Containerizing Linux
Applications

ERIK HEMDAL

About me. . .

Adjunct Instructor / Software Engineering / Brandeis University

Graduate Professional Studies Division in the Rabb School

During the day. . .

Senior Support Specialist for InterSystems Corporation in Cambridge
° InterSystems IRIS Data Platform

> Cache’ database system
° Ensemble integration engine
° HealthShare unified health-record software

Outline

Docker Basics

Docker “Mental Model”
DevOps concepts

Levels of security
° Infrastructure

o Build-time
o Runtime

VMs vs. Containers

Virtual machines (VMs) emulate server hardware, on which you can install a “guest” operating
system and your applications.

Containers virtualize the OS and allow you to run many images using a common OS.

Container IMAGES package individual applications and their dependencies into portable artifacts
that can be run on any compatible operating system.

Hello World!

This shows that Docker is
running and describes its
data flow -=>

ehemdal@localhost:~ - | o

File Edit View Search Terminal Help

[ehemdal@localhost ~]% docker run -it hello-world

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

Obb5a5d456la: Pull complete

Digest: sha256:3el764d0f546ceacd565547df2ac4907fed6T007ea2297fd7ef2718514bcec35d
Status: Downloaded newer image Tor hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:

1. The Docker client contacted the Docker daemon.

2. The Docker daemon pulled the "hello-world"” image from the Docker Hub.
(amdb4d)

3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.

4. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
% docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/engine/userguide/

[ehemdal@localhost ~]%

“Mental Model”: Container vs. VM

CONTAINER VM

App A App B App C App A App B App C

Bins/Libs Bins/Libs Bins/Libs Bins/Libs Bins/Libs Bins/Libs

Guest OS Guest OS Guest OS
Docker ._ _

Host OS Hypervisor

Infrastructure Infrastructure

Image from https://docs.docker.com/get-started/#prepare-your-docker-environment

Docker container from OS level

@4189a01b86b:/ OS:
7File Edit View Search Terminal Help PID 1' |n|t (SyStemd)
[ehemdal@localhost docker-myrand]$ docker run -it centos (jEEEETT]()r1
[root@418f9a01b86b /]# ps -ef .
uIb PID PPID C STIME TTY TIME CMD PID 29338 DOCker
root 1 0 0 19:03 pts/0 00:00:00 /bin/bash (jEBEETT1()r1

root 13 1 0 19:09 pts/@ 00:00:00 ps -ef
[root@418f9a01b86b /1# []

PID 29342: Containerd
daemon (runtime)
PID 4774: Container shim

ehemdal@localhost:~

File Edit View Search Terminal Help

ehemdal 4713 8075 © 15:03 pts/0@ 00:00:00 docker run -it centos process
root 4774 29342 0 15:03 ? 00:00:00 docker-containerd-shim -namespace moby -workdir /var/lib/docker/containe . .
rd/daemon/io.containerd. runtime.v1.linux/moby/4189a01b86bbe9dbfe5883a41dc2070dbad4647d272c59c210a9642da3717333 -address PID 4713: Docker client
/var/run/docker/containerd/docker-containerd.sock -containerd-binary /usr/bin/docker-containerd -runtime-root /var/run/d r] ”
ocker/runtime-runc (fT]\/ she)

5049 4938 0 15:11 pts/2 00:00:00 grep --color=auto docker . .

29338 1 111:04 ? 00:03:30 /usr/bin/dockerd Container:

29342 29338 0 11:04 ? 00:00:20 docker-containerd --config /var/run/docker/containerd/containerd.toml

PID 1: ENTRYPOINT shell
PID 13: My command

[ehemdal@localhost ~]$ []

Basics (1 of 3): Simple Dockerfile

ehemdal@localhost:~/docker-myrand =

File Edit View Search Terminal Help

Base image; coerce to Cent0S 7.5

FROM centos:7.5.1804

MAINTAINER ehemdal@brandeis.edu

Force to use GCC 4.8.5-28 and latest make

Build the code from source

COPY ./myrand.c /app/myrand.c

RUN yum -y install gcc-4.8.5-28.el7 5.1.x86 64 make && \
cd /app && make myrand && N\
yum -y remove gcc make cpp glibc-devel

glibc-headers kernel-headers Llibgomp Llibmpc mpfr && \

rm fapp/myrand.c

ENV VAL=1

ENTRYPOINT /app/myrand $VAL

Basics (2 of 3): Build the image

ehemdal@localhost:~/docker-myrand - u] x

File Edit View Search Terminal Help
[ehemdal@localhost docker-myrand]$ docker build -t myrand .Jj

This creates a Docker image containing my RNG. It takes as argument the number of random
numbers to produce. The —t option tags the image with a convenient name.

Basics (3 of 3):
Run the image in a container

ehemdal@localhost:~ /¢

File Edit View Search Terminal Help
[ehemdal@localhost docker-myrand]$ docker run --rm -ite VAL=5 myrand

1124951709

2114696051

1454090131

592994285

064515335

[ehemdal@localhost docker-myrand]$ docker run --rm -1t myrand

092595963
[ehemdal@localhost docker-myrand]$ l

DevOps Concepts

Immutable Infrastructure: Don’t make changes in LIVE environment
> Update the Dockerfile and rebuild in DEV
> Test the new container image in QA
> Stop the old and start the new container in LIVE

Shift Left: DevOps concept to make changes early in the development pipeline
This pushes responsibility for security “leftward” and into the hands of developers

Infrastructure-as-code: The Dockerfile describes how to build your container images and can be
version-controlled.

System Drift: “It works on my machine!”: Containers allow you to prevent system drift.

Container isolation and security

Things to notice
> The container is run from a shim process at OS level

> The container terminates if | kill the Docker daemon or the shim job

“Containerize Everything!” Sure! Privileged access at OS level exposes the containers to this kind
of misbehavior.

Remember that containerized applications still can invoke syscalls at OS level. The isolation isn’t
as complete as what is provided by virtual machines.

Three fundamental levels of security: Infrastructure security, Build-time security, Runtime
security

Infrastructure security

You are still running an operating system, so the basics still apply

Firewalls

OS patching

SELinux for Linux hosts
Logging/monitoring
Etc.

Build-time security: Image size

In general, try to make images as small as possible, with as few packages/dependencies as
possible.

For example, if you don’t need an editor, don’t include it

Small images -> smaller attack surface and smaller resource usage (running out of disk)
Remove packages that are only needed at build time

Chain RUN commands (as in the example)

Pick the right base image: a pre-built image for Ruby, Go, Python, etc. might be better for you
than starting with a tiny image (like alpine) and adding dependencies

Balance size against flexibility: do you need diagnostic tools, shells, etc.?

Build-time security: Provenance of the
Image

Where did your base image come from?
> Motivation for Docker Trusted Registries, Notary (cryptographically-signed images)

> According to BanyanOps (container and virtualization startup), 30% of official images on Docker Hub contain known vulnerabilities
(https://banyanops.com/blog/analyzing-docker-hub/).

Where do your dependencies come from? Are they vulnerable?

Scannelrs are available that can integrate with your Cl pipeline and abort a build if vulnerable components are included.
Examples:

Black Duck Software: https://www.blackducksoftware.com/

Clair Scanner: https://github.com/arminc/clair-scanner

Agua: https://www.aguasec.com/use-cases/continuous-image-assurance/

Developers now drive security
> In LIVE environment, a patched OS is not enough if the container image brings in vulnerabilities
> QOperations staff needs to collaborate with development

https://banyanops.com/blog/analyzing-docker-hub/
https://www.blackducksoftware.com/
https://github.com/arminc/clair-scanner
https://www.aquasec.com/use-cases/continuous-image-assurance/

Runtime Security

Control the containers you will allow to run in your environment

Container affinity: Run “sensitive” containers on specific hosts or specific cores for further
isolation

Keep your environment “clean”. Remove obsolete containers (docker image prune/docker system
prune). Similar idea to removing old config files and back-rev scripts that might be lying around in

working directories.

Watch for defaults: default passwords; open ports for applications and dashboards.

Options (CPU) for docker run

--cap-add list Add Linux capabilities
-—cap-drop list Drop Linux capabilities
--cgroup-parent string Optional parent cgroup for the container
--cidfile string Write the container ID to the file
—--cpu-period int Limit CPU CFS (Completely Fair Scheduler) period
--cpu-quota int Limit CPU CFS (Completely Fair Scheduler) quota
-—-cpu-rt-period int Limit CPU real-time period in microseconds
—-—-cpu-rt-runtime int Limit CPU real-time runtime in microseconds

-c, —--cpu-shares int CPU shares (relative weight)
-—-cpus decimal Number of CPUs
—--cpuset-cpus string CPUs in which to allow execution (0-3, 0,1)

Options (I/0O) for docker run

--device-read-bps list

Limit read rate (bytes per second) from a device (default [])
--device-read-iops list

Limit read rate (IO per second) from a device (default [])
-—-device-write-bps list

Limit write rate (bytes per second) to a device (default [])
--device-write-iops list

Limit write rate (IO per second) to a device (default [])
--disable-content-trust

Skip image verification (default true)

Options (Health check)
for docker run

--health-cmd string

Command to run to check health
--health-interval duration

Time between running the check (ms|s|m|h) (default 0s)
--health-retries int

Consecutive failures needed to report unhealthy

Options (Memory) for docker run

-m, —--memory bytes Memory limit

--memory-reservation bytes Memory soft limit
--memory-swap bytes

Swap limit equal to memory plus swap
--memory-swappiness int

Tune container memory swappiness (0 to 100)
-—oom-kill-disable=false

Whether to disable OOM Killer for the container or not.

Options (Memory) for docker run

--storage-opt list

Storage driver options for the container
--sysctl map

Sysctl options (default mapl[])
--—ulimit ulimit

Ulimit options (default [])
-u, --user string

Username or UID (format: <name|uid>[:<group|gid>])

