9-th Scandinavian Conference on Image Analysis

June 6-9, 1995, Uppsala, Sweden

Parallel computation of dense motion fields
using a Hopfield network

Janusz Konrad!, Marek Zaremba?, Gerald Chan3
and Michel Gaudreau?

! INRS-Télécommunications, 16 Place du Commerce, Verdun
Québec, Canada, H3E 1H6, e-mail: konrad@inrs-telecom.uquebec.ca

2 Dép. d’informatique, Université du Québec, 101 St-Jean Bosco, Hull
Québec, Canada, J8X 3X7, e-mail: zaremba@ugqgah.uquebec.ca

3 Industry Canada, 300 Slater Street, Ottawa
Ontario, Canada, K1A 0C8

Abstract

Motion of pixels in time-varying images plays an essential role in video com-
pression. Therefore, to build practical video coders motion estimation must be
carried out in real time. Usually, simple motion models executed on a sequen-
tial processor achieve that goal; VLSI circuits implementing block matching
are used in MPEG and H.261 coders. An alternative is to use more complex
motion models that can be implemented on a parallel architecture, e.g., single-
instruction multiple-data (SIMD) system. In this paper, we study a different
approach to the parallelization of motion estimation, an approach based on
neural networks. We formulate the problem in the context of a Markov ran-
dom field (MRF) model, derive a cost function for minimization and propose
a solution method using a Hopfield network. We simulate the network on a
sequential processor and compare its performance with a sequential algorithm
based on the Gauss-Newton minimization.

1 Introduction

Knowledge of 2-D motion is essential for the compression of video sequences. This is
due to the fact that temporal correlation in dynamic images is the highest in the di-
rection of motion, and therefore the most efficient redundancy removal is carried out
along motion trajectories. This approach is used in motion-compensated predictive
or hybrid coders, the most advanced video coders used in practice today. Several
recent and emerging standards are based on this approach, e.g., MPEG, H.261. In
a coder based on the above standards motion estimation for a complete image must
be executed in real time, i.e., in less than 1/60-1/50 s.

In order to perform motion computation in real time, either the number of computed
parameters must be reduced or a motion model permitting parallel computation
must be used. In the first case, the simplest example is that of block matching

where single vector describes motion of a rectangular block of pixels. Although this
model is inaccurate since real images do not have a block structure, it has been
very successful because of its simplicity (MPEG, H.261); there exist specialized
integrated circuits executing block matching at video rates. This approach, however
suffers from blocking artifacts, especially visible at high compression ratios in areas
where an object boundary crosses a block. Blocking artifacts can be eliminated
by computing one motion vector for every pixel. This approach permits arbitrary
object boundaries and substantially reduces prediction error. The reduction of the
intensity-related bit rate is offset, however, by an increase of the motion-related bit
rate. This trade-off is currently an area of intense research.

To permit parallel computation of motion, we have recently proposed MRF models
[8, 9] that naturally lead to algorithms executed on SIMD processors [11]. Neural
networks have also been proposed for parallel computation of motion. Zhou and
Chellappa [12] have solved a discrete state space problem using a Hopfield network
with binary outputs, while Fang et al. [2] have extended this algorithm. In this
“winner-take-all” approach, one neuron is assigned to each possible motion state
at each pixel. For the ITU-R 601 image size (digital TV), maximum displacement
of 20 pixels and motion precision of 1/4-pixel, this network requires (720 x 480) x
(161 x 161) &~ 9 - 10° neurons. Li and Wang [10] have also computed optical flow,
as formulated by Horn and Schunck [5], using a Hopfield network. As it has been
shown in [8], however, the algorithm of Horn and Schunck does not perform well for
moderate or fast motion, and also cannot be applied for motion fields defined over
arbitrary sampling lattices.

In this paper, we show how to compute motion over continuous state space, as pro-
posed in [8], using Hopfield neural network with graded response [4]. First, we briefly
review such a network. Then, we formulate the motion estimation problem and map
it onto such a network. Finally, we compare experimentally the new approach with
the sequential one proposed in [8].

2 Hopfield network for motion estimation

From the variety of neural networks we chose the Hopfield neural network [3], [4]
for its recurrent structure. This structure permits a vast range of responses in
comparison with non-recurrent networks. We chose a Hopfield network consisting
of neurons with graded response [4], i.e., such that the output of each neuron takes
on a continuity of values as oppose to two states [3]. In consequence the number of
neurons in the network is reduced and each motion vector is calculated with a higher
precision. Additional gain is due to the analog nature of computations; no digital
operations are needed and thus calculations are very rapid (the speed is limited only
by propagation constraints of the electrical signals). This is similar to the resistive
nets proposed in [6].

Such a continuous Hopfield network is described by the following equations;

dui(t) O0FE(v) vi(1) = flu:
@ - oy 0=), W

where t is time, u; and v; are the internal state and the output of neuron ¢, and E is
an energy function that is minimized by the network. The non-linearity f provides

a continuous transition between 0 and 1, and is often chosen as f(y) = 1/(1+e~%),
with ¢ being a constant that controls the slope of transition. For the specific case of
quadratic energy function E(v)

1
E(U) = § Zaiykvivk + Zgzvz (2)

equations (1) become:

duc;ft) - Z a; pur(t) — 6;, vi(t) = fui(t)), (3)

where 0; is the input to neuron ¢ and «; 1 is the synaptic weight from the output of
neuron ¢ to the input of neuron %.

3 Problem formulation

Since formulation is not the prime topic of this paper, we refer the reader to [8] and
[9] for details. Below we briefly explain how we arrive at the cost function.

Let g(x,t) be an image pixel at spatio-temporal location (x,?) that belongs to im-
age sampling lattice A;. Let d(x,t) be a 2-D displacement vector at (x,t) € Agq,
where Aq is the sampling lattice for the displacement vectors. Note that, in general,
Aq # Ay, which is an important case for interpolative coding or sampling structure
conversion. Assuming that image intensities do not vary along motion trajectories,
we can write the displaced pizel difference as follows

r(xiat7d):g(xi+(1_B)d(xi7t)7t+)_g(xi_ﬁd(xiat)’t—):Oa (Xi’t)EAd (4)

where {_ and ¢4 denote time instants of images from which motion is calculated
and 8 = (t —t-)/(t+ —t-). The above equation is true only for ideal data, i.e.,
data without noise, aliasing, distortion, etc. In practice, r(x;,t,d) rarely equals
zero, however it should be small. Thus, the task is to find such motion field d that
minimizes, e.g., r?(x;,t,d) for all i = 1,..., N, where N is the number of pixels in the
image. Since for every r(x;,t,d) there are two unknowns (two components of the
vector d), the problem is underconstrained. This is often referred to as the aperture
problem; only one component of motion can be locally recovered. Since the problem
is also ill-posed, we exploit the prior knowledge about the estimate by using a MRF
model [9]. This model requires that motion fields be spatially smooth. We solve the
motion estimation problem by minimizing the following cost function with respect
to the displacement field d

N

B(d) =) [P(xit,d)+ A Y [[d(xi,t) — d(x;,)], ()

i=1 J€n(i)

where 7)(i) is a spatial neighbourhood of x; in the MRF sense and || - || denotes the
Ly norm. Without loss of generality we consider only the first-order neighbourhood
in this paper, i.e., north, east, south and west neighbours.

4 Solution via analog Hopfield network

=

The cost function (5) is non-quadratic in d due to the dependence of the displaced
pixel difference (4) on d via luminance g. In order to use the Hopfield network
described in Section 2 the cost function (5) must be approximated by a quadratic
form similar to (2). Therefore, at each x; we expand r(x;,t, d) in a Taylor series with
respect to some displacement d(x;,t) that is assumed known. Rejecting second- and
higher-order terms, we have

r(x;,t, d) & r(x;, t, d) + Virlg - (d(xi, t) — d(xi,t)) (6)

with the gradient calculated as follows

vdT’|d =

69("1 ﬁd(xut))6_1_ 6g(x +(1 ﬁ)d(xut-i'))(l 6) A T,:L‘(Xi t d)
dg(xi— ﬁd(x,,t))5_1_ dg(xi+(1— ﬁ)d(xuf+))(- B) - [ry(xi,t,d)]

The vector d(xZ ;) is supposed to be known, for example from the previous iteration
of an iterative algorithm. Thus, the gradient Var(x;, ¢, d) must be recalculated with
each change of d(x;,1).

Using the linearization (6) we obtain the following quadratic approximation of cost
function (5):

E'(Z{ [r(xi,t,d) d + Vi arlg - (d(xg,t) — d(xiat))]z + (7)

A Z [ld(xi, 2) — d(x;,1)[|”}.

J€n(i)

We write this function in a simplified form

N
E'd) =) Alrs+r{(df —df) +r{(d) —d)P + A (df —df)’ + (&) —)’} (8)
i=1 j€n(d)

where
ri =r(x;,t,d), rf=r"(x;,t,d), rf =r(x;,t,d), .
d¥ = d*(x;,t), dY =d¥(x;,1), de = dr (xi,1), d? = d¥(x;,1),

and d® and d¥ denote the horizontal and vertical components of d. Expanding the
square and regrouping the terms we write (8) in a form similar to (2):

N
E'(d) = Z ()] + (P9)1dE)? + ()| + (7f)?UdY)? + 20 ri di df +
A @)+ —20) € n@)did] + d!dY] + 9)
jen(i)
(2r;rf — Q(Tf)zd”’ 2rf rydy)d“’ (2rir! — Q(rf)Qd —2rF rydx)dy

where |n(7)| denotes the number of sites in the neighbourhood of x; (4 in the interior
and 2 or 1 at image boundary). In the above energy there are quadratic terms

of the type ad;d; as well as linear terms of the type 0d;. Thus, we can calculate
the synaptic weights «; ; and inputs 6; from (2) by performing a transformation.
Using a second summation to distinguish between the horizontal and vertical motion
components (df and dY), (9) can be rewritten as follows:

N 2
=20 ARIm®+ GNP+ Y e A Y (dF) -
i=1 m=1 n#m jen(d)
2
20 Y drdl + 2eprd — 2ed Y rbdl) (10)
j€n(i) p=1

The superscripts n, m,p denote the component of a motion vector or a gradient;
n =m = p = 1 denotes the horizontal component, i.e., df or rf, while n,m,p = 2
denotes the vertical component, i.e., d} or rY.
Since our goal is to minimize E'(d) using a Hopﬁeld network, we write the reference
energy (2) for the case of unknowns {d[*,i=1,..., N,m = 1,2} as follows:

(N2 N2 N 2
530 55 20 JIES o) SUNNEE
i=1l m=1k=1n=1 i=1 m=1
Comparing the corresponding terms in (10) and (11), we obtain the synaptic weights
« and the inputs 6:

Qi mikn = 2[2/\|7]()| + ()]6i,k6m,n + 27“;”7‘?(52'7]6(1—6”17”) — 4/\67”7”2 (5ij (12)
j€n(i)

2
0i m = 2riryt — 207" Z rfdf, (13)

where §; 1, is the discrete Dirac’s impulse.

Note that the inputs # depend only on images g and on intermediate solutions d.
The synaptic weights «, however, depend on g, d, the regularization parameter A
and on the neighbourhood 7. Due to the summation of é; j in (12), non-zero weights
« interconnect only those neurons which correspond to sites that are neighbours of
each other. Therefore, the system is very sparse with only a few weights connected
to every neuron’s input (5 for the first-order neighbourhood). Since A and 7 are
fixed, their contribution to « can be precomputed. However, since d evolves in time,
r’s in the synaptic weights a and the inputs ¢ must be recalculated with each change
of d. Usually, several updates of d are needed to arrive at a good estimate of d. The
computation of r’s must be done before down-loading «’s and ’s into the network.
This will require a specialized processor capable of handling pixel interpolation (for
the entire frame) in real time, e.g., a hybrid filter that takes a discrete-time input
and produces a continuous-time output. Given a’s and #’s, the Hopfield network
converges to a solution very quickly; the speed is only limited by the propagation
constraints of electrical signals.

Finally, the discrete-time update equations for the network to be simulated on a
sequential computer are (m =1,2):

D) =0 =503 i) = b, AP = SR D). (14)

k=1n=1

5 Simulation results

We have simulated the above Hopfield network in floating-point precision using up-
date equations (14), synaptic weights (12), inputs (13) and nonlinearity f(-) with
£=0.0003. To test the proposed algorithm we chose interpolative coding based on
motion-compensated interpolation. In this application, motion vectors must be com-
puted at such locations (x;,t) that ¢ # ¢t_ and t # t4. The image at time ¢ is recon-
structed at the receiver by means of estimating motion vectors from the transmitted
images at t— and ¢4 followed by filtering along the estimated trajectory. If the error
between the reconstructed image g and the original image is too large, it may be
transmitted as well. For the simple case of 2 images used in motion estimation, the
reconstruction can be described as follows:

g(x,t) = (1 — B)g(x — Ad(x,t),t_) + Bg(x + (1 — B)d(x,1),t4).

For cases of filtering with longer temporal support see [1].

(a) Courtepointe (b) Miss America

Figure 1: Test images: (a) Courtepointe at ¢t = 1 (interlaced); and (b) Miss America
at t = 2 (progressive)

We have carried out tests of the proposed algorithm on three image sequences with
natural motion: Courtepointe containing only translational motion due to camera
pan, Femme et arbre and Miss America both containing complex motion of a human
body. The sequence Miss America is progressive while the other sequences are
interlaced. We have chosen t = 1 with ¢ = 0 and ¢4 = 2 for Courtepointe and
Femme et arbre. For Miss America, however, we have used ¢ = 2 with {_ = 0 and
ty+ = 4, which better corresponds to videophone applications where sequences are
often temporally subsampled by 3-4 before encoding. The original images are shown
in Figure 1. In order to carry out image interpolation, which is needed for vectors
with continuous coordinates, we use bicubic interpolation [7].

As the reference for the proposed approach we use the algorithm described in [8].
This method is based on Gauss-Newton minimization of the cost function (5) and
gives reliable motion estimates for arbitrary A, and Aq. The method can be imple-
mented in parallel using an SIMD architecture [11], but here it has been simulated
sequentially using Gauss-Seidel relaxation to solve the resulting linear system.

To evaluate numerically the performance of both algorithms we have computed the
root mean-squared reconstruction error between g and § (Table 1). Note that the

Courtepointe Femme et arbre Miss America

Gauss-Newton 12.15 5.64 5.15
Hopfield network 12.18 5.46 5.15

Table 1: RMS reconstruction error for tested images.

error is almost identical for the Gauss-Newton minimization and for the minimization
based on Hopfield network; the proposed approach can be judged equivalent to the
reference algorithm. Also subjectively both algorithms give very similar motion
fields (Figure 2). The reconstructed images (not shown) look virtually identical as
well.

444444444444444444444444444444444444 PN R NN
IR O S

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

T

B S

(c) Hopfield network

Figure 2: Displacement fields estimated using Gauss-Newton minimization (a,c) and
Hopfield network with & = 0.0003 (b,d). Displacement fields are subsampled by 6 in
each direction and magnified by 3 to improve visibility.

6 Summary and conclusions

We have shown how to solve motion estimation in the continuous state space using
a Hopfield network with graded response. Simulating this approach on a sequential

processor we have demonstrated that solutions obtained using Hopfield network
are subjectively and objectively almost identical to the solutions resulting from the
reference algorithm. We have not addressed here the issue of off-line computation
of inputs and synaptic weights. Since the network is used solely as an optimization
tool, no self-learning rules apply. In the current implementation the inputs and
weights have to be recalculated every time the intermediate solution d changes. We
are currently studying how to efficiently perform this calculation.

This work was supported by Industry Canada under a contract within “Programme
de développement et de promotion des centres d’excellence de langue frangaise”.

References

[1] M. Chahine and J. Konrad, “Motion-compensated interpolation using trajecto-
ries with acceleration,” in Proc. IS&T/SPIE Symp. Electronic Imaging Science
and Technology, Digital Video Compression: Algorithms and Technologies 1995,
vol. 2419, Feb. 1995.

[2] W.-C. Fang, B. Sheu, and J.-C. Lee, “A VLSI neuroprocessor for real-time image
flow computing,” in Proc. IEEE Int. Conf. Acoustics Speech Signal Processing,
pp- 2413-2416, May 1991.

[3] J. J. Hopfield, “Neural networks and physical systems with emergent collective
computational abilities,” Proc. Natl. Acad. Sci. USA, vol. 79, pp. 25654-2558,
1982.

[4] J. J. Hopfield, “Neurons with graded response have collective computational
properties like those with two-state neurons,” Proc. Natl Acad. Sci. USA,
vol. 81, pp. 3088-3092, 1984.

[5] B. Horn and B. Schunck, “Determining optical flow,” Artif. Intell., vol. 17,
pp- 185-203, 1981.

[6] J. Hutchinson, C. Koch, J. Luo, and C. Mead, “Computing motion using analog
and binary resistive networks,” Computer, vol. 21, pp. 52-63, Mar. 1988.

[7] R. Keys, “Cubic convolution interpolation for digital image processing,” IEEE
Trans. Acoust. Speech Signal Process., vol. ASSP-29, pp. 1153-1160, Dec. 1981.

[8] J. Konrad and E. Dubois, “Comparison of stochastic and deterministic solution
methods in Bayesian estimation of 2D motion,” Image Vis. Comput., vol. 9,
pp. 215-228, Aug. 1991.

[9] J. Konrad and E. Dubois, “Bayesian estimation of motion vector fields,” IEEE
Trans. Pattern Anal. Machine Intell., vol. PAMI-14, pp. 910-927, Sept. 1992.

[10] H. Li and J. Wang, “Computing optical flow with a recurrent neural network,”
Intern. J. Pattern Recognit. Artif. Intell., vol. 7, no. 4, pp. 801-814, 1993.

[11] E. Memin, Algorithmes et architectures paralléles pour les approches markovi-
ennes en analyse d’images. PhD thesis, I’Université de Rennes I, June 1993.

[12] Y. Zhou and R. Chellappa, “Computation of optical flow using a neural net-
work,” in Proc. IEEFE Int. Conf. Neural Networks, pp. II-7T1-11-78, July 1988.

