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ABSTRACT

This paper presents an application of POCS (pro-
jection onto convex sets) methodology to the re-
construction of intermediate stereoscopic views.
The basic problem in such a reconstruction, re-
sulting from disparity compensation, is that of
the recovery of a regularly-sampled image from
its irregularly-spaced samples. This problem also
arises in other image processing and coding ap-
plications. The results reported here improve
our previous POCS-based reconstruction method
by locally adapting the algorithm to the density
of image samples. We also extend the method
to color images by implementing the method in
the luminance-chrominance (Y -U -V ) space.

1. INTRODUCTION

In order to compute intermediate views in a
stereoscopic or multiview representation of a 3-
D scene, the usual problem is that of recovering
regularly-spaced images samples (intensity and
color) based on irregularly-spaced samples. This
is due to disparity compensation and is similar
to motion compensation used for temporal in-
terpolation of image sequences.

The interpolation of either regularly- or irre-
gularly-spaced samples based on the knowledge
of a regularly-sampled image has been exten-
sively treated in the literature and has found
numerous practical applications in image pro-
cessing and coding. The case of computation of
regularly-spaced samples based on regular ones
has been explored to a lesser degree. The pri-
mary reason for this are difficulties associated
with the extension of Shannon’s sampling theory
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to signals defined over irregular sampling grids.
In such cases, Shannon’s theory is not applica-
ble and alternative methods must be found to
reconstruct or approximate the original contin-
uous signal.

Although some results on the reconstruction
of band-limited functions from irregularly-spaced
samples are available (e.g., [1]), their practical
usefulness is limited; theoretical constraints on
the maximum spacing of irregular samples under
the perfect reconstruction condition cannot be
satisfied by arbitrarily-distributed image sam-
ples after disparity or motion compensation. By
relaxing the perfect reconstruction condition, al-
ternative methods have been proposed such as
the polynomial interpolation or iterative recon-
struction [2].

In this paper, we extend a reconstruction
method based on projections onto convex sets
(POCS) [3] proposed by us earlier [4]. We im-
prove the convergence of reconstruction by lo-
cally adapting the algorithm to the density of
image samples. We also extend the method to
color images by implementing it in the luminance-
chrominance (Y -U -V ) space.

2. PROPOSED APPROACH

Let g = {g(x),x = (x, y)T ∈ R2} be a con-
tinuous 2-D projection of the 3-D world onto
an image plane and let gΛ = {g(x),x ∈ Λ} be
a discrete image obtained from g by sampling
over a lattice Λ [5]. Let’s assume that g is band-
limited, i.e., G(f) = F{g}=0 for f 6∈ Ω where
F is the Fourier transform, f = (f1, f2)

T is a
frequency vector and Ω ⊂ R2 is the spectral
support of g. If the lattice Λ satisfies the multi-
dimensional Nyquist criterion [5], the Shannon
sampling theory allows to perfectly reconstruct
g from gΛ. However, in the case of irregular sam-



pling the theory is not applicable. Therefore,
the general goal is to develop a method for the
reconstruction of g from an irregular set of sam-
ples gΨ = {g(xi),xi ∈ Ψ ⊂ R2, i = 1, ...,K},
where Ψ is an irregular sampling grid.

2.1. POCS-based reconstruction algorithm

We use the POCS methodology [3] to recon-
struct image g. This methodology involves a
set theoretic formulation, i.e., finding a solution
as an intersection of property sets rather than
by a minimization of a cost function. We use
the following sets [4]:

• A0 - set of all images g such that at xi ∈
Ψ, i = 1, ...,K (irregular sampling grid)
g(xi) = gΨ(xi),

• A1 - set of all band-limited images g, i.e.,
such that G(f) = 0 for f 6∈ Ω.

If the membership in A0 can be assured by a
sample replacement operator R (to enforce proper
image values on Ψ), and the membership in A1

– by suitable bandwidth limitation (low-pass fil-
tering) B, then the iterative reconstruction al-
gorithm can be expressed as follows:

gk+1 = BRgk = B[gk + SΨ(g − gk)], (1)

= RBgk = Bgk + SΨ(g − Bgk),

where gk is the reconstructed image after k it-
erations and SΨ is a sampling operator that ex-
tracts image values (luminance/color) on the ir-
regular grid Ψ. Note that equation (1), pro-
posed in [6], results in an approximation rather
than interpolation of gΨ; the last step is that of
low-pass filtering. In order to implement equa-
tion (1) on a computer, a suitable discretization
must to be applied. In [6], equation (1) was im-
plemented as follows:

gk+1
Λ

= B[gk
Λ + αIΨ/Λ(gΨ − g̃k

Λ)], (2)

where the lowpass filtering B is implemented
over Λ and α is a parameter that allows control
of convergence and stability of the algorithm.
The symbol g̃k

Λ denotes a bilinearly-interpolated
image gk

Λ needed to recover image samples on Ψ.
Also, note that an interpolation function IΨ/Λ

replaces the sampling operator SΨ. This func-
tion interpolates image samples (gΨ − g̃k

Λ) de-
fined on Ψ in order to recover samples on Λ.
Sauer and Allebach have studied three interpo-
lators IΨ/Λ: one derived from bilinear interpola-
tion and two based on triangulation with planar
facets [6]. The implementation (2) of the re-
construction algorithm (1) suffers from two de-
ficiencies. First, by processing all images on Λ

there is little flexibility in shaping the spectrum
of gk

Λ; any practical lowpass filtering on Λ must
suppress high frequencies since a slow roll-off
transition band must be used to minimize ring-
ing on sharp luminance/color transitions. Sec-
ondly, the interpolation operator IΨ/Λ, espe-
cially the one based on triangulation (better per-
formance), is involved computationally.

In our earlier work [4] an alternative imple-
mentation of the algorithm (1) has been pro-
posed. Since our goal is the reconstruction of
image samples obtained from motion or dispar-
ity compensation, a 1/2-, 1/4- or 1/8-pixel pre-
cision of motion or disparity vectors is usually
sufficient. Therefore, it has been proposed to
implement (1) on an oversampled grid matching
that precision:

gk+1
ΛP

= B[gk
ΛP

+ αSΨ/ΛP
(gΨ/ΛP

− gk
ΛP

)]. (3)

where B is implemented on ΛP , that is a P×P -
times denser (oversampled) lattice than Λ, and
P equals 2, 4, or 8 depending on motion/disparity
vector precision. Clearly, Λ is a sub-grid of ΛP ,
i.e., x ∈ Λ ⇒ x ∈ ΛP . gΨ/ΛP

is the nearest-
neighbor interpolation of gΨ on ΛP , defined at
each xi ∈ Ψ as follows:

gΨ/ΛP
(y) =

{
gΨ(xi) if ‖xi − y‖ ≤ ‖xi − z‖,

0 otherwise.

for all y, z ∈ ΛP . Similarly, SΨ/ΛP
denotes

the nearest-neighbor sampling, i.e., sampling on
y ∈ ΛP that is nearest to xi ∈ Ψ. In other
words, the implementation (3) is performed on a
denser lattice ΛP and the positions of the irregu-
lar samples from Ψ are quantized to the nearest
position on ΛP . This allows us to avoid the cum-
bersome interpolation IΨ/Λ under the assump-
tion that a suitable value of P is selected.

2.2. Adaptation of the relaxation coeffi-

cient

The choice of the relaxation coefficient α in equa-
tion (3) has a direct impact on the convergence
properties of the algorithm; the greater the α,
the faster the convergence, but only up to some
αmax above which the algorithm becomes unsta-
ble. Experiments have shown that the value of
αmax in (3) is closely related to the properties of
the irregular sampling grid. Namely, the algo-
rithm has been most prone to instability in im-
age regions where irregular sampling grid is the
densest. Clearly, when increasing α above αmax,
the algorithm starts to diverge in those image re-
gions where the number of irregular samples per
area is the highest. That is why it is proposed



to introduce an additional α-correcting term in
equation (3) as follows:

gk+1
ΛP

= B[gk
ΛP

+ (α/dΨ)SΨ/ΛP
(gΨ/ΛP

− gk
ΛP

)]. (4)

where dΨ are samples of a function describing lo-
cal density of irregular grid. We expect that al-
gorithm implementations based on (4) will allow
higher values of αmax, and therefore faster con-
vergence than those based on formulation (3).
As it will turn out, the values of αmax become
only marginally dependent on the degree of vari-
ation in the local densities of irregular grids.

To be a good descriptor of local grid den-
sity, the function d should equal 1 where the
grid is regular, should be greater than 1 in areas
where there are more samples of irregular grid
than those of regular one, and less than 1 when
converse is true. Experiments show that the ac-
tual definition of the function is not critical; var-
ious functions d seem to work almost equally
well. It has been decided that the d function is
computed by counting occurrences of irregular
samples in a 1 × 1 square neighborhood of each
node of the regular grid, and then by filtering
the results by a 5 × 5 separable smoothing fil-
ter. We obtain in this way a regularly-sampled
function d; as samples on the irregular grid dΨ

the nearest-neighbor samples of d (on the regu-
lar grid) are taken.

2.3. Implementation

The implementation of equation (4) would, in
general, require more memory and be less effi-
cient than that of equation (2), however we opt
for an implementation in the frequency domain
in order to reduce the computational complex-
ity. Let

ek = (gΨ/ΛP
− gk

ΛP
)/dΨ

be the reconstruction error defined on ΛP weighted
by the inverse of the irregular grid density func-
tion. Then, each iteration of the reconstruction
algorithm (4) consists of 3 steps:

1. Fourier transform of the error ek sampled
on Ψ/ΛP :

Ek(f) = F{
∑

i

ek(xi)δ(x − xi)}, (5)

xi ∈ Ψ/ΛP ,

where δ is the Kronecker delta.

2. Update and bandwidth limitation:

Gk+1(f) =

{
Gk(f) + αEk(f) f ∈ Ω,

0 f 6∈ Ω,
(6)

with G0 = 0. Note that the smaller the
Ω, the fewer the samples of Ek(f) that
need to be computed. This allows signif-
icant reduction of memory requirements
and computational complexity by means
of a pruned FFT [7] (see [4] for details
on memory management in the proposed
algorithm). A simple bandwidth limita-
tion by zeroing parts of the spectrum leads
in spatial domain to oscillations at sharp
luminance/color transitions. In [4], a de-
tailed discussion of the design of lowpass
filters that minimize these effects can be
found.

3. Computation of gk+1 on Ψ/ΛP :

gk+1(xi) = F−1{Gk+1(f)}|
x=xi∈Ψ/ΛP

. (7)

This operation can be very efficiently im-
plemented by computing the pruned in-
verse Fourier transform [7].

3. EXPERIMENTAL RESULTS

The proposed reconstruction algorithm has been
tested experimentally on images with various ir-
regular sampling grids Ψ. In our previous work
[4], we presented results for both synthetic and
natural disparity fields. Since the local sample
density is less predictable in the case of natu-
ral disparity fields here we are comparing the
new algorithm with the previous, non-adaptive
one on natural data only. The disparities were
computed from an ITU-R 601 stereopair Flow-
erpot using an optical flow-type algorithm [8],
and subsequently used in disparity compensa-
tion to obtain the irregular grid Ψ. Then, the
luminance and color of gΨ were computed us-
ing bicubic interpolation [9]. Using gΨ, gΛ was
reconstructed and compared with the original
image. We tested the algorithm for P=4, 8 and
16 and various α’s. We used lowpass filters pro-
posed earlier in [4] since they give a good com-
promise between detail loss and aliasing.

Fig. 1(a) shows the PSNR evolution for lumi-
nance reconstruction error with fixed and adap-
tive α. Note that the experimentally optimized
fixed α (highest stable value) for the luminance
component was 0.4 for P=4, 0.3 for P=8 and
0.2 for P=16, while it was 0.7 for all P ’s in
the adaptive case. Clearly, the convergence in
the adaptive case is faster and the steady-state
PSNR is higher; the benefits of α adaptation are
evident.

Figs. 1(b-c) show the PSNR evolution for
chrominance errors. Note that similarly to the
luminance case the higher the P , the better the



performance of the algorithm, although the higher
the computational complexity due to the higher
oversampling rate. While the increase of over-
sampling from P=4 to P=8 shows up to a 1dB
PSNR gain, a similar increase from P=8 to P=16
is much less evident.

Subjectively, the reconstructed images were
of very high quality. This suggests the viabil-
ity of the proposed algorithm for various high-
quality reconstructions in image processing and
coding.
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Figure 1: Evolution of PSNR of the reconstruc-
tion error.


