Numerical and Scientific Computing in Python

v0.1
Spring 2019

Research Computing Services
IS & T
Running Python for the Tutorial

- If you have an SCC account, log on and use Python there.
 - Run:

    ```
    module load python/3.6.2
    spyder &
    unzip /projectnb/scv/python/NumSciPythonCode_v0.1.zip
    ```

- Note that the *spyder* program takes a while to load!
Links on the Rm 107 Terminals

- On the Desktop open the folder:

 Tutorial Files ➔ RCS_Tutorials ➔ Tutorial Files

- Copy the whole *Numerical and Scientific Computing in Python* folder to the desktop or to a flash drive.
 - When you log out the desktop copy will be deleted!
Run Spyder

- Click on the Start Menu in the bottom left corner and type: **spyder**

- After a second or two it will be found. Click to run it.

- Be patient…it takes a while to start.
Outline

- Python lists
- The numpy library
- Speeding up numpy: numba and numexpr
- Libraries: scipy and opencv
- Alternatives to Python
Python’s strengths

- Python is a general purpose language.
 - Unlike R or Matlab which started out as specialized languages

- Python lends itself to implementing complex or specialized algorithms for solving computational problems.

- It is a highly productive language to work with that’s been applied to hundreds of subject areas.
Extending its Capabilities

- However…for number crunching some aspects of the language are not optimal:
 - Runtime type checks
 - No compiler to analyze a whole program for optimizations
 - General purpose built-in data structures are not optimal for numeric calculations

- “regular” Python code is not competitive with compiled languages (C, C++, Fortran) for numeric computing.

- The solution: specialized libraries that extend Python with data structures and algorithms for numeric computing.
 - Keep the good stuff, speed up the parts that are slow!
Outline

- The numpy library

- Libraries: scipy and opencv

- When numpy / scipy isn’t fast enough
NumPy

- NumPy provides optimized data structures and basic routines for manipulating multidimensional numerical data.

- Mostly implemented in compiled C code.

- Can be used with high-speed numeric libraries like Intel’s MKL

- NumPy underlies many other numeric and algorithm libraries available for Python, such as:
 - SciPy, matplotlib, pandas, OpenCV’s Python API, and more
Ndarray – the basic NumPy data type

- NumPy ndarray’s are:
 - Typed
 - Fixed size (usually)
 - Fixed dimensionality

- An ndarray can be constructed from:
 - Conversion from a Python list, set, tuple, or similar data structure
 - NumPy initialization routines
 - Copies or computations with other ndarray’s
 - NumPy-based functions as a return value
ndarray vs list

- **List:**
 - General purpose
 - Untyped
 - 1 dimension
 - Resizable
 - Add/remove elements anywhere
 - Accessed with [] notation and integer indices

- **Ndarray:**
 - Intended to store and process (mostly) numeric data
 - Typed
 - N-dimensions
 - Chosen at creation time
 - Fixed size
 - Chosen at creation time
 - Accessed with [] notation and integer indices
List Review

- The list is the most common data structure in Python.

- Lists can:
 - Have elements added or removed
 - Hold any type of thing in Python – variables, functions, objects, etc.
 - Be sorted or reversed
 - Hold duplicate members
 - Be accessed by an index number, starting from 0.

- Lists are easy to create and manipulate in Python.

```python
# Make a list
x = []

# Add something to it
x.append(1)
x.append([2, 3, 4])

print(x)
---> [1, [2, 3, 4]]
```
List Review

<table>
<thead>
<tr>
<th>Operation</th>
<th>Syntax</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indexing – starting from 0</td>
<td>$x[0] \rightarrow \text{‘a’}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$x[1] \rightarrow \text{‘b’}$</td>
<td></td>
</tr>
<tr>
<td>Indexing backwards from -1</td>
<td>$x[-1] \rightarrow 3.14$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$x[-3] \rightarrow \text{‘a’}$</td>
<td></td>
</tr>
<tr>
<td>Slicing</td>
<td>$x\text{[start:end:incr]}$</td>
<td>Slicing produces a COPY of the original list!</td>
</tr>
<tr>
<td></td>
<td>$x[0:2] \rightarrow [\text{‘a’}, \text{‘b’}]$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$x[-1:-3:-1] \rightarrow [3.14, \text{‘b’}]$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$x[:] \rightarrow [\text{‘a’}, \text{‘b’}, 3.14]$</td>
<td></td>
</tr>
<tr>
<td>Sorting</td>
<td>$x.sort() \rightarrow \text{in-place sort}$</td>
<td>Depending on list contents a sorting function might be req’d</td>
</tr>
<tr>
<td></td>
<td>$\text{sorted}(x) \rightarrow \text{returns a new sorted list}$</td>
<td></td>
</tr>
<tr>
<td>Size of a list</td>
<td>$\text{len}(x)$</td>
<td></td>
</tr>
</tbody>
</table>
List Implementation

- A Python list mimics a *linked list* data structure
 - It’s implemented as a resizable array of pointers to Python objects for performance reasons.

\[x = ['a', 'b', 3.14] \]

- \(x[1] \rightarrow \) get the pointer at index 1 \(\rightarrow \) resolve pointer to the Python object in memory \(\rightarrow \) get the value from the object
NumPy ndarray

- The basic data type is a class called `ndarray`.
- The object has:
 - a data that describes the array (data type, number of dimensions, number of elements, memory format, etc.)
 - contiguous array in memory containing the data.

- `y[1] -> check the ndarray data type -> retrieve the value at offset 1 in the data array`

```python
import numpy as np
# Initialize a NumPy array
# from a Python list
y = np.array([1,2,3])
```

Values are physically adjacent in memory

[Data description](https://docs.scipy.org/doc/numpy/reference/arrays.html)
Every ndarray has a *dtype*, the *type of data* that it holds.

This is used to interpret the block of data stored in the ndarray.

Can be assigned at creation time:

Conversion from one type to another is done with the `astype()` method:
Ndarray memory notes

- The memory allocated by an ndarray:
 - Storage for the data: $N \text{ elements } \times \text{ bytes-per-element}$
 - 4 bytes for 32-bit integers, 8 bytes for 64-bit floats (doubles), 1 byte for 8-bit characters etc.
 - A small amount of memory is used to store info about the ndarray (~few dozen bytes)

- Data storage is compatible with external libraries
 - C, C++, Fortran, or other external libraries can use the data allocated in an ndarray directly without any conversion or copying.
ndarray from numpy initialization

- There are a number of initialization routines. They are mostly copies of similar routines in Matlab.
- These share a similar syntax:

  ```
  function([size of dimensions list], opt. dtype...)
  ```

 - zeros – everything initialized to zero.
 - ones – initialize elements to one.
 - empty – do not initialize elements
 - identity – create a 2D array with ones on the diagonal and zeros elsewhere
 - full – create an array and initialize all elements to a specified value

- Read the docs for a complete list and descriptions.
ndarray from a list

- The numpy function `array` creates a new array from any data structure with array like behavior (other ndarrays, lists, sets, etc.)
- Read the docs!

- Creating an ndarray from a list does not change the list.

- Often combined with a reshape() call to create a multi-dimensional array.

- Open the file `ndarray_basics.py` in Spyder so we can check out some examples.

```python
x = [1, 2, 3]
y = np.array(x)
```
The memory layout (C or Fortran order) can be set:

- This can be important when dealing with external libraries written in R, Matlab, etc.

- Row-major order: C, C++, Java, C#, and others

- Column-major order: Fortran, R, Matlab, and others

X = np.ones([3, 5], order='F')
OR...
Y is C-ordered by default
Y = np.ones([3, 5])
Z is a F-ordered copy of Y
Z = np.asfortranarray(Y)

https://en.wikipedia.org/wiki/Row-and_column-major_order
ndarray indexing

- ndarray indexing is similar to Python lists, strings, tuples, etc.

- Index with integers, starting from zero.

- Indexing N-dimensional arrays, just use commas:

  ```python
  array[i,j,k,1] = 42
  ```

```python
oneD = np.array([1,2,3,4])
twoD = oneD.reshape([2,2])

twoD ➔ array([[1, 2],
               [3, 4]])

# index from 0
oneD[0] ➔ 1
oneD[3] ➔ 4

# -index starts from the end
oneD[-1] ➔ 4
oneD[-2] ➔ 3

# For multiple dimensions use a comma
# matrix[row,column]
twoD[0,0] ➔ 1
twoD[1,0] ➔ 3
```
ndarray slicing

- Syntax for each dimension (same rules as lists):
 - `start:end:step`
 - `start:` → from starting index to end
 - `:end` → start from 0 to end (exclusive of end)
 - `:` → all elements.
- Slicing an ndarray does **not** make a copy, it creates a view to the original data.
- Slicing a Python list creates a copy.

```python
y = np.arange(50, 300, 50)
y --> array([ 50, 100, 150, 200, 250])

y[0:3] --> array([ 50, 100, 150])
y[-1:-3:-1] --> array([250, 200])

x = np.arange(10, 130, 10).reshape(4, 3)
x --> array([[ 10,  20,  30],
             [ 40,  50,  60],
             [ 70,  80,  90],
             [100, 110, 120]])

# 1-D returned!
x[:,0] --> array([ 10, 40, 70, 100])
# 2-D returned!
x[2:4,1:3] --> array([[ 80,  90],
                     [110, 120]])
``
ndarray math

- By default operators work element-by-element
- These are executed in compiled C code.

```python
a = np.array([1,2,3,4])
b = np.array([4,5,6,7])
c = a / b
c is an ndarray
print(type(c)) # <class 'numpy.ndarray'>

a * b # array([4, 10, 18, 28])
a + b # array([5, 7, 9, 11])
a - b # array([-3, -3, -3, -3])
a / b # array([0.25, 0.4, 0.5, 0.57142857])
-2 * a + b # array([2, 1, 0, -1])
```
Vectors are applied row-by-row to matrices.

The length of the vector must match the width of the row.

```
a = np.array([2,2,2,2])
c = np.array([[1,2,3,4],
 [4,5,6,7],
 [1,1,1,1],
 [2,2,2,2]])
a + c
```
Linear algebra multiplication

- Vector/matrix multiplication can be done using the `dot()` and `cross()` functions.

- There are many other linear algebra routines!

---

```plaintext
a = [[1, 0], [0, 1]]
b = np.array([[4, 1], [2, 2]])
np.dot(a, b) ➞ array([[4, 1],
 [2, 2]])
```

```plaintext
x = [1, 2, 3]
y = [4, 5, 6]
np.cross(x, y) ➞ array([-3, 6, -3])
```

[https://docs.scipy.org/doc/numpy/reference/routines.linalg.html](https://docs.scipy.org/doc/numpy/reference/routines.linalg.html)
NumPy I/O

- When reading files you can use standard Python, use lists, allocate ndarrays and fill them.

- Or use any of NumPy’s I/O routines that will directly generate ndarrays.

- The best way depends on the structure of your data.

- If dealing with structured numeric data (tables of numbers, etc.) NumPy is easier and faster.

- Docs: [https://docs.scipy.org/doc/numpy/reference/routines.io.html](https://docs.scipy.org/doc/numpy/reference/routines.io.html)
A numpy and matplotlib example

- `numpy_matplotlib_fft.py` is a short example on using numpy and matplotlib together.
- Open `numpy_matplotlib_fft.py`
- Let’s walk through this…
Numpy docs

- As numpy is a large library we can only cover the basic usage here.

- Let’s look that the official docs:
  https://docs.scipy.org/doc/numpy/reference/index.html

- As an example, computing an average:
  https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html#numpy.mean
Some numpy file reading options

- .npz and .npy file formats (cross-platform compatible):
  - .npy files store a single NumPY variable in a binary format.
  - .npz files store multiple NumPy Variables in a file.

- h5py is a library that reads HDF5 files into ndarrays

- The I/O routines allow for flexible reading from a variety of text file formats

```python
numpy.save # save .npy
numpy.savez # save .npz
ditto, with compression
numpy.savez_compressed

numpy.load # load .npy
numpy.loadz # load .npz
```

Tutorial:
[https://docs.scipy.org/doc/numpy/user/basics.io.html](https://docs.scipy.org/doc/numpy/user/basics.io.html)
Outline

- The numpy library

- Libraries: scipy and opencv

- When numpy / scipy isn’t fast enough
SciPy

- SciPy builds on top of NumPy.
- Ndarrays are the basic data structure used.
- Libraries are provided for:
  - comparable to Matlab toolboxes.

- Comparable to Matlab toolboxes.
- physical constants and conversion factors
- hierarchical clustering, vector quantization, K-means
- Discrete Fourier Transform algorithms
- numerical integration routines
- interpolation tools
- data input and output
- Python wrappers to external libraries
- linear algebra routines
- miscellaneous utilities (e.g. image reading/writing)
- various functions for multi-dimensional image processing
- optimization algorithms including linear programming
- signal processing tools
- sparse matrix and related algorithms
- KD-trees, nearest neighbors, distance functions
- special functions
- statistical functions
scipy.io

- I/O routines support a wide variety of file formats:

<table>
<thead>
<tr>
<th>Software</th>
<th>Format name</th>
<th>Read?</th>
<th>Write?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matlab</td>
<td>.mat</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IDL</td>
<td>.sav</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Matrix Market</td>
<td>.mm</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Netcdf</td>
<td>.nc</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Harwell-Boeing (sparse matrices)</td>
<td>.hb</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Unformatted Fortran files</td>
<td>.anything</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Wav (sound)</td>
<td>.wav</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Arff (Attribute-Relation File Format)</td>
<td>.arff</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
**scipy.integrate**

- Routines for numerical integration

- With a function object:
  - quad: uses the Fortran QUADPACK algorithm
  - romberg: Romberg algorithm
  - newton_cotes: Newton-Cotes algorithm
  - And more…

- With fixed samples:
  - trapz: Trapezoidal rule
  - simps: Simpson’s rule

https://en.wikipedia.org/wiki/Trapezoidal_rule
scipy.integrate

- Open `integrate.py` and let’s look at examples of fixed samples and function object integration.

- `trapz` docs: https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.trapz.html#scipy.integrate.trapz

- `romberg` docs. Passing functions as arguments is a common pattern in SciPy: https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.romberg.html#scipy.integrate.romberg
Using SciPy

- Think about your code and what sort of algorithms you’re using:
  - Integration, linear algebra, image processing, etc.

- See if an appropriate algorithm exists in SciPy before trying to write your own.

- Read the docs – many functions have large numbers of optional arguments.

- Understand the algorithms!
OpenCV

- The Open Source Computer Vision Library
- Highly optimized and mature C++ library usable from C++, Java, and Python.
- Cross platform: Windows, Linux, Mac OS X, iOS, Android

- Image Processing
- Image file reading and writing
- Video I/O
- High-level GUI
- Video Analysis
- Camera Calibration and 3D Reconstruction
- 2D Features Framework
- Object Detection
- Deep Neural Network module
- Machine Learning
- Clustering and Search in Multi-Dimensional Spaces
- Computational Photography
- Image stitching
OpenCV vs SciPy

- For imaging-related operations and many linear algebra functions there is a lot of overlap between these two libraries.
- OpenCV is frequently faster, sometimes significantly so.
- The OpenCV Python API uses NumPy ndarrays, making OpenCV algorithms compatible with SciPy and other libraries.
OpenCV vs SciPy

- A simple benchmark: Gaussian and median filtering a [1024x671 pixel image of the CAS building.](#)
- Gaussian: radius 5, median: radius 9.
- Timing: 2.4 GHz Xeon E5-2680 (Sandybridge)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Function</th>
<th>Time (msec)</th>
<th>OpenCV speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian</td>
<td>scipy.ndimage.gaussian_filter</td>
<td>85.7</td>
<td>3.7x</td>
</tr>
<tr>
<td>Gaussian</td>
<td>cv2.GaussianBlur</td>
<td>23.2</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>scipy.ndimage.median_filter</td>
<td>1,780</td>
<td>22.5x</td>
</tr>
<tr>
<td>Median</td>
<td>cv2.medianBlur</td>
<td>79.2</td>
<td></td>
</tr>
</tbody>
</table>
When NumPy and SciPy aren’t fast enough

- Auto-compile your Python code with the numba and numexpr libraries
- Use the Intel Python distribution
- Re-code critical paths with Cython
- Combine your own C++ or Fortran code with SWIG and call from Python
numba

- The numba library can translate portions of your Python code and compile it into machine code on demand.

- Achieves a significant speedup compared with regular Python.

- Compatible with numpy ndarrays.

- Can generate code to execute automatically on GPUs.
numba

- The @jit decorator is used to indicate which functions are compiled.
- Options:
  - GPU code generation
  - Parallelization
  - Caching of compiled code
- Can produce faster array code than pure NumPy statements.

```python
from numba import jit

This will get compiled when it's first executed
@jit
def average(x, y, z):
 return (x + y + z) / 3.0

With type information this one gets compiled when the file is read.
@jit (float64(float64, float64, float64))
def average_eager(x, y, z):
 return (x + y + z) / 3.0
```
numexpr

- Another acceleration library for Python.
- Useful for speeding up specific ndarray expressions.
  - Typically 2-4x faster than plain NumPy
- Code needs to be edited to move ndarray expressions into the numexpr.evaluate function:

```python
import numpy as np
import numexpr as ne

a = np.arange(10)
b = np.arange(0, 20, 2)

c = 2 * a + 3 * b

d = ne.evaluate("2*a+3*b")
```
Intel Python

- Intel now releases a customized build of Python 2.7 and 3.6 based on their optimized libraries.

- Can be installed stand-alone or inside of Anaconda: https://software.intel.com/en-us/distribution-for-python

- Available on the SCC: module avail python2-intel (or python3-intel)
Intel Python

- In RCS testing on various projects the Intel Python build is always at least as fast as the regular Python and Anaconda modules on the SCC.
  - In one case involving processing several GB’s of XML code it was 20x faster!

- Easy to try: change environments in Anaconda or load the SCC module.

- Can use the Intel Thread Building Blocks library to improve multithreaded Python programs:

  python -m tbb parallel_script.py
Cython

- **Cython** is a superset of the Python language.

- The additional syntax allows for C code to be auto-generated and compiled from Python code.

- This can make mixing Python, Cython, and C code (or libraries) very straightforward.

- A mature library that is widely used.
You feel the need for speed…

- Auto-compilation systems like numba, numexpr, and Cython:
  - all provide access to higher speed code
  - minimal to significant code changes
  - You’re still working in Python or Python-like code
  - Faster than NumPy which is also much faster than plain Python for numeric calculation

- For the fastest implementation of algorithms, optimized and well-written C, C++, and Fortran codes cannot be beat
  - In most cases.

- You can write your own compiled code and link it into Python via Cython or the SWIG tool. Contact RCS for help!