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Multi-Modal Image Registration

1 Background and Introduction

The mechanisms behind most neurodegenerative diseases are poorly understood. The lack of suitable non-
invasive methods for diagnosing and characterizing conditions such as Alzheimer’s disease and traumatic
brain injury have hindered the ability to effectively treat and monitor these illnesses. Understanding and
quantifying the pathological effects of these conditions could potentially facilitate the development of drugs
targeted towards specific biological areas and phenomenon. Metals such as Zinc and Lithium have been
used in treatment of neurological diseases, but the mechanisms of action of such drugs are still unknown. A
technique known as metallomic spectral imaging (MSI) enables the generation of a 2-D metallomic map of
a given sample via optical or mass spectrometry. These images provide quantitative data for characterizing
the elemental distribution of biological samples with extremely high spatial resolution (on the order of tens
of microns).

Ideally, relevant features of the MSIs will be identified and quantitatively analyzed. For biological
specimens, relevant features usually correspond to anatomical areas of interest. Due to the complexity
of the MSI data acquisition process, the resulting images are characterized by blurred edges, unexpect-
ed/unpredictable features, and unique noise patterns. The varying properties of each individual elemental
distribution within a sample as well as the other limitations in the quality of the data (i.e. low signal-to-
noise ratio, inability to compare MSI to ground truth) make it difficult to perform reliable analysis using
the MSIs alone. For this reason, photographic images can be used to guide MSI analysis.

In the proposed project, photos will be registered to their MSI realizations. Spatial properties and
features identified in the photos can be used to adjust and analyze properties of the MSIs. This multimodal
registration-segmentation technique is vital for correlation and feature analysis across distinct samples and
could be used for anatomical labeling and accurate spatial representation of the data. Using staining
techniques or “expert” segmentation, brain histology and structures can be identified and used to precisely
localize the corresponding regions in the MSIs using the photo images. Further, techniques developed
for this multi-modal image registration can be applied between other image types (such as registration of
an MSI to a labeled atlas cartoon, for instance). Challenges include differences in capture regions, data
dynamic range, relative data magnitudes, and sampling lattices between the MSIs and the photo.

2 Literature Review: Medical Image Registration

Multi-modal image registration is an important aspect of medical image analysis. Different modalities, such
as Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and Positron Emission Tomography
(PET), show unique tissue features at different spatial resolutions. Whether registering images across
modalities for a single patient or registering across patients for a single modality, registration is an effective
way to combine information from different images into a normalized frame of reference. Registered datasets
can be used to provide information about the structure, function, and pathology of the organ or individual
being imaged.

Registration can be thought of as the optimization of a similarity metric over the set of possible
transformations. This alludes to the three necessary aspects which must be defined for image registration:
a transformation model, a similarity metric, and an optimization method [10]. Depending on the desired
robustness and accuracy of the registration outcome, different definitions for these aspects may be used.
The transformation model can be either rigid or non-rigid. If the images to be registered are the product of
a technique which introduces only rigid distortions, then a combination of translation, rotation and scaling,
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which together define affine motion, would be a sufficient transformation model. Non-rigid models, such
as perspective and parametric, are used to describe more general object deformations between images.

Similarity metrics which are most widely used in medical image registration include normalized cross
correlation [10], correlation ratio [9], and mutual information [3][14]. Normalized cross correlation and
correlation ratio assume a functional dependence between the intensity values of the two images, where
the former assumes a linear relationship and the latter permits any form of functional relationship [2].
Mutual information, on the other hand, is a metric adapted from information theory and is a statistical
measure which indicates the amount of information one random variable (image) gives about another [3].
Improvements to the mutual information metric have been proposed by incorporating spatial information,
such as gradient magnitudes and orientations [7][6] and other statistical spatial dependencies [16].

An optimization method must be selected to search the parameter space for a set of transformation pa-
rameters which optimally align the two images according to the specified similarity metric. Non-derivative
and derivate based optimization methods exist which iteratively select parameters such that the similarity
metric is minimized. In the case of normalized cross correlation and mutual information, this will mean
minimization of the negative value their functional definitions. Optimization methods typically converge
on local extrema since the hypersurface defined by the similarity metric tends to be high-dimensional [10]
and is not always a convex function [15]. For this reason, initial estimates or initial approximate alignment
are necessary for successful registration when using non-global optimization methods.

Of equal importance is the interpolation method used. The transformation of a moving image to a
fixed image (also called test/target, floating/reference) often results in non-integer grid locations specified
for the moving image. This requires interpolation to compute the moving image’s value at the specified non-
integer locations. Netsch et al. [5] concluded that quadratic and cubic interpolators produce significantly
better registration results over linear interpolators, but that higher order interpolators do not perform
significantly better.

3 Problem Statement: MSI and Photo Registration

As discussed in Section 2, a transformation model, similarity metric, and optimization method were se-
lected. Since the registration was performed using the MATLAB function imregister!, the similarity
metric and optimization methods were predefined using the imregconfig function. Registration of the
MSI and photo was done using an affine transformation model with bicubic interpolation. Optimal regis-
tration was determined by maximization of mutual information (as defined by Mattes et al. [4]) using a
(1 + 1) evolution strategy [11]. Because the exact operation of the function is not documented and the
m-file could not be accessed?, the general theory regarding mutual information and referenced optimization
strategy will be provided. Details regarding implementation in MATLAB will be given in Section 4.

3.1 Affine Transformation Model

Consider two registered data sets, F(p) and M"(p) sampled on p € R%. The data sets may represent two
imaging modalities of the same underlying object. Given that F(p) and M(q) are observed, we can define

!Part of the Image Processing Toolbox
2Implementation of optimization algorithm and similarity metric are contained in a file regmex .mexw64 which cannot
be viewed since the source file is unavailable
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the relationship between M"(p) and M(q) as follows:
M’ (p) = M (A(q)) & M(q) = M"(A™(p)) (1)

where A is an affine transformation. The fixed image, F, is defined on image coordinates p and the
moving image, M, is defined on image coordinates q. M" is the registered moving image. The goal is
to find A ~ A (or equivalently its inverse) which provides a mapping from q to p (see Eqn (2)) such
that it maximizes the mutual information (see Eqn (6)). The affine transformation A is the product of
four geometric transformations: translation (in z and y), rotation, scaling (in x and y) and skew. The
relationship between the geometric parameters o = {t,, t,, 0, s, S, k} and the transformation parameters
a = [ay, a,as, ay, as, ag)’, as well as the individual transform matrices are given in Eqn (3).

p=Aq (2)

1 0 t, 0. —0, 0 1 k0 s, 0 0 s0c  sy(kO. —05) t, a; ay as

Aa=10 1 t,|-|6s 6. 0]-]10 1 0|-|0 s, O =|s.0s sy(kbs+6.) t,| =|as a5 ag| (3)
00 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
translation rotation skew scaling

where

t, = positive value shifts image to the left

t, = positive value shifts image up

0 = rotation angle, measured counterclockwise from the z-axis (6. = cos(#) and 0, = sin(0))

k= shear factor along the z-axis = tan(skew angle) (the skew angle is measured from the y-axis)

s, = change of scale in x direction
sy = change of scale in y direction

It is important to note that the above expression for the affine transformation matrix A in Eqn (3)
corresponds to a transformation with respect to the center pixel, (z.,%.). This transformation can easily
be written as a transformation applied to the top-left pixel with a different definition for the translation
parameters (B). This derivation is shown in Eqn (4). It should also be noted that while transformations
were applied using a custom written function, transform_image, the built in MATLAB transformation
function uses distinct definitions for the semantic meaning of the geometric parameters.

P Ay = lm az] , qu - :v] N lag + :v] _ [aqu + asqy + ag — T — agye + o

a4y Q5 Qy — Ye ag + Ye a4qyz + a5qy + ag — 4T — as5Ye + Ye

- T
bl b4 0 1 Az Az — A1T. — A2y, + Te qx

p=|by b5 O qi1) = |4 a5 G — A4Te — A5Yc + Y| * |Gy
_bg be 1 0 0 1 1

—BT

[ aq Qy 0 bl b4 0

B = (05} as 0] = bg b5 0
(a3 — a1Te — QY + Tey, A6 — A4Te — A5Ye + Yo, 1 bz bg 1
[ 5,0, 5.0, 0

Ba = s, (k0. — 0,) s,(0. + ko,) 0 (4)

te + xe + syye(0s — kO.) — su0cc, ty + Yo — SyYe(Oc + kbs) — 50,2, 1
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3.2 Mutual Information

Mutual information (MI) is an entropy-based metric adapted from information theory which represents the
amount of shared information two random variables have about one another in terms of bits. Typically, the
entropy definition used is the Shannon entropy given by H = — >, p; log, p;, but other entropy definitions
can be used (such as Jumarie or Rényi). Several interpretations of MI provide different perspectives to
the same underlying statistical measure [8]. Mutual information, J, between the overlapping region of two
random variables (images) C' and D can be interpreted as follows:

1. J(C,D) = H(D) — H(D|C): indicates “the amount by which the uncertainty about D decreases
when C'is given: the amount of information C' contains about D” [§]

2. J(C,D)=H(C)+ H(D)— H(C,D): theoretically H(C) and H(D) should remain constant despite
registration, however, the joint entropy will change. Through this interpretation we see that min-
imization of joint entropy, another similarity metric used in medical image registration, promotes
maximization of J. The independent entropies prevent dominance of trivial solutions (such as only
aligning background).

3. J(C,D) =X, 4p(c,d)log, (pl(’c()cz’;(izl)): measures the dependence between random variables.

Registration of F and M maximizes MI so that when they align, the amount of information they contain
about each other is maximal. One challenge associated with using MI in derivative based optimization
methods is that the metric must be posed as a continuous function in order to enable differentiation of
the function. This requires both the images and the estimated probability distributions to be continuous,
which can be achieved by: using a B-spline basis to represent M, using a Parzen window to estimate the
joint probability distribution pr a, and using cubic B-splines for implementing deformations [4][13][12].
Derivation of the differentiation of the MI is given in Appendix A.

The definition used for MI in imregister is given by [4]:

J(Fp) MA-@)= > > prum(l ria)log, ( prm(l ki a) ) 5)

LeLp KELF p}—(ﬁ;)pM(gﬁ a‘)

where Lz and Ly, are the discrete sets of intensities associated with the fixed and moving images, respec-
tively, and pr am, pr, and pyg are the joint, fixed marginal, and moving marginal probability distributions,
respectively.

3.3 Optimization

The optimal parameters of the transformation, a, are determined according to the maximization of mutual
information as follows:

X pr.m(l; ki a) )
a = arg max J (F(p), M(A- = arg max l, k;a)lo : 6
g S (FIp) MU 0) =g 3 5 gt sayos, (22050 ) o

where J (F(p), M(A - q)) is defined in Eqn (5). This problem is solved using the (141) evolutionary
strategy (ES) proposed by Styner et al. [11]. In summary, each optimization step begins with a set

of parameter vectors {ai,as,...,a;}, called a population, where each parameter vector a; represents
an individual. At the beginning of each optimization step, the population will have ¢ individuals. Each
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individual is randomly mutated by a vector of multidimensional normal distributions, with mean pt = @parent
and covariance matrix X2, to produce a new individual (child). A new population of size 2i is formed by
combining the children and the parents. The fitness of each individual in the population is then assessed
according to J(F(p), M(Aa,q)) such that individuals with the highest fitness (largest J) are retained for
the following optimization step. The covariance matrix X? is adapted at each optimization step according
to whether the fitness of the individuals in the population increased or decreased. For a detailed account
of the (1+1) ES, the reader is referred to [11, Appendix B, pp.163-4]. This method boasts an ability to
step out of non-optimal minima due to the random nature of the parameter variation. The number of
individuals used MATLAB’s implementation of this optimizer is not given.

Oftentimes optimization is enhanced by the use of image pyramids for hierarchical image registra-
tion. While the documentation for imregister states that the function does perform multiresolution
optimization, the function’s documentation does not detail the method used. Presumably, it implements a
scheme similar to that used in the impyramid function, which computes a Gaussian pyramid reduction or
expansion of the input image. The flow of multiresolution optimization using a 3-level pyramid is shown
in Figure 1 [1, Figure 1]. Multiresolution schemes increase the chance that the initial parameter estimate
will be within a convergence basin of the global minimum of the similarity metric, J [1].

initial
matching

Input images motion parameters

Figure 1: Multiresolution optimization using a 3 level pyramid (copied from [1], Figure 1)
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4 Implementation: MSI and Photo Registration in MATLAB

As mentioned in Section 3, the MATLAB function imregister was used with the optimizer and metric
specified according to the command [optimizer, metric] = imregconfig('multimodal'). The re-
sulting variable definitions and field values are given on Table 1. Generally, a registration function would
take as inputs the moving and fixed images, and would give as an output the optimal parameters which
align the moving image to the fixed image. While attempting to utilize the imregister function, it was
found that the output transformation matrix, T', was structured differently than the expected transforma-
tion matrix A . The discrepancy between expected and actual outputs is depicted in Figure 2. Details
regarding characterization of the imregister function will be given in Section 4.1. Section 4.2 addresses
the operating assumptions for the image registration process and Section 4.3 provides the algorithm. The
MATLAB function order and hierarchy is described in Section 4.4.

’ Var. Name Data Type Fields Value ‘
optimizer OnePlusOneEvolutionary GrowthFactor 1.05
Epsilon 1.5e —6
InitialRadius 0.00625
MaximumIterations 1000
metric MattesMutualInformation NumberOfSpatialSamples 500
NumberOfHistogramBins 50
UseAllPixels 1

Table 1: Definitions of output structures from imregconfig ('multimodal"')

4.1 Characterizing imregister OQutput

When developing the registration function flow, two photos of copper grids were input into imregister.
One of the images had undergone a known transformation dictated by geometric parameters . Initially,
transformation was restricted to translational and rotational motion. For these geometric transformations,
the output of imregister, T, correctly gave the inverse transformation 7' = A~! such that F(p) =~
M"(p) = M(T - q). Once scale and skew were varied, Figure 2 clearly shows that 7' # A~'. By
individually varying each parameter in a, the relationship between T" and a was gradually exposed.

The transformation matrix as a function of e (which is defined with respect to the center pixel),
Tw, was found to be the product of the individual transformation matrices as given in Eqn (7). Since
imregister internally uses imtransform, the output 1" specifies a transformation with respect to the
top-left pixel (Eqn (8)).

0. 6, 0] [1 0 0] [s, 0 0] [1 0 0] [s,(6.+k0,), s.05 O
Toeve = | =0, 0, 0|k 1 0[-|0 s, 0|-[0 1 0|=/]s,(kb.—0,), s,0. 0 (7)
0 0 1] [0 01 |0 0 1] |t t, 1 t, t, 1
rotation skew scaling translation
Sy(0c+k93>7 saﬁs 0 tl t4 0
TV = Sy(kb. — 05), S0 0| =1|ta t5 O (8)

t:c + Le — SyIc(ec + /{595) + Syyc(es - ]{590), ty + Ye — Szesxc - Szecyca 1 t3 t6 1
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&

M | moving

imregister

Raw MATLAB output

Expected output

p=A""-gq

Figure 2: Example showing discrepancy between expected and actual output from imregister

From Eqn (8), we have 6 equations (¢; = function of a) and 6 “unknowns” (a), so the value of each
geometric parameter can be solved for explicitly as follows:

ty = s, sin(6) ts sin(6) . <t4>
.= ty =t = t; tan(f 6 =tan~! (2
ts = s, cos(f) -0 cos(6) - cos(0) an(6) = o ts
tl = Sy(ec + ]{798) tl —tl (85 - kHC) tgtgc + tlﬁs
t2 = _Sy(es - kec) = Sy 06 + ]{395 = 2 ec + kes = tlec - t203
N M M N
tx = t3 + 5 (Sy(ec + k@s) — 1) — ?Sy(es — k‘@c) ty = tﬁ + ? (Sxec — 1) + 55:595 (9)

where [M, N] = size([). As shown in Figure 3, by incorporating a block in the system which takes as
an input the solution transformation matrix 7" from imregister and outputs the inverse of the original
transformation, the registered moving image, M"(p), closely matches the fixed image, thereby empirically
verifying the interpretation of T'.

4.2 Assumptions

Two primary assumptions were made in order to successfully register photos and MSI. Due to the fact
that the optimizer does not perform global optimization, one of the key assumptions dictating the success
of the final registration is that the MSI and the photo have similar orientations and capture regions.
An example of the registration output when this assumption is violated (Experiment 5f) shows that the
solution converges on a sub-optimal minima, resulting in a clearly incorrect mapping from q to p (Figure 9).
Another key assumption is that the moving image yields itself well to interpolation. As suggested in the
algorithm below, the MSI always serves as the fixed image for two reasons. For one, the spatial intensity of
the MSI tend to be much less uniform than that of the photos. This is because MSI are more susceptible
to noise which is inherent in the acquisition process. Additionally, maximal MSI intensity values can be
significantly greater in magnitude (up to 10* times) than those of photos. In line with this assumption, it
was also empirically found that maintaining a “reasonable” aspect ratio (ar) was important. For instance,
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p .
Aq 1 Interp. @ g Al Interp. — M"(p) ~ F(p)
p M | moving
a i ist T—a— Ayt
lmregistcer
fixed g * a

F(p) M'(p) |M"(p) — F(p)l

Figure 3: Functional registration block diagram

when a photo with an original ar of 2:3 was rescaled to an ar of 1:12 (Experiment 3f, Figure 6), the
registration could not be performed. However, when the ar was maintained (Experiment 3, Figure 7),
registration was successful.

4.3 Algorithm

The following algorithm was used for MSI-photo registration:

1. Resize images so they have matching dimensions (if ar of the MSI is less than 1:5, then resize to
photo dimensions)

2. Define imregister inputs
(a) fixed = MSI; moving = photo
(b) Motion model: 'affine’
@ﬁ [optimizer, metric] = imregconfig('multimodal')

3. Run [moving _reg,T] = imregister (fixed,moving, 'affine',optimizer,metric);

e Note that moving reg is a meaningless output that is later redefined (see Figure 2, Raw
MATLAB Output)

4. Use T to estimate the geometric parameters, o
5. Use a4 to generate the transformation matrix B

6. Apply B to photo (moving) to give output of registered moving image, M"

4.4 MATLAB Function Hierarchy

Experiments were run using a central function called EC720reg. Variable inputs are allowed into this
function to allow for versatility, but the function contains the necessary information such that by running
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the command below, the outputs shown in Figures 4-12 will be output.

[reginfo, fixed_reg ,moving_reg] = EC720reg([],MSInum, 'fnum',photonum, "exp', expnum, );

where MSTnum is the MSI number (F, on Table 2), photonum is the photo number (M on Table 3), and
expnum corresponds to the experiment number on Table 4. From this function, the functional flow is as
follows:

® [alpha_est, fixed_reg, moving_reg] = register_image (fixed,moving);
— [optimizer, metric] = imregconfig('multimodal’');
— [moving_reg,T] = imregister(fixed,moving, 'affine',optimizer,metric);
— [Aest,Mest,iMest] = alphaZtmat (alpha_est,ysize,xsize);
— moving_reg = transform_image (moving,Mest, 'transtype', 'trans');

e imoverlaylx4 (fnum,reginfo.Il.original, moving_reg, datasetnum, fixed)

5 Experimental Results

Registration between MSI and photo was successfully applied to 7 data sets®, where successful registra-
tion was determined qualitatively and marked by an increase in mutual information. In all experiments,
F = fixed = MSI and M = moving = photo. Relevant MSI and photo information can be found on
Tables 2 and 3 respectively. Experiments are numbered on Table 4 and experimental outputs are depicted
in Figures 4-12. The moving image used in experiment 5, M3}, corresponds to a manual rotation of the
original image My by —60° with respect to the center (M3 = My(A_g00 - q)).

5.1 Reference Tables

’ Fu Filename Dim. Element t, (8) Vscan (14/S)  dspor ‘
Fi 20120322 OESCugridlta 170 x 184 Cu3273 1 20 20
Fo 20120320 __OESCugrid40umps 170 x 510  Cu3273 0.2 40 20
F3 20120321__OESCugrid0,1ta 70 x 862  Cu3273 0.1 50 50
Fi 20120322 OESCugrid0,75ta 70 x 86 Cu3273 0.75 75 50
Fs 20120425 OESheye 260 x 275 K 7664 1 50 50

Table 2: Metallomic spectral image information

3Modifications to step 1 of the algorithm given in Section 4.3 were sometimes required. Additionally, when the assumption
that MSI and photo have similar orientation and capture region was violated (Exp 6f), manual transformation of photo was
required.
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’ My Filename Dim. ‘
M; PI_CuGl_orig 480 x 718
My PI_CuG2_ orig 480 x 718
M heyel 072 x 1164
My eye_ atlas 311 x 400

Table 3: Photo information

Exp # Fux My Resized J(F,M) J(F,M") Reg. Oest = [tz by, 0, Sz Sy, K]
Dim. time (s)
1 £ M, A 0.388 1.097 _ 6.36 [1.46, 0.88, -1.34, 0.77,0.95-0.01]
2 Fo My F 0.652 0.777 17.72 [ -4.65, 1.35, -0.22, 0.85,0.95,-0.01 |
3f F3 My F 0.756 0.756 1.11 [ 0.00, 0.00, 0.00, 1.00,1.00,0.00 |
3 F3 My M,y 0.441 0.683 73.26 [ -8.40, 6.61, -1.18, 0.90,0.98,0.00 |
i F M A 2.219 2310 2.41 [-2.53, 1.52, -4.30, 1.00,0.99,-0.02 |
5 Fi My F 0.343 0.189 2.86 [ 38.05, -32.94, 12.58, 0.26,0.25,0.38 ]
5 Fi 5 Fi 2.385 2.946 6.55 [-5.15, -0.14, -0.98, 0.71,1.04,0.06 |
6 F My Fs 1.085 1446 1342 [27.12,-10.68, -6.32, 0.76,0.82,0.01 ]
7T F M, 5 0.940 0965 1257  [12.65, -2.93, -4.61, 0.70,0.91,-0.05 |

Table 4: Experimental cross-reference and MI results

5.2 Experimental Figures

Mi(g)

Fi(p) M, F1 Overlayed

10048 ®

200 400 600 50 100 150 50 100 50 50 100 150

Figure 4: Experiment 1 Result

Mu(9) Mi(p) M, Fy Overlayed

200 400 600 100200300400500 100200 100200300400500

Figure 5: Experiment 2 Result
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Ma(g)
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Figure 6: Experiment 3f — Failed Result

Mu(q) Mi(p) F3(p) My, F3 Overlayed

200 400 600 200 400 600 200 400 600 200 400 600

Figure 7: Experiment 3 Result
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Figure 8: Experiment 4 Result

Ma(q) M5(p) | Fi(p) | M5, F1 Overlayed
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200 400 8600 50 100 150 50 100 50

150

50 100 150

Figure 9: Experiment 5f — Failed Result
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Figure 10: Experiment 5 Result
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Figure 11: Experiment 6 Result
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Figure 12: Experiment 7 Result

6 Conclusions

Multimodal registration between MSI and photos of an object was accomplished in this work for four
copper grid MSI data sets and one biological data set (human eye). In completing this task, various
custom MATLAB functions and a variety of debugging experiments were constructed to leverage the
functionality of the existing MATLAB function imregister. Through the course of this project I have
gained an in-depth knowledge of the common practices in and the aspects required for multimodal medical
image registration. Many of the aforementioned challenges associated with MSI-photo registration, such
as difference in dynamic range and relative intensity magnitudes, were alleviated by the use of the mutual
information similarity metric.

The seven experiments performed exposed a few of the challenges associated with the registration
method developed in this work. However, a number of improvements would enhance the practical utility
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of the proposed method. First, a more thorough evaluation of the system’s failure modes would help make
registration between MSI and photo more robust. This effort would be two fold: (1) characterization of the
registration result for a variety of MSI-photo pairs ranging in quality, size, and joint intensity relationship;
and (2) performing range finding experiments to determine the point at which the initial transformation
between two images (photo and transformed photo, for instance) is large enough to induce registration
failure. The idea is that by exposing the causes for failed registration between two images, data can be
pre-conditioned so as to avoid these failures, or at least to understand why they happen.

Another addition which would greatly enhance the practical utility of the proposed registration
method is the incorporation of an automated pre-conditioning function for fixed and moving images (i.e.
reorienting, denoising, selecting rescaling dimensions, ect.). A scheme for performing a coarse registration
step before inputting the images into the registration function has been envisioned, but upon subsequent
consideration and testing of the coarse registration step, it was found that the conceived method would
require further development.

An additional challenge lies in the inability to verify the registration accuracy, which stems from the
fact that no ground truth exists for the data sets used. Because MSI is a novel imaging method, validated
techniques for improving image quality or labeling data do no exist. Additionally, labeled or segmented data
sets for ground truth verification are not available. This issue could perhaps be surmounted by generating
a synthetic data set using a photo to emulate the data characteristics of MSI. Since the transformation
between the original photo and the MSI-modeled photo could be tracked, the registration accuracy could
presumably be assessed in this way.

The ability to register photos and MSI will be a tremendously useful utility in furthering metallomic
spectral imaging research and analysis. Since controlling the quality and acquisition parameters of a photo
is simple compared to MSI, segmentation of the object of interest in a photo tends to be more accurate and
reliable. If the segmentation curve can be represented as a continuous function (either via parameterization
of the curve or by defining the curve as a zero-level set), the transform which registers the photo to the
MSI can also be applied to the segmentation curve, thereby passing the segmentation to the MSI. In the
coming weeks, the analysis of background and foreground signal statistics, edge blurring, and background
masking in MSI will be explored using a joint photo-segmentation/photo-MSI registration technique.
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Differentiation of Mutual Information [4]

Continuous estimates of the distributions are approximated via Parzen windowing of the marginal and joint
histograms of the moving and fixed images. With a cubic spline Parzen window (3®)) and a zero-order
spline Parzen window (3(?)), joint and marginal discrete probability densities are given by:

p(l,k;a) = 7%6@ (,.@ — ff(Z)b; fj?) . 3@ (g_ fM(AA';)A— fM)
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where
¥ = normalization factor that ensures Y- p(¢,k) = 1,¥¢ € Ly and Vk € Lz
fr(p) and fp(A-q) = samples of fixed and moving images
fr and f, = minimum intensity values of fixed and moving images
Abz and Abyy = intensity range of each bin
V = set of pixel pairs that contribute to the distribution

Using these definitions for the marginal and joint probability distributions, the gradient of MI with respect
to the transformation parameters a can be defined as follows:
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where #V is the number of pixels used in the summation. Thevenaz et al. [12] gives a much more thorough
and explicit derivation of the gradient and the Hessian of MI, however since MATLAB implements MI
according to Mattes et al., this derivation has not been provided.

T
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