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1 Summary

A general method for analyzing the response spectrum of a lifting surface has been developed.
The method relies on the boundary element method (i.e. panel method) to compute the
response of a blade section to an imposed disturbance. The response is computed in the
time domain and then Fourier transformed in order to obtain the frequency spectrum.

The main goal of this research has been to validate and extend the previously reported
results of Martinez.1 (This reference will be indicated as [1] throughout this report). Mar-
tinez studied analytically the response of Joukowski blade shapes to an incident vortex. The
imposed incident vortex (as opposed to an incident gust) allows easy analysis of the response
to a broad band disturbance. He showed, that using this method one can predict the decrease
in blade response as the blade thickness increases. (This result is not predicted using the
single frequency gust response methods.) A decrease in the response with increased camber
was also noted. Finally, he noted that the response spectra for various geometries and ow
conditions included nulls at certain frequencies.

Because of the analytical nature of the Martinez blade-vortex-interaction (BVI) solution,
only Joukowski blade geometries were analyzed. When a general method such as the bound-
ary element method (BEM) is applied to the problem, many di�erent blade geometries can
be studied. Here a two-dimensional BEM calculation has been adopted to predict the blade
section response to an incident vortex. This report discusses the following salient results
from simulations using the BEM method.

� The method is validated against the analytical response of a at plate, at zero incidence
angle, to a passing vortex.

� The predicted unsteady surface pressure for a thick, symmetric blade section is qualita-
tively compared to experimental results. ( A quantitative comparison will be completed
when information concerning speci�cs of the experiment are obtained. )

� The method is validated for the Sears problem.

From these three validations, it was determined that the method is working properly.

� The implications of computing the BVI response using the rapid distortion theory
(employed by Martinez) as opposed to allowing the incident vortex to evolve freely are
discussed.

It is shown that the response spectrum is well behaved when the disturbance strength is

chosen such that there is compliance with the disturbance constraints implied in rapid

distortion theory.

� Several cases reported in [1] were rerun.

The response reduction with increasing thickness and camber is captured; however, the

nulls in the response spectrum cannot be validated nor invalidated using the current

method.

1



� The response of a geometry of interest to the Navy has been computed in order to
exemplify the capabilities of the method.

� Three blade section geometries currently under experimental consideration at Carde-
rock were analyzed.

The response of these three blades to an incident vortex are e�ectively identical.

This research serves as a launching point for studying, more exactly, blade response to
turbulence ingestion. The single incident vortex can be replaced by a cloud of vortices. If
this cloud is formed correctly, the induced normal wash on a blade section can simulate a
turbulent inow. In addition, �nite span e�ects can be studied by fully developing the three
dimensional computational counterpart to that discussed in this report.

2



2 Introduction

A general picture of the problem is given below in Figure 2.1. A single vortex follows a
path from upstream, past the blade section, and proceeds downstream. A wake is shed
continuously and the strength of the dipole along the wake (not apparent in the �gure)
is proportional to the change in lift at every time step. The �gure depicts the total path
followed by the vortex and the wake path. The insert in the top �gure shows the lift response
as a function of time and is aligned such that the response as the vortex passes the blade
section is easily assessed. The lower �gure shows the Fourier transform of the time domain
response.

A boundary element method is used for the calculations in this research. This is a popular
method for solving the BVI problem. Every edition of the Journal of the American Helicopter
Society has at least one article regarding a BVI calculation. Most of the literature computes
blade response to vortex interaction in the time domain. Unique to the work presented in
this report is the extensive frequency domain analysis associated with the predicted response.

In addition, this report contains an in depth analysis of the di�erence between the rapid
distortion method of vortex evolution and free vortex evolution. Usually, those studying
BVI noise with boundary element techniques apply free vortex evolution and those studying
it using a linearized Euler approach automatically apply rapid distortion theory. The analysis
presented here shows where these two method overlap.

The results of this research con�rm that the BVI response spectrum at higher frequency
decays as an exponential function of the form e�kl where k is the normalized frequency and
l is an appropriate length. The suitable length l for a vortex passing a at plate is the
distance between the vortex and the plate. This spectral relation has previously been shown
analytically by Howe2 and Martinez.1 For thick and/or cambered airfoils however, l is not
the distance to the airfoil boundary, but instead the distance to the mean camber line.

The results also give some indication as to why the frequency domain gust response
calculations do not capture the reduction in response at high frequency due to increased
blade thickness. It is shown that the phase of the induced normal wash from a point vortex
(especially the high frequency component) can vary greatly from the assumed e�ik1x1 phase
relation along the chord. Another important aspect however, is the di�erence in the mag-
nitude of the induced downwash from suction to pressure side. Assume a thick symmetric
airfoil is encountering a transverse gust. In a frequency domain simulation, the phase can
and does vary from the at plate canonical form (e�ik1x1). However, the magnitude of the
induced wash would be the same from pressure to suction sides. The method for introducing
asymmtry from side to side is the introduction of a longitudinal gust component which is
often left out of the frequency domain simulations.

Chapter 3 describes the computational method used in this research, with most of the
mathematical details relegated to Appendix A. Chapter 4 discusses the validation of the
method and some numerical implications on the question of the validity of the nulls. Chapter
5 shows the comparison between computations relying on rapid distortion theory and those
allowing the imposed vortex to evolve freely. Chapter 6 compares results obtained using this
method and the previously reported results of Martinez. Results for geometries of interest

3
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Figure 2.1: Problem example. Time domain response (top). Frequency domain response
(bottom).
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to the Navy are reported in Chapter 7. And �nally, possible extensions of this work are
discussed in Chapter 8.
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3 The Method

The present research uses a two-dimensional adaptation of the boundary element method
(BEM) as formulated for quasi-potential ows.3,4 The ow is modelled as potential every-
where o� of the solid blade section and outside the wake. Fully attached, high Reynold's
number ows are assumed such that viscous e�ects are prevalent only in the wake genera-
tion at the trailing edges of the blade section. The ow velocity in�nitely far from the blade
section is taken to be uniform in the x1 direction and to be incompressible.

Under the above assumptions, with the added generalization of compressible ow, the
perturbation velocity potential is known to satisfy the convective wave equation5

M2D
2
1
�

Dt2
�r2� = 0; (3.1)

where space and time have been scaled by the reference chord length c and the convective
time scale c=U1, respectively. The solution to Eq. (3.1) satis�es the boundary integral
equation

� 1

2�

Z
~S

2
4ln r@ ~�(~y; �)

@~n
+

~r � ~n
~r

0
@ ~�

~r
+

_~�

~a

1
A
3
5
�?

d~y =

8><
>:

~�(~x; ~t) ; for x in �eld
1
2
~�(~x; ~t) ; for x on wing
0 ; for x ins ide wing

(3.2)

where � ? = ~t � ~r=~a, ~a = �=M , � =
p
1�M2, ~r = j~x � ~yj, and tildes denote evaluation in

the Prandtl-Glauert space|

�
~x; ~t

�
=

 
x1
�
; x2; t� M2x1

�2

!
: (3.3)

Equation (3.2) is solved numerically by applying a zeroth-order boundary element method
and linear time interpolation to give a set of algebraic equations6

H�ni =
X
j

G(B)
Dij
�
n��ij
j �G(B)

Sij
vn��ijnj

+G(B)
Rij

_�
n��ij
j +G

(W )
Dij

��
n��ij
j ;

(3.4)

where,

�ij =
M

�

�
r�ij +Mr1ij

�
; (3.5)

r�ij =
q
(xi1 � yj1)

2=�2 + (xi2 � yj2)
2: (3.6)

The indices i, j, and n refer to the collocation point, panel index, and time iteration, re-
spectively. The blade and wake surfaces are denoted by (B) and (W), and GS, GD, and GR

refer to the source, doublet and ratelet inuence matrices. By applying equations (3.4) to
collocation points located at the center of each panel on the body, a time-domain solution
for the surface distributions of � is readily obtained. The ow velocity and pressure may
then be determined through di�erentiation and Bernoulli's equation.

6



The solid surfaces of the blade section are impermeable. Thus, the normal perturbation
velocity is required to satisfy

U1 � n +
@�

@n
= 0: (3.7)

The wakes are modelled as in�nitely thin shear layers and, therefore, cannot support a
pressure jump. By applying Bernoulli's equation to a point x+ just above and x� just below
the wake, one obtains

@��

@t
+
1

2
(v2+ � v2

�
) =

@��

@t
+
v+ + v�

2
(v+ � v�) = (3.8)

Dw

Dt
(��) = 0; (3.9)

where

Dw

Dt
=

@

@t
+ vw � r =

@

@t
+
v+ + v�

2
� r: (3.10)

Equation (3.9) is the condition which relates the wake strength �� to the potential jump
at the trailing edge when the wake element was located at that trailing edge. Additionally,
the wake evolution is determined such that the uid elements in the wake are convected
with the average velocity across the sheet. This de�nes a free-wake evolution which is
described in greater detail in Wood and Grace7 and Ramsey.8 The free-wake evolution is
easily implemented assuming incompressible ow (M = 0). Compressible free-wake evolution
is more di�cult and has not been implemented. For a more detailed derivation of the general,
three-dimensional, compressible ow governing equations and the formation of the numerical
approach, see Appendix A.

All of the computations reported in the following chapters were performed for two-
dimensional geometries assuming incompressible ow and allowing for free-wake evolution
(unless otherwise noted).
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4 Transform method and Validation

To determine whether the current BEM calculation was working correctly for the BVI prob-
lem, the at plate simulation was run and compared to the analytical solution. The analytical
lift response of a at plate to a passing vortex is given by

��
c

2
e�kh

1

�k

1�
H

(1)
1 (k)� jH

(1)
0 (k)

� (4.1)

where k = !c
2U

is the normalized frequency, U is the freestream speed far upstream, h is
the distance from the plate to the path of the vortex, � is the strength of the vortex, and
j =

p�1. H� is the Hankel function of order � [1].
The computations are performed for a NACA 0001 blade section. (This simulates a at

plate well.) Once the simulation is complete, the lift response (which is calculated as a
function of time) is Fourier transformed into the frequency domain. The analytical solution,
Eq. (4.1), requires that the time variable reference 0 when the vortex passes the midchord of
the blade section. Thus, before transforming the computed result, the time variable must be
shifted to account for the zero reference. In addition, the analytical result assumes a length
scale of half chord which a�ects the time, frequency, and lift normalizations. Therefore, a
rescaling of the computed time domain results may be necessary, if the same length scale is
not used in the computation.

After scaling and referencing time zero correctly, the computed results are transformed to
the frequency domain. A Hanning window is used in conjunction with the Fourier transform.
It is used because the computation is run for a �nite time. The �nite time implies that
the blade section is producing lift due to the presence of the vortex from the instant the
simulations starts and still when the simulation is stopped. One can see this in Figure 2.1.
The results are not adversely a�ected by the windowing when the vortex strength is smaller
and the vortex starts more than two or three chordlengths upstream and is allowed to travel
the same distance downstream. (An example is the simulation shown in Fig. 2.1 where the
vortex amplitude is 0.02, and it starts 4 chordlengths upstream.)

Figure 4.1 compares the computed and analytical response for a vortex passing above the

at plate at a distance of 4% of the half chord and for a vortex passing at a distance of 60%
of the half chord. The real and imaginary part of the transform as well as the magnitude
is compared against the analytical solution in Figure 4.2. Finally, the magnitude of the
response in the frequency domain is shown.

The agreement between the computed and analytic results for the vortex passing closest
to the at plate is very good. However, the low frequency singular behavior is not captured
using the BEM method (i.e. below a normalized frequency of 0.5). Some phase error exists
for the case when the vortex path is far from the plate. This error is attributed to the small
amplitude of the response in time. When the response has too low of an amplitude, the
Fourier integration su�ers. Throughout this report, either the vortex path's closest passing
distance is within at most 20% of a half chord from the airfoil, or the amplitude of the
vortex is taken to be a larger number. These parameters ensure accurate predictions from
the numerical simulation.

8
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Figure 4.1: Coe�cient of lift vs. time for vortex passing at plate at two di�erent distances.
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Figure 4.2: Real (thick line) and imaginary (thin line) part of Fourier transform for the
analytical result (solid line) and the computed result (dashed line). Top is the case when
the vortex is passing close to the plate, and bottom is when it passes farther away from the
plate.
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Figure 4.3: The analytical magnitude of the response (solid line) and the computed response
(dashed line). Top is the case when the vortex is passing close to the plate, and bottom is
when it passes farther away from the plate.
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ized frequencies.

The computation was also validated using the classical Sears problem. A very thin,
symmetric airfoils was used, and the Sears normal velocity condition was applied along the
airfoil surface. The solution was transformed to the frequency domain and the amplitude of
the response at the imposed harmonic was compared to the analytical solution. Figure 4.4
shows the real and imaginary parts of the computed response compare very well with the
analytical solution.

Experimental BVI results performed for an informal meeting of researchers from the �eld
of helicopter rotor research o�er a second qualitative validation. The parameters of the
experiment were not available at the time this report was prepared. However, some results
were presented in a paper by Rule, Epstein, and Bliss.9 From their paper, it was clear that
the blade section was a NACA 0012. However, the strength of the vortex and its distance
from the airfoil are not known. Figure 4.5 shows the coe�cient of pressure at points on the
suction and pressure surfaces for the 2% chord location, the 11% chord location and the
40% chord location. The most noticeable feature in the NASA experimental curves, is the
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Figure 4.5: Reproduced from ref. 9. Coe�cient of pressure in time as vortex passes the
blade section.
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Figure 4.6: Coe�cient of pressure from NACA 0012 simulation with vortex of strength 1.0
passing at a distance of 1 chord.

asymmetry from top to bottom. This asymmetry appears when a generic simulation is run
using the current method. Because the experimental parameters are not known, a vortex at
1 chord above the airfoil with strength 1.0 was simulated. The surface pressure plots at the
3 chord locations of interest are shown in Figure 4.6.

4.1 Discretization and occurrence of nulls

Martinez1 showed the occurrence of nulls in the unsteady lift spectrum for a vortex passing
thick, heavily cambered airfoils at a high angle of attack. Figure 4.7 is a reproduction of
a result from [1]. The nulls have been attributed to phase cancellations. However, another
�gure, 4.8, from the Martinez report, indicated that the occurrence of nulls is not a uniform
process. It was hoped that this research would validate these nulls and help to understand
the generating mechanism.

In the present computational method, the occurrence of nulls is shown to be partially
linked to the discretization method. This is demonstrated by using a NACA 0012 airfoil.
The airfoil chord runs from -0.5 to 0.5 on the x-axis. A vortex of nondimensional strength
0.02 is imposed on the ow �eld at an upstream location of (-4.5, 0.03). The upstream ow
is normalized to unity. The vortex is allowed to convect freely and its closest approach to
the airfoil is a distance of 0.0192 (based on a half chord of 0.5). This compares to a closest
approach of 0.0384 in the Martinez report where the airfoils run from -1.0 to 1.0.

The response in time for three di�erent airfoil discretization methods is shown in Figure
4.9. Linear spacing refers to equal spaced dx discretization along the chord of the airfoil.
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Figure 4.7: Figure 16b from [1]. Occurrence of nulls in the lift response for the thickest
airfoil considered. Closest streamline. Angle of attack 20�.

Figure 4.8: Figure 17b from [1]. Occurrence of nulls in the lift response. Closest streamline.
Angle of attack 5�
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Figure 4.9: Coe�cient of lift (left) and lift spectrum (right) computed using di�erent airfoil
discretizations.

Cosine spacing refers to equal spaced d� discretization along the chord of the airfoil where
� c

2
cos� = x. The mixed discretization uses a cosine spacing from the midchord forward and

a linear spacing from the midchord aft. Transforming these di�erent response curves, one
obtains the lift spectrum also shown in Figure 4.9. It is clear from these spectrum, that the
cosine discretization which predicts a larger forced response as the vortex passes the trailing
edge of the airfoil also predicts a much more scalloped frequency spectrum.

The main di�erent between the linear and cosine spacings is their compatibility with
the wake spacing. At each time step a wake panel is shed. These panels have a length,
determined by the convection speed, which is close to Udt. For the linear spacing, the body
panels forward of the trailing edge are similar in length to the wake panels aft of the trailing
edge. Body panels near the trailing edge determined from a cosine spacing however have
lengths much shorter than the wake panels. It is believed that it is this incompatibility in the
panel spacings near the trailing edge which is responsible for the large amplitude response
predicted when using a cosine spacing.

Studying this e�ect further shows that the cosine spacing is not as robust to changes in
the number of body panels nor changes in the wake panel lengths. First, the coe�cient of lift
as a function of time is shown for several di�erent levels of body discretizations. Figure 4.10
shows various cosine spacings and Figure 4.11 shows results from various linear spacings.
(These are all produced with a �x time step (i.e. �xed dt and thus �xed wake panel length).

A similar comparison is shown with the number of body panels �xed, but the time step
changed slightly. Figure 4.12 show the impact of a change in time steps. Recall that the
time step a�ects the value of dt which is associated with the wake panel lengths through the
convection distance Udt.

The results are more robust to discretization changes when the linear spacing is used
at the trailing edge of the airfoil. When this spacing is used, there are no nulls in the lift
spectrum for the NACA 0012 at zero angle of attack. Because linear discretization makes it
hard to capture the leading edge pressure rise, the mixed panel spacing with cosine spacing
near the leading edge and linear near the trailing edge is used. Figure 4.9 shows that this
discretization gives the same result as the linear discretization for the NACA 0012 case.
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Figure 4.10: E�ect of changing number of panels on coe�cient of lift (left) and lift spectrum
(right) when using cosine spacing. NACA 0012 airfoil.
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Figure 4.11: E�ect of changing number of panels on coe�cient of lift (left) and lift spectrum
(right) when using linear spacing. NACA 0012 airfoil.
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Figure 4.12: E�ect of changing wake panel length on coe�cient of lift (left) and lift spectrum
(right) when using cosine and linear spacing. NACA 0012 airfoil.
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However, it gives better results for thinner cambered airfoils where the pressure rise at the
leading edge is larger.

For the computations in this report, the lift is obtained by using the mixed discretization
(unless otherwise noted).
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5 E�ect of rapid distortion theory
assumption

5.1 Magnitude of the disturbance

The rapid distortion theory (RDT) relies on the assumption that unsteady disturbances are
a second order e�ect; that is, the mean ow can be separated from the uctuating ow
quantities and these uctuating quantities will be carried solely by the mean ow and will
not be inuenced by other second order e�ects in the problem.

Using the current methodology, it is easy to assess the implication of this assumption
on the BVI problem. Martinez, in his analytical treatment of the BVI problem, used an
RDT assumption. He imposed a vortex on a mean ow streamline and allowed the vortex to
follow the streamline at a speed dictated by the speed of the ow along that streamline. We
can recreate this situation using the current computational method. First, the streamline is
determined by following a vortex of zero strength. Then a vortex with given amplitude is
forced to follow the same path as that mapped out by the zero strength vortex.

A blade section geometry used by Martinez is studied here. In [1], Case 2 is a Joukowski
airfoil of chordlength 2.0 with input parameters of SR = �0:1 and SI = 0:2. The current
simulation was run for the same Joukowski shape, however the shape was adapted to have a
chord length of 1.0. The ow is set at a 20� incidence angle. The closest passing streamline
analyzed for this case in [1] passes with a minimum distance of 0.044 (based on half chord
of 1.0). After the streamline that satis�es this closest passing distance has been located,
several cases were run using imposed vortices of di�erent strengths. The coe�cient of lift
for the di�ering strength vortex simulations is shown in Figure 5.1. Under the assumptions
of RDT, the lift curves should collapse to one curve when the magnitude of the vortex is
normalized out. To make this comparison, a normalized lift is de�ned as
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Figure 5.1: Coe�cient of lift for various vortex strengths. All vortices follow same streamline
path.
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Figure 5.2: Normalized lift vs. time (left) and vs. frequency (right) for various vortex
strengths. All vortices follow same streamline path.

normalized lift =
Cl � Cl0
1
2
�U2c�

(5.1)

where � is the vortex strength and the subscript 0 denotes the steady (i.e. initial) coe�cient
of lift. The normalized lift is shown in Figure 5.2 For cases where the vortex strength is less
than 10% of the freestream (i.e. vortex strength � 0.1), the results collapse. The transform

of the normalized lift is also shown in Figure 5.1.

5.2 Rapid distortion theory vs. free evolution

In the last section, the range of vortex strengths allowable for an RDT analysis to provide
consistent predictions was discussed. Now, it is important to analyze the di�erence between
simulations carried out using the RDT assumption and simulations that allow the imposed
vortex to travel freely. Free evolution of the vortex will capture nonlinear interactions be-
tween the vortex and its e�ective images inside the solid boundary. It will also allow the
vortex to be inuenced by vorticity in the wake.

When the vortex evolves freely, one must iterate to determine the correct starting location
for each di�erent blade geometry and di�erent imposed vortex strength in order to obtain
a required minimum passing distance. This has been achieved for several vortex strengths.
The coe�cient of lift for several imposed vortex strengths are shown in Figure 5.3. Again,
for fair comparison, the normalized lift is shown in Figure 5.4.

When results from the RDT and free evolution methods are compared, it becomes clear
that for cases when the RDT theory is valid (i.e. vortices with strength no more than 10%
of the freestream), both methods give similar response predictions. For example, see Figures
5.5 and 5.6.

Comparing the RDT results with result from [1], one can infer that in the previous
research, vortex strengths of 1.0 were used in combination with the RDT assumption. Figure
5.7 shows the results for case 2 in [1]. The line labeled streamline 1 is the streamline that
passes within 4.4% of a half chord of the blade section. This should be compared with the
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Figure 5.3: Coe�cient of lift for various vortex strengths. Vortex evolving freely. Minimum
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Figure 5.4: Normalized lift vs. time (left) and vs. frequency (right) for various vortex
strengths. Vortex evolving freely. Minimum passing distance retained.
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Figure 5.6: Normalized lift vs. time (left) and vs. frequency (right) for various vortex
strengths. Vortex path �xed and evolving freely.

thick solid line in Figure 5.1. At a frequency of 15.0, both curves give a value of 0.01 for the
magnitude of the response.

A vortex amplitude of 1.0 in the RDT method does not allow for the lift curves to collapse
when normalized by the vortex strength. Also, it is easier to run the current simulation with
a freely evolving vortex. Thus, all of the cases shown in the next sections have an imposed
vortex strength of 0.02 and do not impose RDT. These simulations should compare well with
RDT simulations because of the small vortex amplitude; however, results from the present
calculations will not match identically the results reported in [1]. Instead, the predicted
normalized lift will be much lower than that presented in [1]. The trends however, remain
the same.
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Figure 5.7: Figure 15b from [1]. Case 2, various streamlines.
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6 Comparisons with previous
predictions

Several simulations using the current method have been run in order to compare with the
trends described in [1].

6.1 Vortex displacement e�ect

It was already shown in chapter 4, that when the vortex's minimum passing distance in-
creases, the blade section response decreases. Another example of this phenomenon is in-
cluded here. For a Joukowski airfoil described by case 2 in [1], a vortex of strength 0.02,
passes by at varying minimum distances. The ow is at a 20� angle of attack. The response
in time and the response spectrum is shown in �gure 6.1. The trend of decreasing response
with increased vortex passing distance is observed.

It is the vortex displacement from the mean camber line that governs the roll o� of the
response with frequency. The at plate analytical response function contains the factor ekh

where h is the distance of the vortex path from the at plate. From the results for other
non at plate cases, it is clear that the roll o� is still with a factor ekl. The l however
for a general blade shape is the distance from the the vortex to the mean camber line at

the vortex's minimum passing distance. This is demonstrated through example here. A
vortex is imposed upstream of a NACA 0012 at 0� and 2� angles of attack. The vortex
strength and starting location are kept �xed. The closest approach point for both cases is
highlighted in Figure 6.2. At zero incidence angle, the distance from the mean camber line
is roughly l = 0:065. Plotting the response spectrum with and without the e( � kl) factored
out demonstrates that this is in fact the correct l to use. See Figure 6.3. The same can
be shown for the 2� incidence case where the vortex distance from the mean camber line is
roughly l = 0:1. A �nal case where a cambered NACA 1212 airfoil at 0� angle of attack is
modelled with the same vortex parameters enforced. The vortex path and the response of
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Figure 6.1: Response of Joukowski airfoil (Case 2 in [1]) to vortices passing at di�erent
distances.
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Figure 6.3: The response spectrum for the simulations in Fig. 6.2, with (dashed line) and
without (solid line) the exponential factor taken out. Zero incidence angle (left), 2� angle of
attack (right).

the blade are shown in Figure 6.4. The appropriate distance this time is roughly l = 0:085.

6.2 Thickness e�ect

The e�ect of thickness can also be captured with the current method. For a demonstration
of this e�ect two airfoils, a NACA 0001 and a NACA 0012 are used. The vortex initial
location is chosen such that the vortex passes with a closest distance of 4% of a half chord.
The geometries and their associated vortex paths are shown in Figure 6.5. The coe�cient
of lift for the two simulations is shown as well as the transformed lift in Figure 6.6. The

response of the NACA 0012 than that of the NACA 0001 is much less especially at higher
frequency.

The thickness e�ect is also shown using a set of cases that were presented in [1]{Figure
16b. The blade sections appear in Figure 6.7. The ow is set to an incidence angle of
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Figure 6.4: Vortex path (left) and response curve (right) for NACA 1212. Total response
(dashed line), exponential factor suppressed (solid line).
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Figure 6.6: Response of the airfoils in time and their associated response spectrum.
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Figure 6.7: Airfoils used in thickness simulation.

Figure 6.8: Figure 16b from [1]. Same as 4.7

20�. The closest passing for the di�erent blade sections were matched to those used in [1].
They can be found in Appendix B which contains a reproduction of the cases chart from [1].
Figures 6.8 and 6.9 present the analytical prediction of Martinez and the time and frequency
domain results from the current calculation. (Fig. 4.7 is repeated here for easy comparison.)

Note that the results in Figure 6.9 have also been normalized by the steady lift for each
airfoil case. This gives a fair comparison of the unsteady response characteristics without
biasing the comparison with the steady lift capabilities of the blade section.

The reduction in response with thickness is attributed to two causes. First, the magnitude
of the induced normal wash due to the passing vortex is identical from pressure to suction
side for the at plate; but, for the thicker airfoil, the side closest to the passing vortex is
inuenced more strongly by the vortex. Second, the phase of the incident downwash along
the plate is identically e�ik1x1; but, for the thicker airfoil, there is a departure from this
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Figure 6.9: Response of the airfoils in time and their associated response spectrum.

Sears phase variation. Both of these e�ects are evident in Figures 6.10 and 6.11 where the
magnitude and phase* eik1x1 at various frequencies is plotted. (The normalized frequency is
noted to the left of each curve.)

The surface pressure resulting from the induced wash is also asymmetric from pressure
to suction side for the thicker airfoil as seen in Figure 6.12. In addition, at higher frequency,
the phase is quite di�erent along the chord of the thicker airfoil, Fig. 6.13. The total lift
is obtained by integrating the pressure jump along the body. Thus when the induced ow
on the suction and pressure sides are simply � out of phase at each chordwise location and
identically phased with e�ik1x1 , the maximum lift will be obtained. In other cases, the lift
will be less. Finally, it is noted that the behavior of the phase of the pressure near the
trailing edge is most likely incorrect. For the low values of pressure that occur at the trailing
edge, numerical inaccuracies have swamped the actual values.

6.3 E�ect of camber

A series of increasingly cambered airfoils was run and the results compared with the similar
prediction in [1]. The airfoils are plotted in Figure 6.14. The time and frequency responses
are shown in Figures 6.15-6.16. As was discussed in section 5.2, the predicted response
values from the current method are smaller than those predicted in [1]. The pattern is
undeniably the same though.

6.4 E�ect of angle of attack

For this section, the case 3 airfoil from [1], was run at various angle of attack. For each
simulation the starting location of the vortex was changed so that the minimum passing
distance was 4% of the half chord. The paths that the vortex follows for angles of attack 2�,
5�, 10�, and 20� can be seen in Figure 6.17. The response spectrum can be seen in Figure
6.18.
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Figure 6.10: Magnitude of induced velocity along the blade section at various normalized
frequencies. Flat plate: solid line, NACA 0012: dashed line.
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Figure 6.11: Phase * eik1x1 of induced velocity along the blade section at various normalized
frequencies. Flat plate: solid line, NACA 0012: dashed line.
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Figure 6.12: Magnitude of the coe�cient of pressure along the blade section at various
normalized frequencies. Flat plate: solid line, NACA 0012: dashed line.
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Figure 6.13: Phase of the coe�cient of pressure along the blade section at various normalized
frequencies. Flat plate: solid line, NACA 0012: dashed line.
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Figure 6.14: Airfoils used in camber simulation.

Figure 6.15: Figure 18b from [1].
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Figure 6.16: Response of the airfoils in time and their associated response spectrum.
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Figure 6.18: E�ect of angle of attack on response spectrum
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Two of the curves in Figure 6.18 can be compared to prior results. First, the 5� angle
of attack case can be compared to the thick solid line in Figure 4.8. In addition, the 20�

angle of attack case can be compared to the thick solid line in Figure 4.7. The occurrence of
nulls in the spectrum is not consistent between the two methods of prediction. This is not
simply a result of the di�erent assumptions. For when calculating the spectrum using the
current computational method, but performing an RDT with a vortex strength of 1.0, the
occurrence of nulls is related more close to the nulls in Figure 6.18 than to the analytical
results. Thus the prediction and justi�cation of the nulls remains an open issue.
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7 Geometries of interest to the Navy

This section exempli�es the capability of the current method to treat general blade geome-
tries.

7.1 General interest geometry

A test geometry was supplied in order to preform preliminary calculations on a more realistic
blade section shape. The blade section is shown in Figure 7.1. The steady coe�cient of
lift predicted using the current method with a moderate blade discretization level is 1.0496.
When using a convergence criteria to compute the steady lift, the coe�cient of lift is predicted
to be approximately 1.3. The zero lift angle of attack was computed to be �5:85�. If these
values are correct, then the unsteady simulations have merit. If they are not, then the grid
must be re�ned until reasonable steady results are obtained. This grid then would be used
to compute the unsteady response.

The response of the blade section to a vortex of strength 0.02 passing the blade at various
minimum distances is shown in Figures 7.2. The blade section was at an incidence angle of
3�. It is noted that the coe�cient of lift shows a large dip as the vortex passes the trailing
edge. This dip is similar to the dip that occurred for the vortex passing the NACA 0012
when the cosine discretization was used. As was shown for the NACA 0012 case, when the

lift response in time has a large second dip, the lift spectrum develops prominent scallops.
For the geometry of interest in this section, several discretizations were attempted. None
removed the the second dip.

7.2 Varying leading edge geometries

Currently, an experiment is being run at David Taylor Model Basin, to characterize inow
and response of blade sections with di�ering leading edge con�gurations. Each blade sec-
tion is tested with the same inow distortion being created by an upstream square grid of
cylindrical rods. The basic blade section shape is a NACA 0012. The other two shapes are
formed by replacing the �rst quarter of the NACA 0012 with di�erent wedge shapes. The
leading edge shapes are shown in Figure 7.3. By tapering the leading edge wedge shapes
into the quarter chord of the NACA 0012, the overall blade thickness is equivalent for all of
the blades.

The response of each blade to the same incident vortex is computed. In the simulation the
vortex is introduced at (-4.5, 0.03) and the blade section chord runs from -0.5 to 0.5 along
the x-axis. The blades are set at zero incidence. The response in time and the response
spectrum can be seen in Figure 7.4. The following observations are made:

� the response is very similar for the di�erent shapes

� the blade shape with the sharpest angle gives the lowest overall response at high
frequency
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distances. Response in time (left), response spectrum (right).
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Figure 7.5: Coe�cient of pressure for steady ow at no angle of attack past the three airfoil
shapes.

A closer look at the steady surface pressure coe�cient shows that the leading edge suction
for the rounded wedge shape is not what would be expected. The coe�cient of pressure for
the sharp wedge and the NACA 0012 shown in Figure 7.5 are reasonable; however, they are
not smooth. Re�ning the discretization does not alter the odd behavior. Therefore, it is
surmised that the actual geometry description needs to be improved in order to smooth out

the pressure predictions.
Because there is a unique opportunity to validate these computations with experimental

results. The following sets of curves are presented. Hopefully, surface pressure distributions
obtained experimentally can be used to validate these predictions. One possible di�culty for
this validation will be the di�erence between the inow disturbance that has been modelled
and the true inow disturbance. Figure 7.6 shows the surface pressure distribution for various
times. The vortex arrives at the leading edge of the airfoil at t = 8:0 and crosses the trailing
edge at t = 10:0. The time is indicated on the far left of the curves. After the lift builds
up during the approach of the vortex, one can see the vortex traveling along the blade by
following the small \hiccup" in the surface pressure.

The computations predict the the sharpest wedge shape shows the least response at
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Figure 7.6: Coe�cient of pressure along the top and bottom airfoil surfaces. NACA 0001
(solid line), NACA 0012 (dashed line). Time is indicated at the left of the curves.

higher frequencies. This seems to associated with the di�erence in pressure peak at the
leading edge for the di�erent blade section shapes. Figure 7.7 shows the surface pressure
coe�cient for the three shapes at two di�erent times during the simulation. The �rst time
is approximately when the vortex passes the leading edge and the second time is when the
vortex is downstream of the leading edge a bit.
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Figure 7.7: Surface pressure coe�cient for the NACA 0012 (top), Wedge 1 (middle), Wedge
2 (bottom) at two times. As vortex passes leading edge (left), as vortex moves past the 10%
chord location.
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8 Other capabilities and possible
extensions

8.1 Two-dimensional extensions

The computational capability discussed in this report is exible. Several di�erent unsteady
problems can be run using the BEM technique. In particular, the blade section can be set
into an unsteady pitching motion and the response can be calculated. In addition, instead
of a single vortex, several vortices, whose initial conditions are either spatially varied or
temporarily varied or both can be incident upon the blade section. This feature may allow
a more realistic model of turbulence ingestion, as the incident vortices can be calibrated to
reect turbulent parameters of interest.

The acoustic �eld can also be predicted using this method. Currently, ow �eld Reynold's
stress terms that may contribute to the sound �eld are not included in the acoustic calcula-
tion. However, for the low-speed ows of interest to the navy, neglecting this e�ect should
not a�ect the acoustic prediction greatly. As an example of this capability, the pressure at
the y over point for the at plate and the NACA 0012 airfoil is calculated in the mid�eld
and in the far �eld. See Figure 8.1. The value for the coe�cient of pressure at the y over
point for the NACA 0012 in the very far �eld is so small that large errors are introduced
when computing the Fourier transform. Thus, the reported far �eld pressure at frequencies
higher than 6 (for the NACA 0012 case) should be ignored. By studying the pressure direc-
tivity in the mid and far �elds for two �xed frequencies, the importance of the second wave
number can be seen. Figure 8.2 shows the directivity at a reduced frequency of 1.0. At this
frequency the at plate and NACA 0012 foil radiation is almost identical. However, at a
reduced frequency of 3.0, shown in Figure 8.3, the far �eld response shows the impact of a
longitudinal disturbance on the thicker foil.

8.2 Extension to three dimensions

A very di�erent extension of this work would be to observe �nite span e�ects by using the
three-dimensional version of this code. The free-wake evolution in the three-dimensional
code leads to the formation of tip vortices as shown in Figure 8.4. The unsteady capabilities
of the three dimensional code have already been validated by considering results for the limit
of very large aspect ratio. The results from this validation are reported in a conference paper
written for the upcoming ASME IMECE to be held in November, 2000, in Orlando, Florida.
A copy of this conference paper is included as Appendix C. Also included in the conference
paper are validations for the computed three-dimensional acoustic �eld.
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Figure 8.1: Coe�cient of pressure vs. frequency at yover position. 10 chords away (left),
100 chords away (right).
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38



1.
07

e−
04

0.5 π

1.5 π

 π 0

NACA 0012
NACA 0001

4.
00

e−
05

0.5 π

1.5 π

 π 0

NACA 0012
NACA 0001

Figure 8.3: Directivity of the coe�cient of pressure at normalized frequency of 3.0. On
circular arc 10 chords away (left) and 100 chords away (right).

Figure 8.4: A view of a typical wake shape at steady-state (Aspect ratio of 6). Reproduced
from ref. 10.
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A Derivation of equations of motion
and BEM governing equations

This appendix is adapted from the PhD thesis prospectus of Trevor H. Wood, research
assistant in the Deparment of Aerospace and Mechanical engineering at Boston University.10

Nomenclature

�;v; p; s; h uid density, velocity, pressure, speci�c entropy, and speci�c enthalpy
D
Dt

= @
@t
+ v � r material derivative

Do

Dt
= @

@t
+ U1

@
@x1

linearized material derivative
c speed of sound
M Mach number
L length scale (approx. 777 chord)
�; � total, perturbation velocity potential
� homogeneous (non-linear source) terms
H(x) Heaviside step function
� Prandtl-Glauert parameter
� ap deection angle
� = cos�1(n � r̂) observer declination angle
CP coe�cient of pressure
I; P acoustic intensity, power
P power level
 ratio of speci�c heats
� vorticity vector
� circulation
�(x) Dirac delta function
�ij Kronecker delta tensor
�ijk antisymmetric permutation tensor
� ? = t�� retardation time
� = m + � retardation time delay, m �integer part
� regularization parameter
@x partial derivative with respect to x
n outward unit normal vector
(x; t); (y; �) source, observer position and time
r̂ radial unit vector (source to observer)
S smooth surface S
V uid volume outside S
f surface generating function
L self-adjoint linear di�erential operator
F surface sources
G Green's function
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Subscripts:

1 undisturbed value
i ith spatial coordinate
t time derivative
xi spatial derivative along xi
(TE) panel adjacent to trailing edge

Superscripts:

0 derivative wrt argument
(B) solid body part
(W ) wake part
+;� above, below (�n) wake

Overscripts:

~ Prandtl-Glauert space
_ time derivative
^ unit vector

A.1 Potential ow equations

We consider uid owing past a streamlined body at high Reynolds numbers and sub-
sonic velocities. The �rst order solution to the equations of conservation of uid mass and
momentum satis�es the inviscid Euler equations with additional conditions describing the
generation of thin shear layers at sharp edges of the solid bodies. If the uid disturbances
are assumed to be adiabatic and the speci�c heats are taken to be constant, then the ow
may be described by the velocity potential everywhere in the uid except in the thin regions
of the wakes and boundary layers. In these regions, vorticity is introduced to e�ect steep
gradients, or jumps, in the uid velocity. Such a ow is often referred to as quasi-potential
ow in the literature because the vorticity exists only in very localized regions.5 For a review
of compressible potential ow, see Appendix A.3. In the potential ow regions, the inviscid
Euler equations take the form of a wave equation, Eq. (A.52),

r2�� 1

c2
1

@2�

@t2
= ��1 = 1

c2
1

"
(c2
1
� c2)r2� + 2v�@v

@t
+
v

2
� rv2

#
; (A.1)

where v = r� and the reference frame is motionless with respect to the undisturbed uid.
If the wing is assumed to move at a constant velocity, �U1 î, the perturbation potential,
� = � � U1x1 satis�es the above equation when the time derivatives are replaced by the
freestream material derivative,

Do

Dt
=

@

@t
+ U1

@

@x1
: (A.2)

Here, the frame of reference moves with the wing. Nondimensionalizing space and time by
the characteristic dimensions L and L=U1, respectively, gives
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1
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1
� c2
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1
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1
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+
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1
v

2
� rv2: (A.3)

By using the Prandtl-Glauert transformation,

n
~x1; ~x2; ~x3; ~t

o
=

(
x1
�
; x2; x3; t� x1

~c2

)
; (A.4)

the wave equation takes a classical diagonal form, shown in Eq. (A.96), for which the corre-
sponding boundary integral equation is given by,

4�H(f)�(x; t) =
Z
V

"
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Figure A.1: De�nitions of boundary integral quantities

(Eq. (A.112) in the Appendix) where cos � = r̂ � n,

� ? = t� M

�

 
r� � Mx1

�2

!
(A.6)

r�(xjy) =
q
(x1 � y1)2=�2 + (x2 � y2)2 + (x3 � y3)2; (A.7)

and @=@t1 is the gradient along a tangent to the surface lying parallel to the x2 � x3 plane.
The near-�eld surface of the integration envelops the wing and wakes such that the normal to
the surface points into the uid (see Figure A.1). For in�nitely thin wakes, the wake integrals
reduce to the integral of the jump in the integrand (from upper to lower surface) along the
upper portion of S(W ). See Appendix A.3.2 for details on boundary integral methods and
the derivation of Equation (A.5).

For the current application the Mach numbers are typically in the low subsonic range
and, thus, the nonlinear source terms, �, will be initially neglected. Equation (A.5) then
expresses the perturbation velocity potential in terms of monopole (source) and dipole (dou-
blet) sources distributed along the boundaries. Assuming that the disturbances are outgoing
in the acoustic far �eld and are zero in�nitely far away from the wing, the surface integrals
in Eq. (A.5) reduce to integrals over the surfaces of the wing and around the wakes (i.e.,
S(FF ) does not contribute).

The impermeability condition is applied at the solid surfaces such that the uid velocity
normal to the surface is equal to the normal velocity of the surface. Note that the e�ects

44



of �nite boundary layer thickness may be taken into account by including a transpiration

velocity through the surface to essentially place the surface separating potential and viscous
ow regimes at the momentum boundary layer thickness.11 However, this will not be included
in the initial investigations as it is believed that the sound radiation will not be signi�cantly
a�ected. In contrast, the shear layer dynamics is expected to provide the mechanisms for
the dominant sources of sound radiation. For the thin shear layer model of the wakes, the
integrand reduces to its jump across the surface of the shear layer. The normal derivative is
continuous across an in�nitely thin wake and the potential jump is approximately constant
in time (in the Lagrangian frame) for very long time scales of viscous di�usion. The potential
jump is determined using the Kutta condition which essentially states that the ow velocity
must remain �nite at the trailing edge.12

With the stated boundary conditions and a given initial condition, Eq. (A.5) must be
solved numerically when arbitrary surface geometries are of interest. This numerical solu-

tion is discussed further in the following chapter. Once the surface sources are determined,
Eq. (A.5) may be evaluated directly to determine the velocity potential in the �eld. Sim-
ilarly, the velocity �eld may be determined by taking the gradient of Eq. (A.5) in the x
domain and integrating directly. The �eld pressure may then be evaluated using Bernoulli's
Equation (A.60)

Cp =
p� p1
1
2
�1U2

=
p1

1
2
�1U2

2
64
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@1� _�+ v2

2

h1

1
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� 1

3
75 : (A.8)

The acoustic intensity is given in dimensionless form by13

I = (p0 + 2v0 � vo)
�
v0 +

1

2
M2p0vo

�
; (A.9)

where primes and zero subscripts denote time-varying and steady contributions, respectively.
Note that the intensity is scaled by �oU

3
1
=2 and the acoustic density relates to the pressure

in dimensionless form by �0 = M2p0=2 for adiabatic disturbances.
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A.2 Numerical Solution

Equation (A.5) is an integro-di�erential-delay equation for the perturbation potential �. By
integrating numerically in time from a set initial condition, the potential may be calculated
at each time-step using a boundary element method. In this research, a �rst order geometric
discretization and zeroth order �eld discretization method will be used for simplicity. This
formulation was used in the panel code SOUSSA, and the ensuing details in this section
follow those of [Ref. 14, 15]. The solid surfaces and wakes are divided into N and NW

hyperboloidal panels (see eqs. (A.121) and (A.122) in Appendix A.3.3), respectively, over
which the unknowns �j (j = 1; N +NW ) are assumed constant. Under this assumption, the
boundary integral equation (A.5) takes the form

2���i(t) =
NX
j

2
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��j(t)
i
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; (A.10)

where B and W refer to the solid bodies and wakes, respectively, and
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M2n1
q
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1�M2n21

Z
Sj

1

r�(xijy)dS: (A.11)

For low subsonic Mach numbers, M � 1, the GG term and the second term of GT are
of O(M2) and may be neglected. The doublet and source inuences may be evaluated
analytically for hyperboloidal panels that are approximately at and are given in equa-
tions (A.124){(A.126).

Equation (A.10) may be integrated numerically in time by assuming linear interpolation
between the temporal data �ki = �i(t = k�t). The time delay � = t � �? is now written
separately as

�ij = mij + �ij =
M

�

 
r�ij �

Mx1i
�

!
; (A.12)

where mij is an integer, �ij 2 [0; 1) is real, and r�ij = r�(xijycj) (ycj locates the center of
the jth panel). To approximate the time derivative of the potential, a �rst order backward
discretization will be used. De�ning m0

ij and �
0

ij such that

�ij +�t = m0

ij + �0ij; (A.13)
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the unknown �eld data may now be expressed by
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where �rst-order backward di�erencing is used to approximate the temporal derivatives.
The discretized equations become �nally

2���ki =
�
G(B)
Dij

+GTij=�t
� h
(1� �ij)�

k�mij

j + �ij�
k�mij�1
j

i

� GSij

2
4(1� �ij)

 
@�

@n

!k�mij

j

+ �ij

 
@�

@n

!k�mij�1

j

3
5

� GTij

h
(1� �0ij) _�

k�m0ij
j + �0ij _�

k�m0ij�1
j

i
=�t

+ G
(W )
Dij

h
(1� �ij)��

k�mij

j + �ij��
k�mij�1
j

i
(A.15)

where summation is assumed over repeated indices. By applying this equation at N collo-
cation points located at the centers of the N panels on the solid bodies, the impermeability
condition on the solid surface boundaries

@�

@n
= �n � î; (A.16)

and the Kutta condition at the trailing edges,

��
(W )
(TE) = �

(B)
(TE+) � �

(B)
(TE�); (A.17)

this equation may be solved for the unknown potential at the latest time-step. The Kutta
condition ensures that there is no concentrated vortex at the sharp trailing edges by setting
the potential jump of the adjacent wake panels to cancel that of the adjacent surface panels.
The wakes are then evolved forward in time through the numerical integration of

dx?
dt

= v? (A.18)

where x? represents the corners of the wake panels and v? is the local uid velocity at x?. A
simple Euler forward numerical integration of Eq. (A.18) is currently used, and is described
in further detail in the following section.

Equations (A.15) include leading order compressibility e�ects. The preliminary results
presented in this prospectus will neglect compressibility to simplify the code development
and validation process. For incompressible ows, these equations reduce to

�
2��ij �G

(B)
Dij

�
�kj = �GSij
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j

+G
(W )
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��kj : (A.19)
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The far-�eld evaluation of the acoustic pressure (A.8) and intensity (A.9) also reduce to the
following

Cp = �2
 
_�� @�

@x1

!
; (A.20)

I =

 
Cp + 2

@�

@x1

!
r�; (A.21)

to leading order in the perturbation velocity.

A.2.1 Wake Evolution

The wakes are composed of doublet panels with a constant strength, ��, determined using
the Kutta condition. The inuence of a constant strength doublet panel is mathematically
equivalent to that of a vortex ring. The wakes are thus modelled as thin vortex sheets that

evolve freely with the local ow�eld. An accurate wake evolution is important if potential
feedback mechanisms and acoustic sources are to be simulated.

The wake dynamics are governed by the equations of mass and momentum conservation.
When applied to a control surface surrounding and moving with the wake, these give

d

dt

Z
V

� dV = �
Z
S

�vrel � n dS (A.22)

d

dt

Z
V

�v dV = �
Z
S

[vrel�v � n+ pn] dS (A.23)

where n is the unit vector normal to the wake surface and vrel is the relative velocity through
the surface S. When the thickness of the wake is taken to be in�nitesimally small, the volume
integrals above give zero. It follows that the jump of the integrands of the surface integrals
must be zero; i.e.,

� [�(vn � vw)] = 0; (A.24)

� [�(vn � vw)v + pn] = 0; ; (A.25)

where vw is the normal velocity of the wake surface and vn = v � n. If the incompressible
ow limit is initially assumed, Eq. (A.24) implies

�

 
@�

@n

!
= 0; (A.26)

i.e., the monopole source strength of in�nitesimally thin wakes is zero. Eq. (A.25) gives
conditions for both the normal and tangential components of the equation. The normal

components give

�p = 0; (A.27)

and the tangential components give �(vn � vw)�v = 0 which, for nontrivial velocity jumps,
implies impermeability,

vn = vw: (A.28)
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Consider the incompressible Bernoulli's equation,

�p

�
+�

 
v2

2

!
+� _� = 0: (A.29)

By applying the condition of pressure continuity, Eq. (A.27), Bernoulli's equation gives an
important relation:

� _�+
1

2
(v+ + v�) � (�v) = Dw

Dt
�� = 0; (A.30)
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+
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2
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is the convective derivative using the average of the local uid velocities above and below the
sheet as the convective velocity. Thus, the doublet wake panels do not change their strength
with time and their corners convect with the local uid velocity.

The inuence of a single wake panel on the perturbation velocity can be represented by
the inuences of four straight line vortex segments at the panel edges. The velocity induced
by a straight vortex segment is calculable using the Biot-Savart law16

vseg = � �

4�

r1 � r2
jr1 � r2j2

�
r2 � r1
r1

� r1 +
r2 � r1
r2

� r2

�
; (A.32)

where r1 and r2 are the vectors from the end positions of the vortex segment to the observer
point such that r1 � r2 lies parallel to the vorticity vector, �, as shown in Figure (A.2).
Care must be taken in the numerical evolution of free, discrete vortices because the veloc-

x1

x2

x3

r1

r2

P(x)

Γ

(0,-1,0)

(0,1,0)

Figure A.2: Schematic of vortex segment.

ities become singular at the vortex cores and wake shapes become unphysical if vortices
come within close proximity to one another. This di�culty may be avoided by using reg-

ularization methods, where a vortex core model is speci�ed to result in a smooth inuence
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function. A popular regularization of Eq. (A.32) is Krasny's vortex blob method,8,17 where
a regularization parameter, �, is introduced to remove the singularity at the core via

vseg
�
= � �

4�

r1 � r2
jr1 � r2j2 + �2

�
r2 � r1
r1

� r1 +
r2 � r1
r2

� r2

�
: (A.33)

The e�ect of this regularization is shown in Figure A.3 for the case of a vortex segment
lying between the points (0;�1; 0) and (0; 1; 0). The v3 component of the induced velocity
is shown at varying points along the x1 axis. Increasing the regularization parameter is seen
to smooth the inuence around the core and limit the peak inuence. For the preliminary
results presented in this prospectus, � = 0:1 was chosen in accordance with typical values
used in [Ref. 8].
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Figure A.3: Inuence of a vortex segment using di�erent levels of regularization.
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A.3 Supporting Derivation

A.3.1 Potential Aerodynamics

The derivations in this section are well known and is included here only for reference and
completeness.

Fundamental Equations

The equations of mass and momentum conservation for an inviscid uid may be written as

D�

Dt
+ �r � v = 0; (A.34)

�
Dv

Dt
= �rp: (A.35)

Assuming adiabatic heat transfer, entropy will be convected purely with the mean ow, i.e.,

Ds

Dt
= 0: (A.36)

Thus the First Law of Thermodynamics reduces to

dh =
dp

�
: (A.37)

The momentum equation (A.35) then becomes

Dv

Dt
= �rh; (A.38)

which implies that if the ow is initially irrotational and there are no sources of vorticity in the
ow, then the ow remains irrotational for all subsequent time. Under these circumstances,
there exists a velocity potential, �, such that v = r�. Equation (A.36) also implies

dp = c2d�; c2 =
@p
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�����
s

: (A.39)

Writing Eq. (A.38) in terms of the velocity potential and using standard tensor notation
gives
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; (A.40)
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Integrating the above relation in space and assuming that � and its derivatives are zero at
in�nity gives Bernoulli's Theorem
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Similarly, Eq. (A.34) becomes

1
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Combining with Eq. (A.42)
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In order to obtain a wave equation, we need to relate the speed of sound to the velocity
potential. For an ideal gas, the adiabatic relation can be expressed by p�� = constant,
where  = cp=cv is the ratio of speci�c heats (assumed constant). This gives
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�
; (A.45)
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Thus, Bernoulli's Equation reduces to
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or equivalently,
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Combining Equations (A.44) and (A.49) gives"
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Thus, we �nally obtain a linear wave equation (in the air frame of reference) with nonlinear
forcing terms
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Coe�cient of Pressure

Recall Equation (A.42)
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For an incompressible uid, this becomes
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p� p1
1
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; (A.55)

where U is the velocity of the wing in the air frame of reference.
For a compressible, isentropic uid, dh = dp=� and p=� = K = constant. Thus,
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Assuming that h = 0 when � = 0, then
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and

h� h1
h1

=

 
�

�1

!�1

� 1 =

 
p

p1

!1� 1



� 1: (A.58)

Thus,

p

p1
=

"
1� 1

h1

 
_�+

v2

2

!# 
�1

: (A.59)
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Vorticity Transport Theorem

Begin with Euler's equations for an inviscid, isentropic ow

Dv

Dt
= �rh: (A.61)

Taking the curl of both sides
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@t
(r� v) +r� [v � rv] = 0: (A.62)

Denote the vorticity by � = r� v. Using the identity v � rv = r(v2=2)� v� �, we obtain
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The term r � � = r � (r� v) is zero. This leaves

@�i
@t

+
@(vj�i)

@xj
= �j

@vi
@xj

; (A.65)

D�i
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+ (r � v)�i = (� � r)vi: (A.66)
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Kelvin's Theorem

Choose a closed contour, C, which encloses the same uid elements for all time. The rate of
change of circulation of the uid within this contour is

D�

Dt
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I
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v � dl =
I
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D

Dt
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I
C
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= �
I
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I
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d
v2

2
= 0: (A.67)

Note also that

� =
I
C

v � dl =
ZZ
A

(r� v) � n̂dS =
ZZ
A

� � n̂dS: (A.68)

In the limit as A ! 0, d� = � � n̂dA = constant, if � is continuous in dA. Therefore, for
arbitrary dA and n̂, � � 0 if the uid in dA was initially irrotational. Thus, in these regions
of the uid (excluding the wake where  is not initially zero), there exists a velocity potential,
�, such that v = r�.
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A.3.2 Kirchho� Methods

Kirchho� methods are used to predict quantities satisfying a scalar wave equation in the
�eld surrounding a surface on which the variable and its derivatives are known. For a wave
phenomenon described by the partial di�erential equation

L[�] = �; (A.69)

in the physical �eld (e.g., exterior to a wing), where L is a linear, self-adjoint di�erential
operator. The Green's function is chosen to satisfy the equation

L(y;�)[G(x; tjy; �)] = �(x� y)�(t� �); (A.70)

and the boundary conditions at in�nity.
Let the surface, S, be given by the equation

f(x; t) = 0; (A.71)

where f is a su�ciently di�erentiable function (depending on the order of L) normalized in
such a way so that the equation

rf
jrf j

�����
on S

= n̂ (A.72)

de�nes the outward unit normal to S. To account for the surface e�ects of �, consider the
generalized function, H(f)�, de�ned in all space. Treating the derivatives in L as generalized
derivatives, applying to H(f)�, and using
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gives

L[H(f)�] = HL�+ F = H� + F ; (A.75)

where F describes the surface sources. If the boundary conditions at in�nity are homoge-
neous, then multiplying Eq. (A.70) by �, Eq. (A.75) by G, and integrating over all (y; �)
gives the integral equation
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G�dV d� +
Z
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When there are no sources in the �eld, V , the �rst integral above vanishes. The second
integral will be over the surface, S, because F will contain �(f) and its derivatives. The
result will be an integral equation relating � in the �eld, V , to � and its derivatives on the
surface, S. If � is known on the surface, then the �eld is determined directly by evaluating
the integral. Conversely, by choosing the observer locations, x, to lie on the surface, a
consistency relation is obtained from which � may be determined implicitly on the surface
by solving the integral equation via panel, or boundary element, methods. In the following
sections, Kirchho� equations will be derived for various di�erential operators of interest.
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Classical Wave Equation

Applying Equation (A.76) to the classical wave equation for a motionless surface, S, gives
the classical Kirchho� equation (c. 1882). The operator L is given here by

L =
1

c2
@2

@t2
�r2: (A.77)

Note that

@

@t2
(H(f)�) = H ��� vn _�� � @

@t
(vn��);

@

@x2i
(H(f)�) = H�xixi +

@�

@n
� +

@

@xi
(ni��): (A.78)

The surface sources are thus

F = �
 
Mn

c
_�+

@�

@n

!
�(f)� @

@�

�
Mn

c
��(f)

�
� @

@yi
(ni��(f)) : (A.79)

For a motionless surface, vn = 0, and

F = �@�
@n
�(f)� @

@yi
(ni��(f)) : (A.80)

The Green's function satisfying the radiation condition is

G(x; tjy; �) =
�(g)

4�r
; (A.81)

g = � � t+
r

c
;

r =
q
(x1 � y1)2 + (x2 � y2)2 + (x3 � y3)2:

Note that

@G

@xi
= �@G

@yi
;

@G

@t
= �@G

@�
: (A.82)

Applying Equation (A.76) gives

H(f)�(x; t) =
Z Z

V

G�dV d� �
Z Z

S

G
@�

@n
dSd� �

Z
G
@

@yi
(ni��(f))dyd�: (A.83)

Integrating the last integral by parts and applying eqs. (A.82) gives

4�H(f)�(x; t) =
Z
V

�
�

r

�
�?
dV �

Z
S

"
1

r

@�

@n

#
�?

dS � 4�
@

@xi

Z
G(ni��)dyd�; (A.84)

where � ? = t � r=c is the solution to the equation g(�) = 0 and is referred to as the
retarded time. The integrals above represent volume sources, surface sources, and surface
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dipoles respectively. The dipole integral may be simpli�ed by converting spatial to temporal
derivatives. Note that

@g

@�
= 1;

@g

@xi
=
r̂i
c
; (A.85)

where r̂i = (xi � yi)=r. Thus,

@G

@xi
= � r̂i

r2
�(g) +

1

r

r̂i
c

@

@�
�(g): (A.86)

Substituting the above into the integral equation and integrating by parts in time gives

4�H(f)�(x; t) =
Z
V

�
�

r

�
�?
dV �

Z
S

"
1

r

@�

@n
+
cos �

r2
�+

cos �

rc
_�

#
�?

dS; (A.87)

where cos � = r̂ � n.

Convective Wave Equation

The convective wave operator may be written

L =
1

c2
D2

Dt2
�r2 =

"
1

c

 
@

@t
+ u � r

!#2
�r2; (A.88)

where u is the convective uid velocity. Consider the surface, S, to be translating at constant
velocity, �U1î. In the moving frame of reference, S appears motionless and u = U1î.
Scaling space with L, a characteristic length of S, and time with L=U1, the operator becomes

L =M2

"
@

@t
+

@

@x1

#2
�r2 =M2

"
@2

@t2
+ 2

@2

@x1@t
+

@2

@x21

#
�r2: (A.89)

For constantM , the convective wave equation may be written in the form of the classical wave
equation by stretching and shifting space-time appropriately; i.e., the di�erential operator
is diagonalized by using the Prandtl-Glauert transformation (c. 1922-27),

f~x1; ~x2; ~x3g = fx1=�; x2; x3g ; (A.90)

and a temporal transformation of the form

~t = t+ �(x1); (A.91)

to eliminate the cross derivatives. Denote ~�(~x; ~t) = �(x; t), and note that

@�

@t
=

@ ~�

@~t
;

@�

@x1
=

1

�

@ ~�

@~x1
+ �0

@ ~�

@~t
: (A.92)
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Substituting the above into the wave equation gives8<
:M2

"
@~t +

 
1

�
@~x1 + �0@~t

!#2
�
 
1

�
@~x1 + �0@~t

!2

� @~x2~x2 � @~x3~x3

9=
; ~� = 0: (A.93)

Collecting like terms gives

(h
M2(1 + �0)2 � (�0)2

i
@~t~t � ~r2 +

2

�

h
M2(1 + �0)� �0

i
@~t~x1

)
~� = 0 (A.94)

The cross derivative disappears if we set

�(x1) =
M2x1
�2

: (A.95)

Denoting ~c = �=M and using ~t = t + x1=~c
2, the convective wave equation is written in

classical form "
1

~c2
@2

@~t2
� ~r2

#
~�(~x; ~t) = ~�: (A.96)

The free-space Green's function is now easily recognized in the physical dimensionless coor-
dinates as

G(x; tjy; �) = 1

4�r�
�

"
� � t +

M

�

 
r� � Mx1

�

!#
; (A.97)

where r� =
q
(x1 � y1)2=�2 + [(x3 � y3)2 + (x3 � y3)2]. In the frequency domain using � =

�̂ exp(�i!t),

G(xjy) = ei
!M
�

(r��Mx1=�)

4�r�
; (A.98)

where ! is the dimensionless frequency scaled by U1=L.
Applying the classical Kirchho� equation in Reissner space and transforming back to

physical coordinates gives

4�H(f)�(x; t) =
Z
V

"
~�

r�

#
�?

dV �
Z
S

"
1

r�

@ ~�

@~n
+
cos ~�

r2�
�+

M cos ~�

�r�
_�

#
�?

dS

�
; (A.99)

where cos ~� = ~̂r � ~n, and

� ? = t� M

�

 
r� � Mx1

�

!
: (A.100)

Note that ~f(~x) = f(x), and

d ~S = �
�
~f(~x)

�
d~x1d~x2d~x3 = � (f(x))

dx1dx2dx3
�

=
dS

�
: (A.101)
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Caution is needed in interpreting the normal vector because of the Prandtl-Glauert and
Reissner transformations. Note that

n =
rf
jrf j ; (A.102)

~n =
~rf
j ~rf j = f�n1; n2; n3g jrf jj ~rf j ; (A.103)

and that

j ~rf j
jrf j =

q
1�M2n21 (A.104)

~r~� = f�(@x1 � �0@t); @x2 ; @x3g� (A.105)

Therefore,

@ ~�

@~n
=

@�
@n
�M2n1(@t + @x1)�q

1�M2n21
; (A.106)

cos ~� = ~̂r � ~n =
r � nq

1�M2n21
=

cos �q
1�M2n21

: (A.107)

The above spatial derivative may be written in terms of a surface gradient by expressing
the unit vectors in normal and tangential components; i.e.,

î = (̂i � n)n + (̂i � t1)t1 = n1n+ t11t1; (A.108)

where,

t1 =
î� n1n

t11
=

î� n1nq
1� n21

(A.109)

Thus, the spatial derivative may be written as

@�

@x1
= î � r� = n1

@�

@n
+
q
1� n21

@�

@t1
(A.110)

Therefore,

@ ~�

@~n
=

@�
@n
(1�M2n21)�M2n1 _��M2n1

q
1� n21

@�
@t1q

1�M2n21
: (A.111)

Finally, the Kirchho� equation for a motionless surface placed in a uniform, subsonic
ow (in the x1 direction) is

4�H(f)�(x; t) =
Z
V

"
~�

r�

#
�?

dV �
Z
S

1

r�
q
1�M2n21

� (A.112)

"�
1�M2n21

� @�
@n

+
cos �
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�
�Mn1

!
M _��M2n1

q
1� n21

@�

@t1

#
�?

dS

�
:
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A.3.3 Boundary Element Method

In this appendix, a method for solving integral equations known as the Boundary Element
Method is presented. This will be done by �rst demonstrating the application of the method
on the standard Kirchho� solution to Laplace's equation given by Eq. (A.87) without the
volume integral; i.e., neglect the e�ects of the nonlinear sources and compressibility.

Divide the surface of integration into N panels such that S = fSjgNj=1. The integral
equation then becomes

4�H(f)�(x; t) =
NX
j=1

Z
Sj

"
@

@n

�
1

r

�
�� 1

r

@�

@n

#
dS; (A.113)

As in the Finite Element method, introduce a set of shape functions,  k(x), which form a
basis which can be used to describe the unknown functions through a relation of the type

�(x; t) =
PX
p=1

 p(x)�p(t): (A.114)

The shape functions are chosen such that  k(xi) = �ik for P specially chosen points on the
panel known as the collocation points. Let the set of M distinct collocation points for the
entire integration surface be denoted by fxigMi . Evaluating the integral equation at these
collocation points (where H(f) = 0:5 because f = 0 on the surface S) gives

2��(xi; t) =
N;PX
j;k=1

2
4GDijk

�jk(t)�GSijk

 
@�

@n

!
jk

3
5 dS; (A.115)

where,

GDijk
=

Z
Sj

@

@n

 
1

kxi � yk

!
 k(y)dS; (A.116)

GSijk =
Z
Sj

1

kxi � yk k(y)dS; (A.117)

are the dipole (doublet) and monopole (source) inuence tensors respectively. Equation (A.115)
can be reduced by applying NP �M constraint equations for coincident �jk where adjacent
panels share collocation points on their edges. This leavesM unknown values of � which may
be calculated by matrix inversion when the normal derivatives are known via the boundary
conditions.

Zeroth Order BEM

The simplest form of Eq. (A.115) is obtained when the unknowns are assumed constant
over each panel. This de�nes a zeroth order boundary element method where P = 1, and
 1(x) = 1 on the panel (0 elsewhere). The collocation points are chosen to be located at the
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centers of each panel. The matrix equation becomes

2��(xi; t) =
NX
j

2
4GDij

�j(t)�GSij

 
@�

@n

!
j

3
5 dS; (A.118)

GDij
=

Z
Sj

@

@n

 
1

kxi � yk

!
dS; (A.119)

GSij =
Z
Sj

1

kxi � ykdS: (A.120)

Analytical Form of Inuence Matrices

The dipole and source inuence functions are known analytically for hyperboloidal and at
panels, respectively;14,16,18 however, the analytical source inuence function may be used as
an approximation for `nearly' at hyperboloidal panels.

Consider the inuence of a single hyperboloidal surface element. Any point on the element
may be described by

r = c0 + �c1 + �c2 + ��c3; (A.121)

where (�; �) are local panel coordinates and the panel domain may be taken as �1 � � � 1
and �1 � � � 1. The coe�cient vectors for the panel may be determined by

8><
>:
c0
c1
c2
c3

9>=
>; =

1

4

2
64

1
1
1
1

1
1

�1
�1

1
�1
1

�1

1
�1
�1
1

3
75
8><
>:
p++
p+�
p�+
p��

9>=
>; ; (A.122)

where fp��;p+�;p++;p�+g are the positions of the panel corners arranged counterclockwise
as viewed from above the panel.

The inuence functions for the panel may be expressed in the form14

GDij
= ID(1; 1)� ID(�1; 1)� ID(1;�1) + ID(�1;�1); (A.123)

GSij = IS(1; 1)� IS(�1; 1)� IS(1;�1) + IS(�1;�1); (A.124)

where

ID(�; �) = tan�1

"
R� a1 �R� a2
jRjR � a1 � a2

#
; (A.125)

IS(�; �) = �R� a1
ja1j � nc sinh

�1

 
R � a1
jR� a1j

!

+R� a2
ja2j � nc sinh

�1

 
R � a2
jR� a2j

!
+Rc � ncID(�; �); (A.126)

and

R(�; �) = r� xi; (A.127)
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a1(�; �) =
@R

@�
= c1 � �c3; (A.128)

a2(�; �) =
@R

@�
= c2 � �c3; (A.129)

n(�; �) =
a1 � a2
ja1 � a2j : (A.130)

The subscript c denotes evaluation at the panel center, � = � = 0. Equation (A.126)
neglects only the derivatives of n and, hence, is valid only for approximately at panels.
Equation (A.125) is exact, however care must be taken in choosing the correct branch for
the arctangent. For at panels, the principle branch, ��=2 � tan�1 x � �=2, may be used.
Otherwise, when the inuence point, xi, lies outside of the tetrahedron de�ned by the panel
corners, the following procedure is found to work well:

s(�; �) = sign(R � a1 � a2)

S = s(1; 1) + s(1;�1) + s(�1; 1) + s(�1;�1)

IF S = 1 OR S = �1
THEN GDij

= GDij
� sign(S)

�

2
ELSE IF S = 2 OR S = �2
THEN GDij

= GDij
� sign(S)�

ELSE IF S = 3 OR S = �3
THEN GDij

= GDij
� sign(S)

�

2
(A.131)
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B Cases from [1]
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