© 1997 COST211ter. Personal use of this material is permitted. How-
ever, permission to reprint/republish this material for advertising or pro-

motional purposes or for creating new collective works for resale or re- Workshop on Image Analysis for Multimedia
distribution to servers or lists, or to reuse any copyrighted component of Interactive Services, WIAMIS’97, June 24-25,
this work in other works must be obtained from the COSTZ211ter. 1997, Louvain, Belgium

DCT-BASED SHAPE-ADAPTIVE TRANSFORM FOR
REGION-ORIENTED IMAGE COMPRESSION AND

MANIPULATION
Ryszard Stasiriski Janusz Konrad *
Poznar University of Technology INRS-Télécommunications
Inst. of Electronics and Communiations Inst. Nat. de la Recherche Scientifique
ul. Piotrowo 3a 16 Pl. du Commerce
60-965 Poznari, Poland Verdun, QC, H3E 1H6, Canada
rstasins@et.put.poznan.pl konrad@inrs-telecom.uquebec.ca

tel: +48 61 782-631, fax: +48 61 782-572 tel: +1 514 765-7768, fax: +1 514 761-8501

Abstract. In the paper a new DCT-based shape-adaptive transform algo-
rithm is presented. The transform is derived from the DCT algorithm flow-
graph by substitution of operations in such a way that region and background
samples are not mixed together. The computational complexity of the algo-
rithm is of the same rank as that of the DCT and significantly lower than
that of the state-of-the-art shape-adaptive transforms. Preliminary experi-
ments show that the new algorithm performs better than the direct DCT
(with extrapolation) and is only slightly inferior to the approaches of Gilge et
al. and of Sikora and Makai.

1 INTRODUCTION

The widely-used uniform partitioning of image data into rectangular blocks is not
well-suited for emerging applications in image compression and processing. Although
simple and easily implementable, such partitioning results in visible block boundaries
when bit rate is severely limited and also does not lend itself naturally to object-
wise manipulation (extraction, insertion, repositioning of objects). As an alternative,
non-uniform (arbitrarily-shaped) image partitioning has been actively studied over
the last few years. Such a partitioning is expected to improve compression quality for
a given bit rate (error is uniformly distributed over the whole region), but perhaps
more importantly it is also expected to assure additional functionalities, e.g., object-
by-object progressive transmission, object-based manipulation.

In this paper we present a new approach to devising a shape-adaptive transform.
Derivation of the transform starts with a DCT algorithm flowgraph. This flowgraph
is subsequently modified so that data samples within a region are not mixed with
those outside (background). The resulting shape-adaptive algorithm has the same
computational complexity as the original DCT algorithm. At the same time, the new
shape-adaptive transform has good data compression capabilities, much better than
the standard DCT with zeroed background samples [1], and almost as good as shape-
adaptive transforms proposed by Gilge et al. [2] and Sikora and Makai [3].

* This work was partially supported by the Fonds pour la formation de chercheurs et I’aide
a la recherche, Québec, Canada under research grant 96-ER-1577, and research grant
BW/44/486, Poznan University of Technology.

2 ALGORITHM DESCRIPTION

Our goal is to redefine a DCT algorithm flowgraph in such a manner that data sam-
ples in the region and outside are not mixed. It is reasonable to add an additional
requirement that background samples be not processed at all; they are irrelevant for
transformation results. Let us start with the observation that fast DCT algorithm
flowgraphs for data vectors of size 2F consist of two types of structures (butterflies)
only:

Yo = Ty + Tp (1)
Yp = La — Tb,

where z,, 2, yq, Yp are input, intermediate or output data samples, respectively, and

Yo = Tq - Sin(@) + xp - cos(P) (2)
Yp = Tq - COS(P) — Tp - sin(g)

where ¢ is a rotation angle, plus some scalar multiplications (Fig. 1.a). If either z, or
xp belongs to the background, we can replace any of the above structures by one of
the following ”permuting” butterflies:

Ya = Tq or Ya = T (3)
Yp = T, Yp = Za-

Clearly, our objective of not mixing region and background samples has been achieved.
Extension of the above approach to the whole DCT flowgraph is immediate. As a
result we obtain all background samples repeated at the output of the shape-adaptive
transform. The remaining transform samples describe the content of the region; they
result from combinations of region samples computed by unchanged substructures of
the "parent” DCT flowgraph.

Unfortunately, such a simple approach to shape-adaptive transform generation
causes that the transform is not orthogonal. This is due to the fact that while but-
terflies (2,3) are orthogonal, the butterfly (1) is not. However, this butterfly can be
represented as an orthogonal butterfly

Yo = Tq - Sin(m/4) 4 xp - cos(m/4)
Yp = Lo - cos(m/4) — xp - sin(w /4)

(4)

followed by multiplications by v/2. Therefore, we can replace the orthogonal butterfly
(4) by one of the "permuting” butterflies (3), but we should not remove the following
multiplications by v/2. The background samples need not be multiplied as their values
at the transform output are irrelevant.

The introduction of multiplications by v/2, however, prevents the algorithm from
computing the ”true” DC component of the processed region. This is an important
drawback as in natural images the DC component is much larger than other spectral
components. We will analyze the computation of the DC component for FF'T; in the
case of DCT it is performed in the same way, but on differently ordered data. In FFT
the DC component, i.e. sample X (0), is computed jointly with sample X (N/2) in a
butterfly (1), where X(0) = y,, X(N/2) = y,. Samples z, and z} are equal to:

Ty = Z z(n), and == Z z(n),

n even n odd

where z(n) are data samples. If some data samples belong to the background, the
above formula changes as follows

Xo = Z o(n)-z(n), and z= Z o(n) - z(n), (5)

n even n odd

where §(n) excludes background samples:

_ [1 if z(n) belongs to object,
5(n) = {0 if z(n) belongs to background. (6)

Therefore, the transform basis functions used for computing samples X (0) and X (N/2)
may be described as vectors: [6(0), 6(1), 6(2), ..., (N —1)], and [§(0), —d(1), 6(2),
...y, —0(N — 1)], respectively; N is the transform size. Inner product of these vectors
is equal to a(a) — a(b), where a(a), a(b) are numbers of object samples added in (5)
for computing variables x, and x, respectively. However, if we correct the butterfly
(1) as follows:

Yo = Ta + Tp (7)

Yp = Ta —W - Tp

with w = a(a)/a(b), the inner product becomes zero, i.e., the two basis functions
turn into mutually orthogonal ones.

In the preceding stage of the transform flowgraph samples x, and x; are calculated
in the same manner as sample X (0). Namely, z, is obtained as a sum of

Z o0(n)-z(n), and Z o(n) - z(n), (8)

n mod 4=0 n mod 4=2

while z; is a sum of

Z d(n)-z(n), and Z d(n) - z(n) (9)

n mod 4=1 n mod 4=3

computed in two different butterflies of the form (1). In both butterflies differences
between the above sums are computed as well in analogy to X (N/2). Thus, we may
talk about basis functions for computing x, and its companion sample in the butterfly.
Basis functions associated with those two samples are: [§(0), §(2), (4), ..., 6(N —2)],
and [6(0), —46(2), 6(4), ..., —6(N — 2)]. Their inner product is equal to a(a) — a(b),
where a and b are input nodes of the butterfly. We may orthogonalize these functions
by replacing butterfly of the form (1) by the butterfly of the form (7). The same
concerns the second butterfly in which sample z; is computed.

Then, the sums in (8) and (9) are computed by four butterflies in the preceding
stage from eight sub-sums in which data samples are summed up for indices n mod 8 =
0,1,2,...,7. The same reasoning as above lead us to the conclusion that butterflies
should be corrected as in (7). The induction stops at the first stage of the algorithm.

Notice that because some §(n) are equal to zero, the basis functions described by
vectors [0(2), £0(K +1), 6(2K +1), ..., £§(N — K +1)] have lost part of their energy in
comparison with those of the non-adaptive algorithm (i is the index of a butterfly in
a stage and K = 27 where j is the stage number counted backwards, i.e., j=0 (K=1)

for the last stage of the algorithm). A correction for this loss can be acomplished by
multiplying vy in (7) by:

2k 2k 2k
5 = — = (10)
Qg + w? - g - (14 w) (ag +ap) - w

where k is the stage number in which the butterfly is performed (k = 1,...,log, N),
and by multiplying x(0) by v = \/N/2- Ng, where Ng is the total number of object
samples. After these corrections the flowgraph substructure involved in the computa-
tion of X (0) may replace the analogous part of the non-adaptive DCT algorithm.
Fig. 1 shows flowgraph of the 8-point DCT algorithm from [4], and its shape-
adaptive counterpart. As can be seen, outside the substructure involved in the com-
putation of X (0), orthogonalization of the algorithm is done by the use of v/2 multi-
pliers. It is desirable that the background samples be moved to output positions for
which indices are as high as possible. The strategy consists of using second permut-
ing butterfly (3) whenever z, belongs to background. For N > 8 the strategy is not
always optimal, but exceptions are few, at least for small and moderate NV values.

X©0) 00 v=\4/5 322
J6l5
X4) 10 5 -0.07
X2 09 2(2/3 0.65
(172
X(6) 0.0
X(1) 0.8
X(5) 03 Lo V22, 2, g4
777777 X@® 00 0.0
X(7) 00 0.0
O —-mm = o = OLO O ------ o = OLO
(a) (b)

Fig. 1. Flowgraphs of the (a) 8-point DCT algorithm (s; = sin7i/16, ¢; = cosm;/16); and
(b) 8-point shape-adaptive DCT-based algorithm developed for an input signal in which
background samples are set to zero. For easier comparison redundant flowgraph structures
in (b) are not removed.

Notice that the computational complexity of the new algorithm is of the same rank
as that of the DCT. There are 0(N log V) additional logical operations associated the
with switching between algorithm structures. Our conservative estimate is that the
new algorithm requires no more than twice the number of operations used by the
DCT algorithm.

3 EXPERIMENTAL RESULTS

The 2-D version of the shape-adaptive DCT-based algorithm has been simulated
in software and compared with other extrapolative and shape-adaptive techniques.
The experiment consisted of picking 32 x 32-pixel blocks from an image, windowing
them by an artificial C-shaped mask, and transforming regions generated in this way.
The image data have been taken from the flower bed from field #0 of ITU-R 601
sequence “Flowergarden”. The methods have been compared on the basis of averaged
basis restriction error, i.e., the error of a signal representation given by the largest
transform coefficients.

In addition to the proposed DCT-like shape-adaptive algorithm we have simulated
in software(Matlab and C) and tested 4 approaches: Gilge’s approach [2], Sikora’s
approach [3], DCT with extrapolation based on mirror-image extension and zero
padding. All separable algorithms have been applied either in vertical-horizontal or
horizontal-vertical mode; the latter is called subsequently “transposed algorithm”. In
Gilge’s approach Matlab’s Gram-Schmidt orthogonalization was used and subsequent
basis functions for orthogonalization were selected by zig-zag scanning of transform
coefficients. Mirror-image extrapolation for DCT was performed periodically but al-
ways in the forward direction (increasing indices); it was done vertically first in the
regular mode and horizontally first in the transposed mode.

T T T 2

22| --...-Gilge Pt -
—= Sikora Vi g

20F . New - g
—:= Mirror DCT 7 g

L Zero—padded DCT

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Fig. 2. Basis restriction error expressed in dB as a function of the fraction of highest-energy
coefficients retained for the flower bed from “Flowergarden” for a C-shaped region. The
Sikora’s, new and mirror-DCT algorithms are shown for two different orders of directions
(vertical followed by horizontal and transposed, i.e., horizontal followed by vertical). The
lower dotted curve belongs to the DCT algorithm with zero padding.

Results of our experiments are shown in Fig. 2. For Sikora’s, new and mirror-
DCT approaches two curves are shown: one when vertical direction of processing is
selected first and the other when the horizontal direction is used first (transposed);
Gilge’s approach is non-separable, and zero-padding DCT does not depend on the
direction. Note the high sensitivity of Sikora’s algorithm to the direction of processing;
differences of up 8dB can be observed. Smaller but also very significant sensitivity can
be observed for the mirror-DCT algorithm. Our algorithm, however, performs very
similarly in both direction modes having a much smaller gap between curves than the
other two algorithms. Overall our algorithm outperforms mirror-DCT significantly
and performs much better than Sikora’s algorithm in the worse direction. Interestingly,
the better versions of Sikora’s and our algorithm outperform the Gilge’s approach.
This may be due, however, to the fact that for this particular image the selection of
basis functions during orthogonalization in Gilge’s approach was far from optimal.

It should be pointed out here that computational complexity of Gilge’s method
is much greater than that of other methods compared in Fig. 2. It is of the order
of O(N?) for one-dimensional vectors, which gives O(N®) for N x N-point ones. In
comparison, the complexity of Sikora’s method computed from the DCT definition
for an NxN block is of the order of O(N?). On the other hand, this is much more
than for the DCT and the new method, for which the complexity is of the rank
O(N?%log, N). Nevertheless, the Sikora’s method is usually applied to block sizes not
greater than 8 x8 for which differences between algorithm complexities are not critical.

4 CONCLUSION

A new DCT-based shape-adaptive transform intended for region-oriented image com-
pression and manipuation has been presented in the paper. The transform is derived
from the DCT algorithm flowgraph by redefining its substructures in such a way
that object and background samples are processed separately. Special care has been
taken to maintain transform orthogonality and proper calculation of the object’s DC
component. The algorithm has been tested on natural images from which artificial
C-shaped regions have been extracted. Those initial results show only slightly inferior
performance of our algorithm when compared with the approaches of Gilge et al. [2]
and of Sikora and Makai [3], however at much lower complexity. Note that although
Sikora and Makai’s method has low complexity for small regions, the method becomes
complex for large regions treated as one entity.

References

1. S.-F. Chang and D. Messerschmitt, “Transform coding of arbitrarily-shaped images seg-
ments,” in Proc. ACM Multimedia Conf., pp. 83-90, 1993.

2. M. Gilge, T. Engelhardt, and R. Mehlan, “Coding of arbitrarily shaped image segments
based on a generalized orthogonal transform,” Signal Process., Image Commun., vol. 1,
pp. 153-180, Oct. 1989.

3. T. Sikora and B. Makai, “Shape-adaptive DCT for generic coding of video,” IEEFE Trans.
Circuits Syst. Video Technol., vol. 5, pp. 59-62, Feb. 1995.

4. R. Stasiriski, “Alternative algorithms for computing discrete cosine and sine transforms,”
in Int. Symp. on Networks, Systems and Signal Process., ISYNT’89, (Zagreb, Yugoslavia),
pp. 74-77, 1989.

