        
Ioutder4(:,:,col)=Ioutder4(:,:,col)+fder(P(col)-i+1,col)*im2double(I4in(:,:,co
l)).^(i-1); 
    end 
  
    Iout3tot(:,:,col)=Iout3(:,:,col).*Iout3(:,:,col)./Ioutder3(:,:,col); 
    
Iout4tot(:,:,col)=Rnew(col)*Iout4(:,:,col).*Iout4(:,:,col)./Ioutder4(:,:,col); 
  
  
    weight1(:,:,col)=Iout1(:,:,col)./Ioutder1(:,:,col); 
    weight2(:,:,col)=Iout2(:,:,col)./Ioutder2(:,:,col); 
    weight3(:,:,col)=Iout3(:,:,col)./Ioutder3(:,:,col); 
    weight4(:,:,col)=Iout4(:,:,col)./Ioutder4(:,:,col); 
    
Iout(:,:,col)=(Iout3tot(:,:,col)+Iout4tot(:,:,col))./(weight3(:,:,col)+weight4
(:,:,col)); 
  
end 
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figure(1); 
imshow(log(Iout)); 
  
%display inv. cam. resp. func. 
figure(2) 
  
x=[0:0.1:1]; 
  
hold on 
plot(x,polyval(k(:,1),x),'r'); 
  
plot(x,polyval(k(:,2),x),'g'); 
  
plot(x,polyval(k(:,3),x),'b'); 
hold off 
  
%linear tone mapping 
figure(3) 
Itmp=255*(Iout-min(min(min(Iout))))/(max(max(max(Iout)))-min(min(min(Iout)))); 
imshow(uint8(Itmp)) 
  
%hist. adjusted tone mapping 
nbins=1000000; 
channel=Iout(:); 
map=cumsum(hist(channel,nbins+1)); 
minc=min((channel)); 
maxc=max((channel)); 
rangec=maxc-minc; 
for col=1:3 
    for i=1:size(Iout,1) 
        for j=1:size(Iout,2) 
            
recons(i,j,col)=map(round((((Iout(i,j,col))-minc)/rangec)*nbins+1))/map(nbins+
1)*255; 
        end 
    end 
end 
figure(5) 
imshow(uint8(recons)) 
 
Calculation of polynomial coefficients: 
 
function [c,R]=HDRfunc(I1in,I2in,color,R,P) 
  
  
c=zeros(P+1,1);%polynomial coefficient array 
newR=-4; %update exposure ratio, intitial value 0; 
eps=1e-2; %convergence critieria 
A=zeros(P,P); % 
b=zeros(P,1); 
  
I11=double(I1in(:,:,color)); 
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I21=double(I2in(:,:,color)); 
  
I1=I11(1:2:end,1:2:end); 
I2=I21(1:2:end,1:2:end); 
% I1=I11; 
% I2=I21; 
  
  
[h,w]= size(I1); 
  
%% normalize images to 0-1 
I1=I1/max(max(I1)); 
I2=I2/max(max(I2)); 
  
%% caculate the mask 
%the edges, the area have high gradient values. 
mask=or(edge(I1,'sobel'),edge(I2,'sobel')); 
mask=bwmorph(mask,'thicken',3); 
mask = or(or(I1>0.97,I1<0.05),mask); 
mask=or(mask,or(I2>0.97,I2<0.05)); 
  
mask=not(mask); 
totalnumber=sum(sum(mask)); 
%I1mask=I1.*mask; 
%I2mask=I2.*mask; 
  
I1mask=zeros(totalnumber,1); 
I2mask=zeros(totalnumber,1); 
good=0; 
for i=1:w 
    for j=1:h 
        if (mask(j,i)) 
            good=good+1; 
            I1mask(good)=I1(j,i); 
            I2mask(good)=I2(j,i); 
        end 
    end 
end 
  
%% minimazation of error function 
  
x=[0:0.05:1]; 
f=ones(size(x)); 
newf=zeros(size(x)); 
err_ind=1; 
while     (max(abs(newf-f)))>eps  %check convergence 
  
  
  
    err(err_ind)=(max(abs(newf-f))) 
    err_ind=err_ind+1; 
    for k=1:P 
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b(k)=-sum((I1mask.^(k-1)-I1mask.^(P)-R*(I2mask.^(k-1)-I2mask.^(P))).*(I1mask.^
P-R*I2mask.^P)); 
  
        for l=1:P 
            
A(k,l)=sum((I1mask.^(k-1)-I1mask.^(P)-R*(I2mask.^(k-1)-I2mask.^(P))).*(I1mask.
^(l-1)-I1mask.^P-R*(I2mask.^(l-1)-I2mask.^P))); 
  
        end 
    end 
  
    c(1:P)=lsqr(A,b); 
    %  c(1:P)=A\b; 
    c(P+1)=1-sum(c(1:P)); 
  
  
    Iout1=zeros(totalnumber,1); 
    Iout2=zeros(totalnumber,1); 
    for i=1:P+1 
        Iout1=Iout1+c(i)*I1mask.^(i-1); 
        Iout2=Iout2+c(i)*I2mask.^(i-1); 
    end 
  
    oldR=R; 
    R=(sum(Iout1./Iout2))/totalnumber; 
  
  
  
  
  
    f=newf; 
    newf=zeros(size(x)); 
    for i=1:P+1; 
  
        newf=newf+c(i)*x.^(i-1); 
    end; 
    plot(x,f,x,newf) 
    R 
end 
  

 Method 3: 
 
%% constance setting  
N=5;%number of input images 
B=[log(1/0.0625);log(1/0.125);log(1/0.5); log(1/2); log(1/32)]; %choose a 
suitable value for R (~0.5) 
l=2*N; 
ResizeRatio=0.2; 
  
I=[]; 
%% first read in two image 
I(:,:,:,1)=imread('E:\My Picture\Recognition\HDR\Memorial\memorial0062.png'); 
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I(:,:,:,2)=imread('E:\My Picture\Recognition\HDR\Memorial\memorial0063.png'); 
I(:,:,:,3)=imread('E:\My Picture\Recognition\HDR\Memorial\memorial0065.png'); 
I(:,:,:,4)=imread('E:\My Picture\Recognition\HDR\Memorial\memorial0067.png'); 
I(:,:,:,5)=imread('E:\My Picture\Recognition\HDR\Memorial\memorial0071.png'); 
  
I=I(50:700,50:470,:,:); 
  
[h,w]= size(I(:,:,1)); 
h=floor(h*ResizeRatio)+1; 
w=floor(w*ResizeRatio)+1; 
mask=zeros(h,w); 
tmp=zeros(h,w,N); 
I=I(:,:,3,:);% average over color 
for i=1:N 
    tmp(:,:,i)=imresize(I(:,:,i),ResizeRatio); 
    mask=or(mask,abs(gradient(tmp(:,:,i)))>1.5); 
end 
I=tmp; 
mask=not(mask); 
  
totalnumber=sum(sum(mask)); 
  
%% minimazation of error function 
Imask=zeros(totalnumber,N); 
Iout=zeros(totalnumber,N); 
    good=0; 
    for i=1:w 
        for j=1:h 
            if (mask(j,i)) 
                good=good+1; 
                for imn=1:N 
                    Imask(good,imn)=I(j,i,imn); 
                end 
            end 
        end 
    end   
     
w=[[0:127], [127:-1:0]]; 
[g,lE]=gsolve(uint8(Imask),B,l,w); 
  
subplot(121); 
plot(g); 
  
tmp=uint8(tmp); 
output=zeros(size(tmp,1),size(tmp,2)); 
for i=1:size(tmp,2) 
    for j=1:size(tmp,1) 
        sumdiv=0; 
        for imn=1:N 
            output(j,i)=output(j,i)+w(tmp(j,i,imn)+1)*g(tmp(j,i,imn)+1); 
            sumdiv=sumdiv+w(tmp(j,i,imn)+1); 
        end 
        output(j,i)=output(j,i)/sumdiv; 
    end 
end 
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subplot(122); 
imshow(output-min(min(output)),[]); 
  

Method 4: 
  
 I1r = imresize(mean(I1,3),[height width]); 
 I2r = imresize(mean(I2,3),[height width]); 
 I3r = imresize(mean(I3,3),[height width]); 
 I4r = imresize(mean(I4,3),[height width]); 
 XX = [I1r(:)';I2r(:)';I3r(:)';I4r(:)']';  
  
SS=W*XX'; 
  
I_low=reshape(SS(1,:,:),height,width); 
I_mid=reshape(SS(2,:,:),height,width); 
I_high=reshape(-SS(3,:,:)/4,height,width); 
  
TL1=0.4; 
TL2=1.0; 
  
TM1=0.5; 
TM2=0.5; 
  
TH1=0.0; 
TH2=0.4; 
  
  
I_lown=(I_low-min(min(I_low)))/(max(max(I_low))-min(min(I_low))); 
I_midn=(I_mid-min(min(I_mid)))/(max(max(I_mid))-min(min(I_mid)))/3; 
I_highn=(I_high-min(min(I_high)))/(max(max(I_high))-min(min(I_high))); 
  
Th=ones(height,width); 
 
maskl=(I_lown>(Th*TL1)).*(I_lown<(Th*TL2)); 
maskh=(I_highn>(Th*TH1)).*(I_highn<(Th*TH2)); 
I_lt=I_lown.*maskl; 
I_mt=I_midn-I_midn.*or(maskl,maskh); 
I_ht=I_highn.*maskh; 
  
subplot (2,3,1); 
imshow(I_lown); 
subplot (2,3,2); 
imshow(I_midn); 
subplot (2,3,3); 
imshow(I_highn); 
  
subplot (2,3,4); 
imshow(I_lt); 
 subplot (2,3,5); 
imshow(I_ht); 
 subplot (2,3,6); 
 imshow(I_mt+I_ht/2+I_lt); 
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