
Containerizing Linux
Applications
ERIK HEMDAL

About me. . .
Adjunct Instructor / Software Engineering / Brandeis University

Graduate Professional Studies Division in the Rabb School

During the day. . .

Senior Support Specialist for InterSystems Corporation in Cambridge
◦ InterSystems IRIS Data Platform

◦ Cache‘ database system

◦ Ensemble integration engine

◦ HealthShare unified health-record software

Outline
Docker Basics

Docker “Mental Model”

DevOps concepts

Levels of security
◦ Infrastructure

◦ Build-time

◦ Runtime

VMs vs. Containers
Virtual machines (VMs) emulate server hardware, on which you can install a “guest” operating
system and your applications.

Containers virtualize the OS and allow you to run many images using a common OS.

Container IMAGES package individual applications and their dependencies into portable artifacts
that can be run on any compatible operating system.

Hello World!

This shows that Docker is
running and describes its
data flow -

“Mental Model”: Container vs. VM

Image from https://docs.docker.com/get-started/#prepare-your-docker-environment

Docker container from OS level
OS:
PID 1: init (systemd)
daemon
PID 29338: Docker
daemon
PID 29342: Containerd
daemon (runtime)
PID 4774: Container shim
process
PID 4713: Docker client
(my shell)
Container:
PID 1: ENTRYPOINT shell
PID 13: My command

Basics (1 of 3): Simple Dockerfile

Basics (2 of 3): Build the image

This creates a Docker image containing my RNG. It takes as argument the number of random
numbers to produce. The –t option tags the image with a convenient name.

Basics (3 of 3):
Run the image in a container

DevOps Concepts
Immutable Infrastructure: Don’t make changes in LIVE environment

◦ Update the Dockerfile and rebuild in DEV

◦ Test the new container image in QA

◦ Stop the old and start the new container in LIVE

Shift Left: DevOps concept to make changes early in the development pipeline

This pushes responsibility for security “leftward” and into the hands of developers

Infrastructure-as-code: The Dockerfile describes how to build your container images and can be
version-controlled.

System Drift: “It works on my machine!”: Containers allow you to prevent system drift.

Container isolation and security
Things to notice

◦ The container is run from a shim process at OS level

◦ The container terminates if I kill the Docker daemon or the shim job

“Containerize Everything!” Sure! Privileged access at OS level exposes the containers to this kind
of misbehavior.

Remember that containerized applications still can invoke syscalls at OS level. The isolation isn’t
as complete as what is provided by virtual machines.

Three fundamental levels of security: Infrastructure security, Build-time security, Runtime
security

Infrastructure security
You are still running an operating system, so the basics still apply

Firewalls

OS patching

SELinux for Linux hosts

Logging/monitoring

Etc.

Build-time security: Image size
In general, try to make images as small as possible, with as few packages/dependencies as
possible.

For example, if you don’t need an editor, don’t include it

Small images -> smaller attack surface and smaller resource usage (running out of disk)

Remove packages that are only needed at build time

Chain RUN commands (as in the example)

Pick the right base image: a pre-built image for Ruby, Go, Python, etc. might be better for you
than starting with a tiny image (like alpine) and adding dependencies

Balance size against flexibility: do you need diagnostic tools, shells, etc.?

Build-time security: Provenance of the
image
Where did your base image come from?

◦ Motivation for Docker Trusted Registries, Notary (cryptographically-signed images)

◦ According to BanyanOps (container and virtualization startup), 30% of official images on Docker Hub contain known vulnerabilities
(https://banyanops.com/blog/analyzing-docker-hub/).

Where do your dependencies come from? Are they vulnerable?

Scanners are available that can integrate with your CI pipeline and abort a build if vulnerable components are included.
Examples:

Black Duck Software: https://www.blackducksoftware.com/

Clair Scanner: https://github.com/arminc/clair-scanner

Aqua: https://www.aquasec.com/use-cases/continuous-image-assurance/

Developers now drive security
◦ In LIVE environment, a patched OS is not enough if the container image brings in vulnerabilities

◦ Operations staff needs to collaborate with development

https://banyanops.com/blog/analyzing-docker-hub/
https://www.blackducksoftware.com/
https://github.com/arminc/clair-scanner
https://www.aquasec.com/use-cases/continuous-image-assurance/

Runtime Security
Control the containers you will allow to run in your environment

Container affinity: Run “sensitive” containers on specific hosts or specific cores for further
isolation

Keep your environment “clean”. Remove obsolete containers (docker image prune/docker system
prune). Similar idea to removing old config files and back-rev scripts that might be lying around in
working directories.

Watch for defaults: default passwords; open ports for applications and dashboards.

Options (CPU) for docker run
--cap-add list Add Linux capabilities

--cap-drop list Drop Linux capabilities

--cgroup-parent string Optional parent cgroup for the container

--cidfile string Write the container ID to the file

--cpu-period int Limit CPU CFS (Completely Fair Scheduler) period

--cpu-quota int Limit CPU CFS (Completely Fair Scheduler) quota

--cpu-rt-period int Limit CPU real-time period in microseconds

--cpu-rt-runtime int Limit CPU real-time runtime in microseconds

-c, --cpu-shares int CPU shares (relative weight)

--cpus decimal Number of CPUs

--cpuset-cpus string CPUs in which to allow execution (0-3, 0,1)

Options (I/O) for docker run
--device-read-bps list

Limit read rate (bytes per second) from a device (default [])

--device-read-iops list

Limit read rate (IO per second) from a device (default [])

--device-write-bps list

Limit write rate (bytes per second) to a device (default [])

--device-write-iops list

Limit write rate (IO per second) to a device (default [])

--disable-content-trust

Skip image verification (default true)

Options (Health check)
for docker run

--health-cmd string

Command to run to check health

--health-interval duration

Time between running the check (ms|s|m|h) (default 0s)

--health-retries int

Consecutive failures needed to report unhealthy

Options (Memory) for docker run
-m, --memory bytes Memory limit

--memory-reservation bytes Memory soft limit

--memory-swap bytes

Swap limit equal to memory plus swap

--memory-swappiness int

Tune container memory swappiness (0 to 100)

--oom-kill-disable=false

Whether to disable OOM Killer for the container or not.

Options (Memory) for docker run
--storage-opt list

Storage driver options for the container

--sysctl map

Sysctl options (default map[])

--ulimit ulimit

Ulimit options (default [])

-u, --user string

Username or UID (format: <name|uid>[:<group|gid>])

