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Results from a detailed investigation into the effect of modeling assumptions used with
the RSI method to compute broadband interaction noise downstream of a turbofan engine’s
fan stage are presented. The modeling assumptions that are considered include the use of
a Green’s function to obtain the exhaust noise from the unsteady vane surface pressure,
the implementation of a 2D vs. 3D vane model, and the form of the turbulence velocity
correlation function. Calculation of the duct acoustics via the Green’s function is shown to
be robust when one selects the frequencies used for the calculation such that they do not
coincide with a duct cut-on/cut-off edge frequency. The unsteady vane response calculated
by strip theory is found to be different than that predicted with a three-dimensional vane
model. However, it is not clear yet how these differences specifically impact the predicted
exhaust noise. Inclusion of the inhomogeneity of the turbulence across the passage is not
so important because the average passage value provides good results. The form of the
correlation function used to model the inflow turbulence is shown to have a strong impact on
the overall sound power level. Within the RSI framework, it is shown that using a common
3D spectrum (e. g. Liepmann and Gaussian spectra) but disregarding the k3 contribution
gives results 20 dB lower than when the nontraditional RSI spectrum is used. The inclusion
of the k3 effect with the common 3D spectrum within RSI leads to a difference of 10 dB
instead of 20 dB; however, the physical argument for including k3 effects on each 2D vane
strip is unknown.

I. Introduction

The acoustic prediction of broadband turbofan, fan-stage, interaction noise is considered. The RSI
code for broadband noise prediction serves as a platform for the investigation of the impact of various
modeling assumptions on the accuracy of such a prediction. Results from the RSI prediction are compared
to predictions from BB3D a 3-D broadband response code.1

Predictions from the RSI method for the scaled turbofan used in the source diagnostic test (SDT)
have been reported previously.2–4 The sensitivity of the original RSI predictions to modeling choices such
as stagger angle and background turbulence intensity has already been investigated.5 In this paper, the
sensitivity study is continued and expanded. The topics that are addressed include

1. Effect of using the Green’s function method to obtain acoustic power in the duct.

2. Effect of the strip theory assumption on the prediction of vane unsteady loading.
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3. Effect of including spanwise wave number variation on each cascade strip.

4. Effect of modeling the inhomogeneity of the turbulent kinetic energy across a passage.

5. Effect of varying the form of the turbulence correlation function on the final prediction.

6. Effect of the 2D flat-plate, strip-theory, vane model as compared to the 3D cambered vane model.

The SDT geometry and flow cases are used to carry out the study. Sec. II describes the RSI and BB3D
methods. The outcomes from studying the six effects listed above are described in Sec. IV. Conclusions
based on these studies and planned future investigations are then described in Sec. V.

II. Method

Both of the methods described in this paper are derived based on the Linearized Euler Equations valid
for inviscid, subsonic mean flows. The flow perturbations and unsteady surface response are assumed to be
small. The RSI method models the fan exit guide vanes (FEGVs) as strips from hub-to-tip of infinite flat
cascades in which the inflow is 2D and aligned perfectly with the cascade vanes. Therefore, the mean flow
quantities are constant and inflow swirl is neglected. The vane geometry at a each spanwise strip is matched
to the actual geometry by selecting the appropriate chordlength and the stagger angle. The selection of the
stagger angle has been shown to significantly affect the results and it is investigated again in this paper.
The simplifying assumptions allow a single integral equation to be solved in order to determine the unsteady
pressure distribution on a cascade section due to a vortical flow disturbance (i.e., gust). The derivation of
the integral equation and its solution as used by RSI are attributed to Ventres.6 Previously, the unsteady
response on a cascade strip found using the Ventres method has been compared to that found using the
two-dimensional rectilinear cascade method. The comparisons show exact agreement.7 The simplifying
assumptions result in a very efficient calculation process in which an entire spectrum can be predicted in
less than an hour. The trade-off in accuracy for efficiency is explored in this paper

The BB3D method also utilizes velocity splitting within the Linearized Euler Equations. It then solves
the resulting system of equations numerically. The FEGVs are modeled as three-dimensional and the com-
putational domain is taken as one blade passage. The mean inflow includes swirl and the formulation allows
for spatial variation of the mean flow in all directions. The grid and geometry are determined through an
iterative process in which the mean flow Mach number and angle in the duct upstream and downstream of
the vane is matched. Once the mean flow is matched, the pressure side of the vane geometry is placed on
the upper most streamline and the suction side of the vane geometry is placed on the lower most streamline
with an axial position that reflects the original geometry. Thus the vanes are cambered and twisted but may
not actually be true airfoils with closed leading and trailing edges if the suction and pressure sides were put
together. The mean flow gradients distort the fully 3D gust in this method and as such different results are
expected as compared to the 2D flat-plate results. Once the mean flow iteration is complete and the vane
geometry is set, the response to a single gust is computed using BB3D in about 20 minutes. Broadband
calculations that require the vane response at multiple modes and frequencies can take up to 2 weeks to
complete on a single processor. The impact of the more realistic geometry and flow model on the vane
response and associated duct acoustics in light of the required computational time is considered here.

A. The Green’s function method

In the 2D method, the response of each spanwise strip to unit amplitude upwash disturbances at all modes
of interest is computed. The influence of the full vane response on the duct acoustics is then computed using
the Green’s function for an infinite annulus. Therefore geometry variations in the duct downstream of the
vane are neglected. The Green’s function for the annulus is nominally given as

G(~y, τ |~x, t) =
i

4π

m=∞∑
m=−∞

n=∞∑
n=−∞

Ψm,n(y2, y3)Ψ∗m,n(x2, x3)
km,nΓm,n

exp
{
i

[
ω(τ − t) +

Mk0

β2
(y1 − x1) +

km,n
β2
|y1 − x1|

]}
(1)
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where ~x and ~y represent two locations in the annulus respectively with x1 being the axial coordinate,
k0 = ω/c∞ with c∞ and M being the mean speed of sound and Mach number in the annulus, and

km,n =
√
k0 − κm,n (2)

where κm,n and Ψm,n are the eigenvalues and eigenfunctions for the annulus. Full description of the Green’s
function has been described previously.8,9 The relationship between the frequency, ω, and the eigenvalues,
κm,n, dictate which modes are cut on in the annulus.

The 3D formulation in BB3D consists of a numerical solution in a domain defined by the duct geometry.
The acoustic pressure on the duct inlet and exit boundary are written such that the modal amplitudes on
the boundary are solved simultaneously with the entire pressure field.

B. Turbulence spectrum

The turbulence spectrum must be selected as part of the model. If one follows the derivation in Hinze10

and Pope11 the spectrum for isotropic turbulence can be generated based on the Fourier transform of the
streamwise velocity correlation of any velocity component. Some background regarding possible forms of the
spectrum is provided here.

First, basic definitions for the average value and the transform pair are needed

〈u1(t)u1(t+ τ)〉 = lim
T→∞

1
2T

∫ T

−T
u1(t)u1(t+ τ)dt (3)

〈u1(t)u1(t+ τ)〉 =
∫ ∞
−∞

φ1(f)ei2πfτdf (4)

φ1(f) =
∫ ∞
−∞
〈u1(t)u1(t+ τ)〉 e−i2πfτdτ (5)

When the Taylor’s hypothesis holds and the turbulence is convected by the mean flow then k1 = 2πf/ 〈U〉
where 〈U〉 is the mean flow average value. Therefore, the related one dimensional spectrum can be written
in either the frequency or wave-number domain via

φ1(k1) =
φ1(f) 〈U〉

2π
. (6)

The basic correlation is defined as

Rij(~r, t) = 〈ui(~x, t)uj(~x− ~r, t)〉 (7)

and the velocity spectrum tensor transform pair becomes

Φij(~k, t) =
1

(2π)3

∫ ∫ ∫
Rij(~x, t)e−i

~k·~xd~x (8)

Rij(~x, t) =
∫ ∫ ∫

Φij(~k, t)ei
~k·~xd~k (9)

If Eq. (9) is integrated using spherical coordinates and a focus placed on the i − ith component of the
tensor then

Rii(r, t) =
∫ ∞

0

∫ 2π

0

∫ π

0

Φii(k, t)k2 sin θeikr cos θdθdφdk (10)

Φii(k, t) =
1

(2π)3

∫ ∞
0

∫ 2π

0

∫ π

0

Rii(r, t)r2 sin θe−ikr cos θdθdφdk (11)
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where k2 = k2
1 + k2

2 + k2
3 and r2 = x2

1 + x2
2 + x2

3.
In both Pope11 and Hinze,10 the general form of the spectrum tensor for isotropic turbulence is given as

Φij(~k, t) = −E(k, t)
4πk2

(
kikj
k2
− δij

)
(12)

The intermediate function, E can be seen as a generating function such that

E11(k1) =
∫ ∞
k1

E(k)
k

(
1− k2

1

k

)
dk (13)

is the transform of the longitudinal spatial correlation function, f , normalized by the turbulence intensity
u2

1. For isotropic turbulence, the lateral correlation function, g, is related to f via

g(x) = f(x) +
x

2
∂f(x)
∂x

(14)

The length scales in the longitudinal and lateral directions are defined in terms of f and g respectively as

Λ1 =
∫ ∞

0

f(x)dx (15)

Λ1 =
∫ ∞

0

g(x)dx (16)

The most commonly used 3D spectrum are the Liepmann, Gaussian and von Karman models. It has
been shown previously, that the Liepmann and von Karman models are very similar12 and as such this paper
will only consider Liepmann and Gaussian spectra. The 1D spatial correlation functions that give rise to
Liepmann and Gaussian spectra are

fL(x1) = e−x1/Λ1 (17)

fG(x1) = e−(x1/Λ1)2
(18)

whose Fourier Transforms multiplied by the turbulence intensity are

E11,L(k1) =
2
π
u2

1

ΛL
1 + (k1ΛL)2

(19)

E11,G(k1) =
2
π2
u2

1ΛLe−(k1ΛL)2/π (20)

(21)

The related intermediate spectral functions are

EL(k) =
8u2

1ΛL
π2

(kΛL)4

(1 + (kΛ)2)3
(22)

EG(k) =
4u2

1ΛL
π3

(kΛL)4e−(kΛL)2/π (23)

III. Experimental results used for comparison

The results in this paper were all generated for cases taken from the Source Diagnostic Test (SDT). The
SDT utilized a 22 inch NASA/GE 1/5 scaled fan rig with 22 rotor blades and interchangeable FEGVs. Both
the baseline and low-count cases are discussed here. The baseline case consisted of 54 unswept vanes while
the low-count had 26 unswept vanes. The fan chord is 3.61 inches and the vane chord for the baseline and
low count cases are 1.57 and 3.26 inches respectively at the pitchline. Wake measurements were made at
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two positions: mid-gap and just upstream of the vane leading edge (the measurements were made when the
swept vane assembly was installed). LDV data were obtained at several speeds, three of which are considered
in this study: approach (7,808 rpm), cut-back (11,075 rpm), and take-off (12,657 rpm).13 Hot-wire data
were obtained at 6,329 rpm (off-design) and 7,808 rpm only. Finally, field microphone measurements were
taken in order to quantify the exhaust duct broadband sound power levels.14

IV. Results

A. Effect of using the Green’s method to obtain acoustic power in the duct

The RSI method builds the unsteady pressure jump on a vane from hub-to-tip using a strip theory approach
and then utilizes the Green’s function method to obtain the acoustic power in the duct.
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Figure 1. RSI predictions when singular and nonsingular frequen-
cies are used (based on duct mode cut-on). Baseline vane case at
approach. Leading edge stagger. Liepmann Spectrum.

As is shown in Eq. (1), the transfer
function is singular when km,n is zero.
This occurs at the edge frequencies be-
tween cut-off and cut-on duct modes.
In the RSI method, the duct is approx-
imated to be of include semi-infinite ex-
tent and constant annular cross-section.
Therefore, the duct eigenvalues κm,n
can be obtained a priori; and, the
edge frequencies can also be identified
a priori. Figure A shows the results
when singular and nonsingular frequen-
cies are used in the RSI method.

It is clear that if edge frequencies
are selected, especially at the lower
frequencies, incorrect results are ob-
tained. Throughout this paper, only
non-singular frequencies are used to ob-
tain the broadband predictions.

B. Effect of the strip theory as-
sumption on the prediction of vane unsteady loading

One draw back of the 2D method utilized in RSI is the occurrence of cascade resonance at various span
locations. Cascade resonance is a function of the stagger and vane-to-vane spacing and thus the associated
interblade phase angle. The mosaic of plots in Figure 2 shows the spanwise lift distribution obtained using
strip theory by mode at several frequencies for the SDT baseline vane at approach case. In these simulations,
only k3 = 0 was used at each strip.

At lower frequencies, below about 5,500 Hz, the 0th mode does not dominate whereas beyond this
frequency for the most part it does dominate. Starting at about 5500 Hz, the effect of cascade resonance can
be seen. The resonance moves from strip to strip as the frequency changes. This is better viewed by simply
plotting the 0th mode at various frequencies as in Figure 3. The strong resonance that occurs at 5500 Hz
resides near 70% span and this seems to affect the exhaust sound power level prediction as will be seen in
Figure 6. When the resonance occurs between 0 and 50% span, the influence on the final sound prediction
is not as strong. It was shown by Logue et al.15 that the resonance is particular to the linear cascade and
it does not occur when three-dimensional vanes are modeled. This will also be demonstrated later.
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Figure 2. Lift on spanwise strips as a function of mode number. SDT baseline case at approach. Trailing edge
stagger.
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Figure 3. Lift on spanwise strips from hub to tip for 0th mode number at various frequencies. Baseline vane
case at approach. Trailing edge stagger.

C. Effect of including spanwise wave number variation on each cascade strip.

The original RSI formulation did not include spanwise wave number effects. The formulation leads to an end
result shown in Eq. (48) where the turbulence spectrum is initially expressed as R(x1, x2)Rr(r) and then its
transform takes a form Φ(k1, k2)Rr(r). The 3D correlation function R(x1, x2, x3) transforms to Φ(k1, k2, k3).
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Figure 4. Exhaust PWL predicted using only 0th spanwise wave
number and all cut-on spanwise wavenumber on each strip. Baseline
vane case at approach. Stagger as labeled. Turbulence background
level only. Liepmann spectrum.

The rationale behind the original as-
sumption on the form of the correlation
function was based on the following ar-
gument. The isotropic turbulence as-
sumption that is used in the formula-
tion dictates that the spanwise corre-
lation length is less than the stream-
wise correlation length. For the SDT
geometry and wake flow, this trans-
lates into spanwise correlation lengths
on the order of 2% of the span. There-
fore it was deduced that if the span-
wise strips are selected to be slightly
larger than the length scale, there is no
need to include lower values of the span-
wise wave number because they would
not satisfy the spanwise strip boundary
conditions. Furthermore, higher span-
wise wave numbers should lead to sub-
critical response of the cascade which
would only minimally impact the pre-

dicted sound from the the Green’s function method.
Other methods do include the effect of a spanwise wave number.12,16,17 As such, a preliminary test was
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run to include a spanwise wave number effect in the current RSI calculation. On each strip a general Fourier
transform is allowed so that the term eik3r now appears. At this time, only supercritical vane response is
included in the formulation. A k3 increment of 0.0625 is sufficient to converge the numerical integration
and is used to obtain the results in Figure 4. Only the background turbulence level was used in this test
calculation.

The results were obtained by using only the background turbulence level as input which will be discussed
at more length in the next section. (i.e. the black dashed line is identical to the light blue line in Fig. 6.)
The inclusion of the supercritical k3 on each strip increases the overall spectrum about 10 dB for this case.
The results actually compare much better with the experimental values and with the predictions reported
by Posson for the same case using a very similar method.16 Indeed, as will be shown in the next section, had
the average passage value of the turbulence intensity been used instead of the background value, the results
would be 3-5 dB higher and in even better agreement.

The physical meaning of including the k3 effect on each strip however is still unclear as described above.
More effort must be given to understanding what physical mechanism is included when k3 is utilized and if
it is compatible with the strip-theory assumption and the requirement for very small correlation lengths in
the spanwise direction.

D. Effect of modeling the inhomogeneity of the turbulent kinetic energy across a passage.

The RSI methodology models the inhomogeneity of the wake turbulence as a Gaussian distribution set on top
of a background turbulence level. This is shown in Figure 5. In the RSI derivation, treatment of the back-
ground and wake-like portions of the turbulent kinetic energy across the passage leads to 3 contributions to the
expected value of the turbulent inflow wavenumber-frequency spectrum.

Figure 5. Gaussian representation of turbulence intensity.

The three terms correspond to the background
turbulence only, the wake turbulence only, and
the background/wake turbulence cross term.
(Posson16 neglects the 3rd term based on phys-
ical arguments.) Other broadband simulation
methods do not include the inhomogeneity ex-
plicitly.12,17 Instead they use an average value
of the TKE on the passage. The effect of in-
cluding the inhomogeneity was tested and the
results are shown in Figure 6. The results from
four simulations performed with RSI are shown:
1) the background TKE level is used and the
wake terms are neglected, 2) the average pas-
sage value of TKE is used as the background
value and the wake terms are neglected, 3) all
three terms are used to describe the TKE dis-
tribution, 4) the maximum TKE value on the
passage is used as the background value and the
wake terms are neglected. Good agreement at
frequencies less than 15 kHz is seen between the
results when all three terms are used to describe
the TKE and when the average passage value of
the TKE is used. Inclusion of the inhomogeneity affects the higher frequencies more as the prediction be-
comes closer to the prediction using the maximum TKE level rather than the prediction using the average
passage value. This phenomenon is not yet fully understood. However, the relatively good agreement with
the average passage based results indicates that using the average passage in RSI to accomplish comparisons
with other codes that do not account for the inhomogeneity results in no loss of generality.
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Figure 6. Effect of including TKE inhomogeneity across the passage. SDT baseline vanes at approach. Leading
edge stagger. Liepmann spectral model.

E. Effect of varying the form of the turbulence correlation function on the final prediction.

The form of the correlation function that is selected greatly impacts the final results. As such, effort has
been made to deduce which form is best suited to this application.

The correlation functions that generate the regularly used 3D turbulence spectra are described in Section
II.B. The modeled longitudinal and lateral turbulence velocity correlations can be compared to the actual
functions. Figure 7 shows the longitudinal and lateral correlation functions derived from the experimental
hot-wire data for the approach SDT case (at the position just upstream of the leading edge of the vane) near
midspan. The autocorrelation based length scale in the longitudinal and lateral directions were computed
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Figure 7. Longitudinal and lateral correlation functions, f and g. Curve fits of the experimental data based
on Liepmann and Gaussian generating functions.

from the experimental data also. These quantities were used in the Liepmann and Gaussian models given in
Eqs. (23) and the results are also shown in Figure 7. It is seen that the Liepmann form with the longitudinal
length scale better fits the experimental longitudinal correlation. However, the Gaussian model with the
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length scale of the lateral correlation better fits the experimental lateral correlation.
To further investigate the isotropic assumption behind the spectra defined in Section II.B, the connection

between the longitudinal and lateral correlation functions can be considered.
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Figure 8. Comparison of various methods to define the lateral cor-
relation function. Normalized by the lateral turbulence intensity.

Figure 8 shows the lateral correlation
function derived 4 ways: 1) directly
from the hot-wire data, 2) the lateral
correlation function generated from the
longitudinal via Eq. (18) based on the
Gaussian generating function, 3) the
lateral correlation function generated
from the longitudinal via Eq. (17) based
on the Liepmann generating function,
and 4) the lateral correlation function
generated from the longitudinal via Eq.
(14) based on the generating function
derived from experimental data (e. g.
the blue line in Figure 7.a). Figure
8 indicates that even when the experi-
mental generating function is used, the
agreement is not good. This clearly
highlights that the isotropic assumption
is not great for this flow. However,
given that the spectra must be modeled
somehow, and the isotropic assumption

makes the model possible, a decision must be made as to which generating function best fits the data.
The author’s opinion is that the Liepmann model seems to do the best job overall, when focusing on the
midspan region. In the future this will be considered more in depth and more attention will be given to
other spanwise locations.
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In addition to how the isotropic as-
sumption and the choice of generating
function affect the ability to model the
inflow turbulence spectrum, its overall
effect on the prediction of the broad-
band noise is also of interest. Figure
9 shows the predicted broadband noise
when the Liepmann and Gaussian mod-
els are used as well as the nontradi-
tional spectrum function derived with
the RSI formulation (see Eq. (53)). It
is noted that the results in the figure are
all generated using only the 0th span-
wise wavenumber. The RSI spectrum
gives the best agreement with the ex-
perimental data. The large discrepancy
between the results from the RSI spec-
trum function (Eq.(53)) and the usual
3D spectrum (Eq. (23) and (13)) with-
out k3 can be understood by simply
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studying there forms.

ΦGaussian = u2
1

Λ2
L

π4
(k1ΛL)2ΛLe−(k1ΛL)2/πe−(k2ΛL)2/π (24)

ΦRSI = 8u2
1ΛLΛTΛT e−(k1ΛL)2/πe−(k2ΛT )2/π (25)

Here an additional 2ΛT has been included in the RSI spectrum which does not actually appear in the RSI
formulation until the one dimensional correlation function Rr(r) is integrated. If the relationship between
the length scales is taken as ΛT = ΛL/2, then the ratio of the two spectra is

ΦGaussian
ΦRSI

=
(k1ΛL)2

2π4
e−(k1ΛL/2)2/π (26)

which can be quite a small number for nominal values of k1 and Λ1. This difference in the Φ values easily
accounts for the - 20 dB difference seen in Figure 9.

F. Effect of the 2D flat-plate, strip-theory vane model as compared to the 3D cambered vane
model.

In this section, RSI results are compared with results from BB3D. The two methods have been described
briefly in Section II. The low count vane geometry at the approach condition is used for all of the comparisons
in this section. A comparison between the vane unsteady pressure distribution is shown first. Preliminary
validation showed that the core cascade aerodynamic solver used by RSI produces an unsteady pressure
distribution equivalent to the results from LINC (a 2D flat plate cascade response code) which has been used
by Logue for 2D-3D comparisons in the past.15 Figure 10 shows the comparison for a case that matches
the flow and geometry of the low count vane at approach SDT case. The midspan information is used for
the 2D simulation. The frequency is 5000 Hz, mode number is mg = 20, the total Mach number is 0.4093,
stagger angle is 17.5◦, reduced frequency based on half chord is k1 = 9.128, spacing is 0.6265, and interblade
phase angle is 4.833. The 2D comparison is exact. The figure also shows the midspan pressure distribution
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Figure 10. 2D-3D comparison. ∆Cp from leading edge to trailing edge. Low count vane, midspan, mean
stagger, approach. f = 5kHz, mg = 20.

obtained via the 3D simulation for the low count vane, approach case. The 3D result at midspan is quite
different.

Because the selection of the stagger angle for the flat-plate vane impacts the prediction strongly, both
the leading edge stagger and trailing edge stagger angles were tested as well as the mean stagger of the 3D
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Figure 11. 2D-3D comparison. Magnitude and phase of ∆Cp on the vane. Low count vane, midspan, mean
stagger, approach. f = 5kHz, mg = 20.
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vane model. The results are all presented in Figure 10. None of the stagger choices show better agreement
with the 3D result.

The full predicted vane loading from hub-to-tip for the low-count vane at approach is shown two ways.
First, Figure 11 compares the 2D and 3D predictions of the magnitude of the unsteady pressure jump. The
cascade resonances that occur in the 2D strip simulation are apparent in the figure. Second, Figure 12
compares the lift distribution. Again the resonance can be seen. The radial phase distribution of the lift
compares remarkably well from 2D to 3D, but the magnitude is completely different. Stagger angle selection
does not improve the comparison. From previous investigations, it is noted that most likely the inclusion of
actual finite extent accounts for the difference between 2D and 3D more so than the inclusion of camber.

The lift distribution for a lower frequency case was also considered. Figure 13 shows the results for the
case of f = 2500Hz and mg = 20. The comparison is no worse or better at this frequency.
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Figure 12. 2D-3D comparison. c| distribution on the vane. Low count vane, RSI: mean stagger, approach.
f = 5kHz, mg = 20.
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Figure 13. 2D-3D comparison. cl distribution on the vane. Low count vane, RSI: mean stagger, approach.
f = 2.5kHz, mg = 20.

Another interesting feature that changes when one goes from 2D strip theory to 3D is the effect of mode
number. For the 2D flat-plate cascade, one must only compute the response to gusts with mode numbers
0−NV where NV is the number of vanes. All other modes, be they negative or higher positive modes, can
be referenced to one of the basic modes. This is due to the periodicity that occurs in the interblade phase

13



angle and that the fact that the transverse gust is assumed to be in phase from strip to strip. However, for
3D simulations this periodicity and phase relation no longer exists.

As an example, the unsteady lift distribution on the flat-plate approximation to the low count vane
geometry (26 vanes) for the case of f = 5kHz,mg = 14 is exactly the same as that for the case of f =
5kHz and mg = 40. However, the unsteady lift response for the 3D cambered vane for these two cases
is very different. The results are also shown in Figure 14. The 3D results are intriguing because they
show a connection between the mode number and radial influence that is remarkably similar to a k3 effect.
Physically this follows because the wake alignment along the span introduces a phase lag (which would
change substantially as the mode number changes) which is not modeled in the 2D strip approach. One
would think this effect is more important for tonal noise where the wake position is of great interest. How
this should affect the turbulent problem is a bit unclear.
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Figure 14. 2D-3D comparison. Mode number effect. cl distribution on the vane. Low count vane, RSI: mean
stagger, approach. f = 5kHz, mg = 14, 40.

The clear differences in the unsteady surface pressure distribution when using 2D and 3D will ultimately
lead to different predictions of the duct acoustics. Previously the BB3D code was used to simulate the low
count vane at approach and good agreement with the experimental data was shown. The three-dimensional
Lipemann spectrum was utilized. Those results together with results from the RSI method are given in
Figure 16. RSI was run using three different spectra a) RSI, b) Liepmann - k3 = 0, c) Gauss - k3 = 0. Just
as for the baseline vane case, the RSI spectrum gives the best agreement with the experimental data and
the Liepmann and Gaussian spectra lead to 20 dB lower predictions. When the k3 effect is added to the RSI
calculations with the Liepmann spectrum now taken in the full three-dimensional sense, the results increase
by about 10 dB. However, they still do not agree as well as with experiment as the results do from BB3D
and RSI with the nontraditional spectrum.

It is noted that the input data for the BB3D simulation were derived from CFD analysis and the average
passage value of the TKE was used to determine the turbulence intensity at each radial location. These input
data were used for the RSI simulations shown in Figure 16. The difference between the computationally
based input and the experimentally based input used for comparison of the unsteady vane loading shown
earlier in this section can be seen in in Figure 15. The differences would not produce great variation in the
vane responses above. So those results are still relevant as the foundation for the field acoustics.

It is noted that the 2D strip theory vane response together with the RSI spectrum compares well with
the 3D vane response together with the Liepmann spectrum. However, the 2D strip theory vane response
together with the Liepmann does not compare well. There is little that can be pulled from the physics
behind these models to explain this phenomenon at this time. In the future a fourth combination, 3D vane
response together with RSI spectrum, will be considered. This will be done by modeling a 3D uncambered
vane and utilizing the Green’s function method with the RSI spectrum to obtain the exhaust noise levels.
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Figure 15. Input data at approach based on experiment and CFD.
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V. Conclusions and Future Work

The focus of this paper is assessment of modeling choices available for broadband turbofan, fan-stage,
interaction noise. The impact of six different modeling choices were considered. Two solid outcomes arise
from the six investigations. First, the Green’s function method can be utilized as long as the frequencies
are selected a priori to ensure that no frequencies correspond to singular duct modes. Second, there is little
gained by including the inhomogeneity of the turbulence intensity in the passage. This means that a simpler
formulation can be obtained following the RSI approach and that the input parameters are more easily
derived from experiment or computation because average passage values of the turbulence intensity can be
utilized.

A simple update to the previously presented RSI formulation for the correlation function to ensure that
it leads to the correct integral length scale definition and to remove an imposed periodicity condition in the
azimuthal direction is given. The largest impact of these changes comes from the exclusion of the periodicity
condition as it significantly increases the high frequency roll-off. A ruling is still needed as to whether the
periodicity condition is physically supported.

The impacts of the other effects are not easily separated. These include the model of the turbulence
velocity spectrum and the use of 2D strip theory vs. 3D vane response models. It is clear that the 3D
method does not give rise to cascade resonances along the span of the vane like the 2D method does. It is
also clear that the behavior of the vane response with mode number is different in the 2D and 3D methods.
However, it is not clear yet how these differences specifically impact the predicted exhaust noise.

Futher comparison between the 2D and 3D models is needed to illuminate exactly which features are
important to include. For instance, it is planned that a three-dimesional flat vane be simulated in BB3D.
In addition, differences between the vane response will highlight whether the 3D nature of the vane or the
cambered nature of the vane is the most important aspect. Previous results indicate that the inclusion of
camber is not so important for the vane response.15 However, the inclusion of camber eliminates the need
to guess at a stagger angle.

Further investigation of the longitudinal and lateral correlation functions, f and g, is planned. It is
also surmised that a method for incorporating the experimental data into the definition of the spectrum
will help sort out some of the spectral modeling issues. The inclusion of k3 on the strips is still unsettling.
More careful investigation as to which spanwise wave numbers actually contribute to the final solution is
necessary in order to ensure compatibility between the inclusion of this effect, the selection of strip size, and
the correlation length scale.
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VI. Appendix: RSI updates

A few changes have been made to the original RSI formulation. The impact of these changes on the
predictions is shown in this section. First, the original formulation required that the correlation function be
periodic with full revolution in the circumferential direction. This meant that the correlation function was
rewritten as

R( ~X,∆r) =
1

2πr

∞∑
s=−∞

φ(X1,
s

r
,∆r)eisX2/r (27)

In the current version, from which the results in this paper are derived, this periodicity is not imposed.
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Figure 17. Affect of updating the correlation function. Baseline vane
case at approach condition. RSI correlation function.

Second, the original formulation
utilized a form of the longitudinal
correlation function that in physical
space was given by

f1(x,Λ1) = e−π(x/Λ1)2
(28)

This satisfies a nontraditional length
scale relation∫ ∞

−∞
f1(x,Λ1)dx = Λ1 (29)

however, it is more common to de-
fine the length scale as∫ ∞

0

f(x,Λ1)dx = Λ1 (30)

Therefore, the correlation function
should be given as

f(x,Λ1) = e−
π
4 (x/Λ1)2

(31)

Figure 17 shows how these changes to the definition of the spectrum affect the final prediction. The prediction
made with the original correlation function is shown for reference as well as the measured spectrum. Then
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the green line shows the change that occurs when the correlation function is changed to satisfy the correct
length scale requirement. This correction rotates the curve a bit about 12 kHz bringing the 1.4 kHz up
about 8 dB and taking the 20 kHz down the same. The red curve uses the corrected correlation function
and removes the periodicity condition from the correlation function. No change at the lower frequencies is
seen but a drastic increase in the roll-off at the higher frequency occurs.

VII. Appendix: RSI Formulation

A. Upwash

Throughout this appendix, the arrow over a quantities denotes 2D vector (e.g. ~X = (X1, X2)). Also, because
just the upwash velocity is considered here the subscript notation normally used to describe turbulence is
not used ( e.g. R = R22). The velocity fluctuations normal to the surface of the vanes can be assumed to
have the following form.

w( ~X, r, t) ≈ w( ~X − ~Wt, r) = F ( ~X · n̂, r)g( ~X − ~Wt, r)

Where the “frozen gust” assuption is used to approximate the dependence on ~X and t independently by the
linked argument ~X − ~Wt. Here the vectors ~X, ~W, and n̂ are taken to be in the moving rotor frame with
~W being the mean flow velocity and n̂ being the unit normal to the stator vane. The correlation function of
the upwash can be written as〈

w( ~X − ~Wt, r1)w∗(~Y − ~Wτ, r2)
〉

= F ( ~X · n̂, r1)F ∗(~Y · n̂, r2)Φ( ~X − ~Y + ~W (t− τ), ∆r) , (32)

where
R( ~X − ~Y − ~W (t− τ), ∆r) =

〈
g( ~X − ~Wt, r1)g∗(~Y − ~Wτ, r2)

〉
and ∆r = r1 − r2. The function F describes the variation of RMS turbulence normal to the vane and Φ is a
correlation function relating to the length scale of the turbulence. Both will be formally defined later in the
derivation.

The desired result is the Fourier transform of the upwash correlation function with respect to both time
and space in the stationary stator frame. Using the transform pair

s(x, t) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

ŝ(λ)e−iωt+iλx dλdω

ŝ(λ, ω) =
∫ ∞
−∞

∫ ∞
−∞

s(x)eiωt−iλx dxdt ,

where s is an arbitrary function and ŝ is its Fourier transform, we can write the desired result as follows.

〈w̃w̃∗〉 =
〈
w̃(~k, ω)w̃∗( ~K, ν)

〉
=
∫∫∫∫

〈w(~x, r1, t)w∗(~y, r2, τ)〉 eiωt−i~k~xe−iντ+i ~K~y d~x d~y dt dτ (33)

Here the integrals all range from −∞ to ∞; ω and ν are radial frequencies; and, ~k and ~K are wavenumbers.
The˜indicates transform in two spatial dimensions and time.

Since the upwash velocity is most easily defined in the rotor frame (as above), rather than carry out the
integration in the stator frame, we will use the following transformation to move all quantities to the rotor
frame.

~X = ~x+ ~D + Ωr1tê2

~Y = ~y + ~D + Ωr2τ ê2

(34)

Thus, we can rewrite (33) as follows.

〈w̃w̃∗〉 =
∫∫∫∫ 〈

w( ~X − ~Wt, r1)w∗(~Y − ~Wτ, r2)
〉
⊗

eiωt−i
~k·( ~X−~D−Ωr1tê2)e−iντ+i ~K·(~Y−~D−Ωr2τê2) d ~X d~Y dt dτ

(35)
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Next, substituting in (32) and using

~ξ = ~X − ~Y + ~W (t− τ)
}

Argument of R

⇒ ~X = ξ + ~y + ~W (t− τ)
}
~X in terms of ~ξ and ~Y ,

(35) can now be written in terms of ~ξ and ~Y .

〈w̃w̃∗〉 =
∫∫∫∫

F ((~ξ + ~Y ) · n̂, r1)F ∗(~Y · n̂, r2)R(~ξ, ∆r) ⊗

eiωt−i
~k·((~ξ+~Y+ ~W (t−τ))−~D−Ωr1tê2)e−iντ+i ~K·(~Y−~D−Ωr2τê2) d~ξ d~Y dt dτ

(36)

The integrations with respect to t and τ are performed, resulting in

〈w̃w̃∗〉 = (2π)2
δ
(
ω − ~k · ~W + k2Ωr1

)
δ
(
ν − ~K · ~W +K2Ωr2

)
⊗∫∫

F ((~ξ + ~Y ) · n̂, r1)F ∗(~Y · n̂, r2)R(~ξ, ∆r) ⊗

e−i
~k·~ξe−i

~Y ·(~k− ~K)ei
~D·(~k− ~K) d~ξ d~Y .

(37)

The function F which describes the turbulence distribution across a passage can be modeled as a Gaussian
distribution on top of background turbulence. This can be written as

u′(y) = u′b + u′we
−π( yγ )2

where u′ is the turbulence intensity at a position normal to the wake y = ~X · n̂, u′b is the background
turbulence level, u′w is the Gaussian height, and γ is a measure of the Gaussian width. F is periodic around
the wheel and can thus be written as

F (y) = u′b + u′w

∞∑
m=−∞

e
− π
γ2 (y+mh cos θ)2

.

where h = 2πr/B. Then, using Poisson’s Summation Formula,∑
n

s (t+ nτ) =
1
τ

∑
α

ŝ

(
2πα
τ

)
ei2π(ατ )t ,

where s is a periodic function with period τ and ŝ is its Fourier transform, we can rewrite F as

F (y) = u′b +
u′wγ

h cos θ

∞∑
α=−∞

e−
1

4π ( 2παγ
h cos θ )2

ei2π( α
h cos θ )y .

Here θ is the stagger angle. When a width measurement is defined in the circumferential direction as
Lw = γ/ cos θ (this is convenient because this corresponds to the width perpindicular to the duct axis as
opposed to the wake) the final expression for F becomes

F (y) = u′b +
u′wBLw

2πr

∞∑
α=−∞

e−
1

4π (αBLwr )2

ei(
α

r cos θ )y = u′b +
u′wBLw

2πr

∞∑
α=−∞

f̂

(
αBLw
r

)
ei(

α
r cos θ )y (38)

Using this definition of F , the F (. . .)F ∗(. . .) term from (37) can now be expanded as follows.

F
(

(~ξ + ~Y ) · n̂
)
F ∗
(
~Y · n̂

)
= Fww + Fbw + Fbb (39a)
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where

Fww =
(
u′wBLw

2πr

)2 ∞∑
s1=−∞

∞∑
s2=−∞

f̂

(
s1BLw
r

)
f̂

(
s2BLw
r

)
e
is1B
r cosχ (~ξ+~Y )·n̂e−

is2B
r cosχ

~Y ·n̂ (39b)

Fbw =
u′wu

′
bBLw
πr

∞∑
s3=−∞

f̂

(
s3BLw
r

)[
e
is3B
r cosχ (~ξ+~Y )·n̂ + e−

is3B
r cosχ

~Y ·n̂
]

(39c)

Fbb = (u′b)
2 (39d)

Substituing (39) into (37) brings the following result.

〈w̃w̃∗〉 = (2π)2
δ
(
ω − ~k · ~W + k2Ωr1

)
δ
(
ν − ~K · ~W +K2Ωr2

)
[www + wbw + wbb] (40a)

where

www =
∫∫ (

u′wBLw
2πr

)2 ∞∑
s1=−∞

∞∑
s2=−∞

f̂

(
s1BLw
r

)
f̂

(
s2BLw
r

)
e
is1B
r cosχ (~ξ+~Y )·n̂e−

is2B
r cosχ

~Y ·n̂ ⊗

R(~ξ, ∆r)e−i~k·~ξe−i~Y ·(~k− ~K)ei
~D·(~k− ~K) d~ξ d~Y

(40b)

wbw =
∫∫

u′wu
′
bBLw
πr

∞∑
s3=−∞

f̂

(
s3BLw
r

)[
e
is3B
r cosχ (~ξ+~Y )·n̂ + e−

is3B
r cosχ

~Y ·n̂
]
⊗

R(~ξ, ∆r)e−i~k·~ξe−i~Y ·(~k− ~K)ei
~D·(~k− ~K) d~ξ d~Y

(40c)

wbb =
∫∫

(u′b)
2
R(~ξ, ∆r)e−i~k·~ξe−i~Y ·(~k− ~K)ei

~D·(~k− ~K) d~ξ d~Y (40d)

The integration with respect to ~Y can now be performed on Equations (40b-40d).

www = (2π)2

(
u′wBLw

2πr

)2 ∞∑
s1=−∞

∞∑
s2=−∞

f̂

(
s1BLw
r

)
f̂

(
s2BLw
r

)
ei
~D·(~k− ~K) ⊗

δ

(
−(~k − ~K) +

(s1 − s2)B
r cosχ

n̂

)∫
R(~ξ, ∆r)ei

~ξ·( s1B
r cosχ n̂−~k) d~ξ

wbw = (2π)2 u
′
wu
′
bBLw
πr

∞∑
s3=−∞

f̂

(
s3BLw
r

)
ei
~D·(~k− ~K)

∫
R(~ξ, ∆r)e−i~k·~ξ ⊗[

e
is3B
r cosχ

~ξ·n̂δ

(
−(~k − ~K) +

s3B

r cosχ
n̂

)
+ δ

(
−(~k − ~K)− s3B

r cosχ
n̂

)]
d~ξ

wbb = (2π)2 (u′b)
2
δ
(
−(~k − ~K)

)
ei
~D·(~k− ~K)

∫
R(~ξ, ∆r)e−i~k·~ξ d~ξ

Now, note that in each case, the remaining integration is simply the Fourier transform of the function R.
Therefore, we can write

www = (2π)2

(
u′wBLw

2πr

)2 ∞∑
s1=−∞

∞∑
s2=−∞

f̂

(
s1BLw
r

)
f̂

(
s2BLw
r

)
ei
~D·(~k− ~K) ⊗

δ

(
~K − ~k +

(s1 − s2)B
r cosχ

n̂

)
Φ
(
~k − s1B

r cosχ
n̂, ∆r

)
,

wbw = (2π)2 u
′
wu
′
bBLw
πr

∞∑
s3=−∞

f̂

(
s3BLw
r

)
ei
~D·(~k− ~K)

[
Φ

(
~k − is3B

r cosχ
n̂, ∆r

)
⊗

δ

(
~K − ~k +

s3B

r cosχ
n̂

)
+ Φ

(
~k, ∆r

)
δ

(
~K − ~k − s3B

r cosχ
n̂

)]
,
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and

wbb = (2π)2 (u′b)
2
δ
(
~K − ~k

)
ei
~D·(~k− ~K)Φ

(
~k, ∆r

)
.

Looking back at (40a), we can now rewrite the arguments to its two delta functions. First, note that the
term −~k · ~W + k2Ωr1 from the first delta function in (40a) can be simplified as follows.

−~k · ~W + k2Ωr1 = ~k ·
(
− ~W + Ωrê2

)
= −~k · ~Ur

Thus, the first delta function from (40a) can be written as δ(ω − ~k · ~Ur). Next, using the delta functions
generated in www,bw,bb when the integration with respect to ~Y was perfomed, the second delta function can
be rewritten for each of the w’s, respectively.

www : 1)
{
δ

(
~K − ~k +

(s1 − s2)B
r cosχ

n̂

)
⇒ K2 = k2 +

(s2 − s1)B
r

2)

−ν + ~k · ~W −K2Ωr = −ν + ~k · ~W −
(
k2 +

(s2 − s1)B
r

)
Ωr

= −ν + ~k · ~Ur − Ω (s2 − s1) r

3)
{
δ
(
ω − ~k · ~Ur

)
⇒ ω = ~k · ~Ur

=⇒ δ
(
−ν + ~k · ~W −K2Ωr

)
= δ (ν − ω + Ω (s2 − s1)B)

wbw : 1a)
{
δ

(
~K − ~k +

s3B

r cosχ
n̂

)
⇒ K2 = k2 +

s3B

r

2a)

−ν + ~k · ~W −K2Ωr = −ν + ~k · ~W −
(
k2 +

s3B

r

)
Ωr

= −ν + ~k · ~Ur − Ωs3r

3a)
{
δ
(
ω − ~k · ~Ur

)
⇒ ω = ~k · ~Ur

=⇒ δ
(
−ν + ~k · ~W −K2Ωr

)
= δ (ν − ω + Ωs3B)

1b)
{
δ

(
~K − ~k − s3B

r cosχ
n̂

)
⇒ K2 = k2 −

s3B

r

2b)

−ν + ~k · ~W −K2Ωr = −ν + ~k · ~W −
(
k2 −

s3B

r

)
Ωr

= −ν + ~k · ~Ur + Ωs3r

3b)
{
δ
(
ω − ~k · ~Ur

)
⇒ ω = ~k · ~Ur

=⇒ δ
(
−ν + ~k · ~W −K2Ωr

)
= δ (ν − ω − Ωs3B)

wbb : 1)
{
δ
(
~K − ~k

)
⇒ K2 = k2

2)

{
−ν + ~k · ~W −K2Ωr = −ν + ~k · ~W − k2Ωr

= −ν + ~k · ~Ur

3)
{
δ
(
ω − ~k · ~Ur

)
⇒ ω = ~k · ~Ur

=⇒ δ
(
−ν + ~k · ~W −K2Ωr

)
= δ (ν − ω)
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Using these forms of the first delta functions, the final correlation function of the upwash can be written.

〈w̃w̃∗〉 = Www + Wbw + Wbb (41a)

where

Www =
(

2πBLwu′w
r

)2 ∞∑
s1=−∞

∞∑
s2=−∞

δ
(
ω − ~k · ~Ur

)
δ (ν − ω + Ω (s2 − s1)B) ⊗

f̂

(
s1BLw
r

)
f̂

(
s2BLw
r

)
δ

(
~K − ~k +

(s1 − s2)B
r cosχ

n̂

)
⊗

Φ
(
~k − s1B

r cosχ
n̂, ∆r

)
ei
~D·(~k− ~K)

(41b)

Wbw =
(2π)3

BLwu
′
wu
′
b

r

∞∑
s3=−∞

δ
(
ω − ~k · ~Ur

)
δ (ν − ω − Ωs3B) f̂

(
s3BLw
r

)
⊗

δ

(
~K − ~k +

s3B

r cosχ
n̂

)[
Φ
(
~k − s3B

r cosχ
n̂, ∆r

)
+ Φ

(
~k, ∆r

)]
ei
~D·(~k− ~K)

(41c)

Wbb = (2π)4 (u′b)
2
δ
(
ω − ~k · ~Ur

)
δ (ν − ω) δ

(
~K − ~k

)
Φ
(
~k, ∆r

)
ei
~D·(~k− ~K) (41d)

B. Pressure Spectrum

The pressure spectrum in the duct is defined by the following equation.

〈 p̃mn(ω)p̃∗mn(ν) 〉 =
1

4Γ2kmn(ω)kmn(ν)

∫ rT

rH

∫ rT

rH

∫ b

−b

∫ b

−b
R(r1, ω)R(r2, ν)eiµ(r1, ω)z1e−iµ(r2, ν)z2 ⊗

V−1∑
j=0

ei2π
mj
V

V−1∑
l=0

e−i2π
ml
V 〈∆p̃j(r1, z1, ω) ∆p̃∗l (r2, z2, ν) 〉

 dz2 dz1 dr1 dr2

(42)

where
Γ =π

(
r2
t − r2

h

)
kmn(ω) =

√(
ω

co

)2

− β2κ2
mn

κmn =roots of Bessel function equation from the Green’s function equation

R(r, ω) =
[m
r

cosχ− γmn(ω) sinχ
]

Ψm (κmnr)

Ψm =duct mode from the Green’s function equation

µ(r, ω) =γmn(ω) cosχ+
m

r
sinχ

γmn(ω) =
Mω

β2co
+
kmn(ω)
β2

sign (z2 − z1)

The unsteady stator loading, 〈∆p̃j(r1, z1, ω) ∆p̃∗l (r2, z2, ν) 〉 can be computed given the upwash correlation
derived in Section A. This may be done via the following formula.

〈∆p̃j(r1, z1, ω) ∆p̃∗l (r2, z2, ν) 〉 =
(ρoUr)

2

(2π)4

∫ ∞
−∞

∫ ∞
−∞

F
(
r1, z1, ~k, ω

)
F∗
(
r2, z2, ~K, ν

)
⊗

eij
~k· ~He−il

~K· ~H 〈w̃w̃∗〉 d2 ~K d2~k

(43)
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Here, F is the cascade response due to a unit upwash. More specifically, F is defined as the solution to the
integral equation,

ei(
~k·~c)z =

∫ b

−b
Kc (z − y) F

(
r, z, ~k, ω

) dy
b

,

where Kc is the kernel function derived in Appendix B of Ventres.6

Substituting (43) into (42) results in the following expression.

〈 p̃mn(ω)p̃∗mn(ν) 〉 =
1

4Γ2kmn(ω)kmn(ν)
(ρoUr)

2

(2π)4

∫∫∫∫
R(r1, ω)R(r2, ν)eiµ(r1, ω)z1e−iµ(r2, ν)z2 ⊗

V−1∑
j=0

V−1∑
l=0

∫∫
FF∗ei2πj(

m
V +~k· ~H)e−i2πl(

m
V + ~K· ~H) 〈w̃w̃∗〉 d2 ~K d2~k

 dz2 dz1 dr1 dr2

(44)
This can be simplified through use of the identity,

N−1∑
α=0

ei2παc =

N if c ∈ Z

0 otherwise

on the summations over j and l. First note that ~H = 2πrê2/V and then it can be seen that

V−1∑
j=0

ei2πj(
m
V +~k· ~H) =

V if m+ k2r = c1V with c1 ∈ Z

0 otherwise
,

and
V−1∑
l=0

e−i2πl(
m
V + ~K· ~H) =

V if m+K2r = c2V with c2 ∈ Z

0 otherwise
.

For both sums, we wish to force the first case to happen. This can be done by using properties of the delta
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functions contained in 〈w̃w̃∗〉 as well as changing the summation indicies within 〈w̃w̃∗〉.

Www :



δ

(
~K − ~k +

(s1 − s2)B
r cosχ

n̂

)
⇒ K2 = k2 +

(s2 − s1)B
r

∴ m+K2r = m+ k2r + (s2 − s1)B = c2V

m+ k2r = c1V

m+ k2r + (s2 − s1)B = c2V

}
⇒ s1 − s2 = (c1 − c2)

V

B

s1, s2 ∈ Z ⇒ s1 − s2 ∈ Z ⇒ (c1 − c2)
V

B
∈ Z

∴ c1 − c2 = qB with q ∈ Z
Change summation indicies to s1, c1, and q; Let s2 = s1 − qV

Wbw :



δ

(
~K − ~k − s3B

r cosχ
n̂

)
⇒ K2 = k2 −

s3B

r

∴ m+K2r = m+ k2r − s3B = c2V

m+ k2r = c1V

m+ k2r − s3B = c2V

}
⇒ −s3 = (c1 − c2)

V

B

s3 ∈ Z ⇒ (c1 − c2)
V

B
∈ Z

∴ c1 − c2 = qB with q ∈ Z
Change summation indicies to c1 and q; Let s3 = −qV

Www :


δ
(
~K − ~k

)
⇒ K2 = k2

∴ m+K2r = m+ k2r = c1V

Add summation over c1

In all cases, k2 must now be defined as k2 =
m− c1V

r

The next step, is to note that the summations over q represent fluctuating variations and that dropping
this index results in the time averaged value of the pressure spectrum. Applying this and substituting (41)
into (43) and the result into (42) gives

〈 p̃mn(ω)p̃∗mn(ν) 〉 =
1

4Γ2kmn(ω)kmn(ν)

∫∫∫∫
R(r1, ω)R(r2, ν)eiµ(r1, ω)z1e−iµ(r2, ν)z2 ⊗{∫∫

FF∗
∞∑

c1=−∞

[( ∞∑
s1=−∞

Www

)
+Wbw +Wbb

]
δ
(
~K − ~k

)
⊗

δ

(
k2 +

m− c1V
r

)
δ
(
ω − ~k · ~Ur

)
δ (ω − ν) d2 ~K d2~k

}
dz2 dz1 dr1 dr2 ,

(45)

where

Www =
(
ρoUrBV Lwu

′
w

2πr

)2 ∣∣∣∣f̂ (s1BLw
r

)∣∣∣∣2 Φ
(
~k − s1B

r cosχ
n̂, ∆r

)
Wbw =

(
(ρoUr)

2
BLwu

′
wu
′
b

2πr

)
2 Φ
(
~k, ∆r

)
Wbb = (ρoUrV u′b)

2 Φ
(
~k, ∆r

)
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Now, due to the Delta functions, performing the integrations with respect to ~K and ~k will result in all
instances of ~K being replaced by ~k where ~k is now defined as follows.

~k : k1 =
ω

Ur,1
+
Ur,2
Ur,1

k2

k2 =
c1V −m

r

(46)

C. Final Result

〈 p̃mn(ω)p̃∗mn(ν) 〉 =
1

4Γ2kmn(ω)kmn(ν)

∫ rT

rH

∫ rT

rH

R (r̄, ω)R (r̄, ν) {P}

Cmn (r̄, ω)C∗mn (r̄, ν) d (∆r) dr̄
(47a)

where

Cmn (r̄, ω) =
∫ b

−b
F
(
r, z, ~k, ω

)
eiµ(r̄, ω)z dz (47b)

and

P = (ρUrV )2
δ (ν − ω)

{ ∞∑
c1=−∞

[ ∞∑
s1=−∞

((
BLwu

′
w

2πr̄

)2 ∣∣∣∣f̂ (s1BLw
r

)∣∣∣∣2 Φ
(
~k − s1B

r cosχ
n̂, ∆r

))
⊕

(
BLwu

′
wu
′
b

πr
+ (u′b)

2
)

Φ
(
~k, ∆r

)]} (47c)

Now, everywhere ~k is defined as follows.

~k : k1 =
ω

Ur1
− Ur2
Ur1

k2 and k2 =
c1V −m

r

D. RSI Turbulence Correlation Function

The turbulence correlation function R in the original formulation had the form

R(~ξ, ∆r) = R1(ξ1)R2(ξ2)Rr(∆r) (48)

with transform
Φ(~k,∆r) = Φ1(k1)Φ2(k2)Rr(∆r) (49)

The now corrected RSI assumes

R1 = e
−π4

“
ξ1
Λ1

”2

(50)

R2 = e
−π4

“
ξ2
Λ2

”2

(51)

such that

R̂1 = 2Λ1e
−(k1Λ1)2/π (52)

R̂2 = 2Λ2e
−(k2Λ2)2/π (53)
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