


Tutorial Outline: Part 3

= [ntro to the Standard Template Library
= Class inheritance

= Public, private, and protected access
= Virtual functions

BOSTON
UNIVERSITY



The Standard Template Library

= The STL is a large collection of containers and algorithms that are part of
C++.

= |t provides many of the basic algorithms and data structures used in computer science.

= As the name implies, it consists of generic code that you specialize as
needed.

= The STL is:
= Well-vetted and tested.
= Well-documented with lots of resources available for help.

BOSTON
UNIVERSITY



Containers

= There are 16 types of containers in the STL.:

array 1D list of elements. Unique collection in a specific
vector 1D list of elements Sl

multiset Elements stored in a specific
deque Double ended queue order, can have duplicates.
forward_list Linked list map Key-value storage in a specific
list Double-linked list order
stack Last-in. first-out list multimap Like a map but values can

’ ' have the same key.
queue First-in, first-out list. unordered_set Same as set, sans ordering
. t : : :
RICATEEE Ils elemenals always the unordered_multiset Same as multisetset, sans
argest in the container ordering
unordered_map Same as map, sans ordering
unordered_multimap Same as multimap, sans

BOSTON - .
ordering



Algorithms

= There are 85+ of these.
= Example: find, count, replace, sort, is_sorted, max, min, binary_search, reverse

= Algorithms manipulate the data stored in containers but is not tied to STL containers
= These can be applied to your own collections or containers of data

= Example:
vector<int> v (3); // Declare a vector of 3 elements.
v[0] = 7;
v[1l] = 3;
v[2] = v[0] + Vv[1]; // v[0] == 7, v[l] == 3, v[2] == 10
reverse (v.begin(), v.end()) ; // v[0] == 10, v[1l] == 3, v[2] == 7

= The implementation is hidden and the necessary code for reverse() is generated from
templates at compile time.

BOSTON
UNIVERSITY



vector<T>

= A very common and useful class in C++ is the vector class. Access it with:

#include <vector>

= Vector has many methods:
= Various constructors
= Ways to iterate or loop through its contents
= Copy or assign to another vector
= Query vector for the number of elements it contains or its backing storage size.

= Example usage: vector<float> my vec ;

°
14

= Or: vector<float> my wvec (50)

BOSTON
UNIVERSITY



vector<T>

= Hidden from the programmer is the backing store
= Object oriented design in action!

This is how the vector stores its data internally.

Allocated for a total of M’

| elements
Add some more to the vector [ \
\ Y J
Contains N elements. Given by size() method. New memory Is allpcated.
Old data is copied in.

| . J New M > old M.

Allocated for a total of M o

elements e Old allocation is destroyed.

Given by capacity() method.

BOSTON
UNIVERSITY



N
Destructors

= vector<t> can hold objects of any type:

= Primitive (aka basic) types: int, float, char, etc.

= Objects: string, your own classes, file stream objects (ex. ostream), etc.
= Pointers: int*, string*, etc.

= But NOT references!

= When a vector is destroyed:

= |f it holds primitive types or pointers it just deallocates its backing store.
= [f it holds objects it will call each object’s destructor before freeing its backing store.

BOSTON
UNIVERSITY



vector<t> with objects

// a vector with memory preallocated to
// hold 1000 objects.

= Select an object in a vector. vector<MyClass> my_vec(1000);

= The members and methods can be // Now make a vector with 1000 MyClass objects
d di il // that are initialized using the MyClass constructor
accesse irec y vector<MyClass> my vec2(1000,MyClass(argl,arg2)) ;
_ // Access an object's method.
= Elements can be accessed with my_vec2[100].some_method() ;
: : // Or a member
brackets and an integer starting ny vec2[10] .member integer = 100 ;

from O.

// Clear out the entire vector

my vecZ.clear()

// but that might not re-set the backing store..

// Let’s check the docs:

// http://www.cplusplus.com/reference/vector/vector/clear/

BOSTON
UNIVERSITY


http://www.cplusplus.com/reference/vector/vector/clear/

for (int index = 0 ; index < vec.size() ; ++index)

{
// ++index means "add 1 to the value of index"
cout << vec[index] << " " ;

= Loop with a “for” loop, referencing the value of vec using brackets.
= 1sttime through:

= index=0
=  Print value at vec|0]
= index gets incremented by 1

= 2nd time through:
= Index=1
= Etc

= After last time through
= Index now equal to vec.size()
= Loop exits
= Careful! Using an out of range index will likely cause a memory error that crashes your
program.

Looping

BOSTON
UNIVERSITY



lterators \ v.begin () +2

v.begin () > V[O] V[l] V[Z] — v.end ()

= |terators are generalized ways of keeping track of positions in a container.
= 3 types: forward iterators, bidirectional, random access

= Forward iterators can only be incremented (as seen here)

= Bidirectional can be added or subtracted to move both directions

= Random access can be used to access the container at any location

BOSTON
UNIVERSITY



for (vector<int>::iterator itr = vec.begin(); itr !'= vec.end() ,; ++itr)

{
cout << *itr << " " ;

// iterators are pointers!

= Loop with a “for” loop, referencing the value of vec using an iterator type.
" vector<int>::iterator IS atype that iterates through a vector of int’s.

= 1sttime through:
= |tr points at 15t element in vec
= Print value pointed at by itr: *itr
= jtr is incremented to the next element in the vector

= |terators are very useful C++ concepts. They work on any STL container!
= No need to worry about the # of elements!

= Exact iterator behavior depends on the type of container but they are guaranteed to always
reach every value.

Looping

BOSTON
UNIVERSITY



for (auto itr = vec.begin() ; itr !'= vec.end() ; ++itr)

{
cout << *jitr << " "

= Let the auto type asks the C++ compiler to figure out the iterator type automatically.

for (auto itr = vec.begin(), auto vec end = vec.end() ; itr != vec end ; ++itr)

{
cout << *itr << " " ;

Looping

= An extra modification: Assigning the vec_end variable avoids calling vec.end() on every loop.

BOSTON
UNIVERSITY



for (const auto &element : wvec)

{
cout << element <« " " ;

}

= Another iterator-based loop: iterator behavior and accessing an element are handled
automatically by the compiler

= Uses a reference so the element is not copied.
= The const auto & prevents changes to the element in the vector.
= |f you don’t use const then the loop can update the vector elements via the reference.

Looping

= Less typing == less chance for program bugs.

BOSTON
UNIVERSITY



Ilterator notes

= There is small performance penalty for using iterators...but are they safer to use.
= They allow substitution of one container for another (list<> for vector<>, etc.)
= With templates you can write a function that accepts any STL container type.

template<typename T>
void dump string (T &t)

{
for( auto itr=t.begin() ; itr!=t.end() ; itr++) {

cout << *itr << endl;

}

list<float> 1lst ;

lst.push back (- ) 7
lst.push back( ) 7
vector<double> vec(”) ;
vecl[U] = ;

vecl[l] = ;

dump string<list<float> > (lst) ;
dump string<vector<double> > (lst) ;

BOSTON
UNIVERSITY



STL Demo

= Open project STL _Demo

= Let's walk through the functions with the debugger and see
some vectors in action.




Tutorial Outline: Part 3

= [ntro to the Standard Template Library
= Class inheritance

= Public, private, and protected access
= Virtual functions

BOSTON
UNIVERSITY



Inheritance

= [nheritance Is the ability to form a

hierarchy of classes where they
share common members and Molecule
methods.

= Helps with: code re-use, consistent | | |

programming, program organization
. Inorganicg Organic
= This is a powerful concept!
L Mineral L Protein

BOSTON
UNIVERSITY



Inheritance

= The class being derived from is referred
to as the base, parent, or super class.

= The class being derived is the derived,
child, or sub class.

= For consistency, we’'ll use superclass
and subclass in this tutorial. A base class
IS the one at the top of the hierarchy.

BOSTON
UNIVERSITY

Superclass \

Base Class

/

Molecule
Subclass

V| |

o ooene

=

\4



Output Stream

I n h e ritan Ce i n ACti O n ios_base |[*—— ios ostream T ofsream

*+— ostringstream

F 3

= Streams in C++ are series of characters = Writing to the terminal is straightforward:
— the C+ I/O system is based on this
concept. cout << some variable ;

= cout is an object of the class ostream. It ~ * How might an object of class ofstream or

is a write-only series of characters that ostringstream be used if we want to write
prints to the terminal. characters to a file or to a String?

= There are two subclasses of ostream:
= ofstream — write characters to a file
= ostringstream — write characters to a string

BOSTON
UNIVERSITY



Output Stream

Inheritance In Action o be | 1os

B B ofstream

F 3

ostream

*+— ostringstream

= For ofstream and ofstringstream the << operator is inherited from ostream
and behaves the same way for each from the programmer’s point of view.

= The ofstream class adds a constructor to open a file and a close() method.
= ofstringstream adds a method to retrieve the underlying string, str()

= |f you wanted a class to write to something else, like a USB port...
= Maybe look into inheriting from ostream!

= Or its underlying class, basic_ostream which handles types other than characters...
BOSTON
UNIVERSITY



Output Stream

I n h e ritan Ce i n ACti O n ios_base |[*—— ios ostream T ofsream

*+— ostringstream

F 3

#include <iostream> // cout
#include <fstream> // ofstream
#include <sstream> // ostringstream

using namespace std ;
void some func(string msg) {
cout << msg ; // to the terminal
// The constructor opens a file for writing
ofstream my file("filename.txt") ;
// Write to the file.
my file << msg ;
// close the file.
my file.close() ;
ostringstream oss ;
// Write to the stringstream
o0ss << msg ;
// Get the string from stringstream
cout << oss.str() ;

BOSTON }
UNIVERSITY



“There are only two things wrong with C++: The initial concept
and the implementation.”

P u b I I C : p rote Cte d : p rIV ate — Bertrand Meyer (inventor of the Eiffel OOP language)

class Rectangle

{

public:
= Public and private were added by Rectangle() ;
Rectangle (float width, float length) ;
NetBeans to the Rectangle class. virtual ~Rectangle ()
float m width ;
= These are used to control access float m_length ;
to parts of the class with float Area()
Inheritance.
protected:
private:

};

BOSTON
UNIVERSITY



C++ Access Control and Inheritance

Access public protected private
Same class Yes Yes Yes
Subclass Yes Yes No
Outside classes Yes No No
Inheritance
class Super { > o1 N bl
public: c ags Sub : public Super {
int 1: // in methods, could access
protected: // 1 and Jj from Parent only.
int 3 ; b 1
private:
int k ; Outside code
b Sub myobj

Myobj.i = 10 ; // public - ok
Myobj.j = 3 ; // protected - Compiler error

BOSTON Myobj.k =1 ; // private - Compiler error
UNIVERSITY




-

class A

Inheritance

N

~

class B : public A

» | public A

public

protected

» | protected A

\ private

= With inheritance subclasses have access
to private and protected members and

methods all the way back to the base
class.

= Each subclass can still define its own
public, protected, and private members
and methods along the way.

BOSTON
UNIVERSITY

~

public

\

protected

private

-

A

class C : public B

~

A

A

\

public A public publicB |«
protected A protected protected B
private

)




Single vs Multiple Inheritance

= C++ supports creating relationships where a subclass

A
Inherits data members and methods from a single B C
D

superclass: single inheritance

= C++ also support inheriting from multiple classes
simultaneously: Multiple inheritance

= This tutorial will only cover single inheritance. o _ _ _
= With multiple inheritance a hierarchy like

" Generally speaking... this is possible to create...this is
= Multiple inheritance requires a large amount of design effort nicknamed the Deadly Diamond of

= [t's an easy way to end up with overly complex, fragile code Death.

= Java and C# (both came after C++) exclude multiple
inheritance on purpose to avoid problems with it.

BOSTON
UNIVERSITY



C++ Inheritance Syntax

= |nheritance syntax pattern: ;};iic%uper t
class SubclassName : public SuperclassName ini.: i;
protected:
int j ;
= Here the public keyword is used. private:
= Methods implemented in class Sub can access any public or } ; '
protected members and methods in Super but cannot access
anything that is private. class Sub : public Super {
/..
};
= Other inheritance types are protected and private.

BOSTON
UNIVERSITY



Square

= Let's make a subclass of Rectangle called Square.

= Open the NetBeans project Shapes

= This has the Rectangle class from Part 2 implemented.
= Add a class named Square.

= Make it inherit from Rectangle.

BOSTON
UNIVERSITY



Square.h Square.cpp

#ifndef SQUARE H #include “Square.h"
#define SQUARE H

Square: :Square ()
#include "Rectangle.h" {}

Square: :~Square ()

class Square : public Rectangle {}
{
public:
Square () ;

virtual ~Square() ;

protected: = Note that subclasses are free to add any number
private: of new methods or members, they are not limited
}; to those in the superclass.

#endif // SQUARE H

= Class Square inherits from class Rectangle

BOSTON
UNIVERSITY



A new Square constructor is needed.

= A square is, of course, just a rectangle with equal length and width.
= The area can be calculated the same way as a rectangle.

= Our Square class therefore needs just one value to initialize it and it can
re-use the Rectangle.Area() method for its area.

= Go ahead and try it:

= Add an argument to the default constructor in Square.h
= Update the constructor in Square.cpp to do...?

= Remember Square can access the public members and methods in its superclass

BOSTON
UNIVERSITY




Solution 1

#ifndef SQUARE H
#define SQUARE H

#include “Rectangle.h"

class Square : public Rectangle

{
public:
Square (float width) ;
virtual ~Square() ;

protected:

private:

};

#endif // SQUARE H

#include “Square.h"

Square: :Square (float length) :
m width (length), m length(length)

{

}

BOSTON
UNIVERSITY

Square can access the public members in its superclass.

Its constructor can then just assign the length of the side to the
Rectangle m_width and m_length.

This is unsatisfying — while there is nothing wrong with this it's
not the OOP way to do things.

Why re-code the perfectly good constructor in Rectangle?



The delegating constructor

= (C++11 added a new constructor type
called the delegating constructor.

= Using member initialization lists you can —,
call one constructor from another.

= Even better: with member initialization
lists C++ can call superclass

class class c {
public:
int max;
int min;
int middle;

class c(int my max) {
max = my max > ? my max ;
}

class c(int my max, int my min)
min

: class c(my max)
&& my min < max ? my min :

my min >

}

class c(int my max, int my min, int my middle)
class ¢ (my max, my min) {

my middle < max &&

my middle > min ? my middle :

middle

.
14

.
14

{

constructors!

Reference:
https://msdn.microsoft.com/en-us/library/dn387583.aspx

BOSTON
UNIVERSITY

Square: :Square (float length)
Rectangle (length, length)
{
// other code could go here.

}




Solution 2

#ifndef SQUARE H
#define SQUARE H

#include "Rectangle.h"

class Square : public Rectangle

{
public:
Square (float width) ;
virtual ~Square() ;

protected:

private:

};

#endif // SQUARE H

#include "Square.h"

Square: :Square (float length)
Rectangle (length, length) {}

BOSTON
UNIVERSITY

= Square can directly call its superclass constructor and let the
Rectangle constructor make the assignment to m_width and
m_length.

= This saves typing, time, and reduces the chance of adding
bugs to your code.

= The more complex your code, the more compelling this statement
IS.

= Code re-use is one of the prime reasons to use OOP.



Trying it out In main()

= What happens behind the scenes finclude <iostream>
when this is Complled using namespace std;
sQ.Area() #include “Square.h"

int main()
Square class {
does not
implement Area() Square sQ(4)
so compiler looks
to superclass // Uses the Rectangle Area () method!

cout << sQ.Area() << endl ;

Finds Area() in
Rectangle class.

return O;

Inserts call to
Rectangle.Area()

method in
BOSTON .
compiled code.




More on Destructors

= When a subclass object is
removed from memory, its _
i . Square object is
destructor is called as it is for any T EEE] e
object. memory

= |ts superclass destructor is than _square() is called
also called . .

= Each subclass should only clean
up its own problems and let
superclasses clean up theirs. called

~Rectangle() is

BOSTON
UNIVERSITY



The formal concepts in OOP

Polymorphism

Encapsulation
-~
\Q

Abstraction

= Next up: Polymorphism




Using subclasses

= A function that takes a superclass
argument can also be called with

void PrintArea (Rectangle &rT) {

a subclass as the argument. cout << rT.Area() << endl ;
}
= The reverse is not true — a int main() {
function expecting a subclass Rectangle rT(1.0,2.0)
argument cannot accept its Square sO(3.0)
g P PrintArea (rT)
Superclass. PrintArea (sQ)
} /
= Copy the code to the right and /
add it to your main.cpp file. The PrintArea function

can accept the Square
object sQ because
Square is a subclass of

Rectangle.
BOSTON
UNIVERSITY



Overriding Methods EPPT—
: public:
= Sometimes a subclass needs to have the void PrintNum() {
same interface to a method as a cout << 1 << endl ;
superclass but with different functionality. } }
= This is achieved by overriding a method. class Sub : public Super ({
public:
// Override
= Qverriding a method is simple: just re- void PrintNum() ({
implement the method with the same } cout << 2 << endl
name and arguments in the subclass. } o
Super sP ;
sP.PrintNum() ; // Prints 1
Sub sB ;
sB.PrintNum() ; // Prints 2

BOSTON
UNIVERSITY



N
Overriding Methods

class Super {
_ _ public:
= Seems simple, right? void PrintNum() {
cout << 1 << endl ;
}
b

class Sub : public Super {
public:
// Override
void PrintNum() {
cout << 2 << endl ;

}
|
Super sP ;
sP.PrintNum() ; // Prints 1
Sub sB ;
sB.PrintNum() ; // Prints 2

BOSTON
UNIVERSITY



class Super {

How about in a function call... |

void PrintNum() {
cout << 1 << endl ;

}

= Using a single function to operate b
on different types is ;iiiifub : public Super {
polymorphism. // override .
cout << 2 << endl ;
. — }
= Given the class definitions, what }

IS happening in this function call? void FuncRef (Super &sP) {

sP.PrintNum()
}

Super sP ;
“C++ is an insult to the human brain” Func(sP) ; // Prints 1

— Niklaus Wirth (designer of Pascal) Sub sB ;
Func(sB) ; // Hey!! Prints 1!!

BOSTON
UNIVERSITY



Type casting

void FuncRef (Super &sP) {
sP.PrintNum()

}

<\

= The Func function passes the argument as a reference (Super &sP).
= What's happening here is dynamic type casting, the process of converting from

one type to another at runtime.

= Same mechanism as the dynamic_cast<type>() function

= The incoming object is treated as though it were a superclass object in

the function.

= When methods are overridden and called there are two points where
the proper version of the method can be identified: either at compile

time or at runtime.

BOSTON
UNIVERSITY



Virtual methods

When a method is labeled as virtual and

overridden the compiler will generate

code that will check the type of an object

at runtime when the method is called.

The type check will then result in the
expected version of the method being
called.

When overriding a virtual method in a
subclass, it's a good idea to label the

method as virtual in the subclass as well.
= ...just in case this gets subclassed again!

BOSTON
UNIVERSITY

e

class SuperVirtual

{

public:
virtual void PrintNum/()
{

cout << 1 << endl ;

}

|

class SubVirtual
{
public:
// Override
virtual void PrintNum()

{

: public SuperVirtual

cout << 2 <L endl ;

}
|

void Func (SuperVirtual &sP)

{
sP.PrintNum()

}

SuperVirtual sP ;

Func (sP) // Prints 1
SubVirtual sB ;
Func (sB) // Prints 2!!




Early (static) vs. Late (dynamic) binding

= Leaving out the virtual keyword on a = Making a method virtual adds code
method that is overridden results in the behind the scenes (that you, the
compiler deciding at compile time which programmer, never interact with directly)
version (subclass or superclass) of the = Lookups in a hidden table, called the
method to call. vtable, are done to figure out what version

= This is called early or static binding. of the virtual method should be run.

= At compile time, a function that takes a

superclass argument will only call the = This is called late or dynamic binding.
non-virtual superclass method under
early binding. = There is a small performance penalty for

late binding due to the vtable lookup.

= This only applies when an object is
referred to by a reference or pointer.

BOSTON
UNIVERSITY



Behind the scenes — vptr and vtable

= C++ classes have a hidden pointer (vptr)
generated that points to a table of virtual
methods associated with a class (vtable).

= When a virtual class method (base class
or its subclasses) is called by reference (
or pointer) when the program is running
the following happens:

The object’s class vptr is followed to its class
vtable

The virtual method is looked up in the vtable
and is then called.

One vptr and one vtable per class so minimal
memory overhead

If a method override is non-virtual it won’t be in
the vtable and it is selected at compile time.

!
|
|
|

UNIVERSITY

Func (SuperVirtual &sP)

l

sP is a reference to a...

*

SuperVirtual SubVirtual
SuperVirtual’s SubVirtual’s
vpts

/

Vtable

& SuperVirtual::PrintNum/()

Vtable

& SubVirtual::PrintNum()




.
Let’s run this through the debugger

= Open the project Virtual Method_Calls.
= Everything here is implemented in one big main.cpp

= Place a breakpoint at the first line in main() and in the two
Implementations of Func()




When to make methods virtual

= |f a method will be (or might be)
overridden in a subclass, make it virtual

= There is a minuscule performance
penalty. Will that even matter to you?

= |.e. Have you profiled and tested your code to
show that virtual method calls are a performance
issue?

= When is this true?

= Almost always! Who knows how your code will
be used in the future?

BOSTON
UNIVERSITY

Constructors are never virtual in C++.

Destructors in a base class should
always be virtual.

= Also — if any method in a class is virtual,
make the destructor virtual

= These are important when dealing with
objects via reference and it avoids some
subtleties when manually allocating
memory.



Why all this complexity?

void FuncEarly(SuperVirtual &sP) void Funclate (SuperVirtual sP)
{ {
sP.PrintNum() ; sP.PrintNum() ;
} }
= Called by reference — late binding = Called by value — early binding to
to PrintNum() PrintNum even though it’s virtual!

= Late binding allows for code libraries to be updated for new functionality. As methods are identified
at runtime the executable does not need to be updated.

= This is done all the time! Your C++ code may be, for example, a plugin to an existing simulation
code.
= Greater flexibility when dealing with multiple subclasses of a superclass.

= Most of the time this is the behavior you are looking for when building class hierarchies.

BOSTON
UNIVERSITY



Remember the Deadly Diamond of
Death? Let’s explain.

Look at the class hierarchy on the right.

= Square and Circle inherit from Shape

= Squircle inherits from both Square and Circle

= Syntax:

class Squircle : public Square, public Circle

The Shape class implements an empty
Area() method. The Square and Circle
classes override it. Squircle does not.

Under late binding, which version of Area
IS accessed from Squircle?
Square.Area() or Circle.Area()?

BOSTON
UNIVERSITY

Shape

virtual float Area () {}

Square _
Circle
virtual float
Area () {..} virtual float
Area () {..}

Squircle




Interfaces

= Interfaces are a way to have your
classes share behavior without them
sharing actual code.

= Gives much of the benefit of multiple
Inheritance without the complexity and
pitfalls

BOSTON
UNIVERSITY

Square

= Example: for debugging you want each class
to have a Log() method that writes some info

to a file.
= |Implement with an interface.



Interfaces

An interface class in C++ is called a pure virtual class.

It contains virtual methods only with a special syntax.
Instead of {} the function is set to O.
= Any subclass needs to implement the methods!

Modified Square.h shown.
What happens when this is compiled?

(..error..)
include/square.h:10:7: note: because the following wvirtual
functions are pure within 'Square':
class Square : public Rectangle, Log
include/square.h:7:18: note: wvirtual void Log::LogInfo ()
virtual void LogInfo ()=0 ;

Once the Loglinfo() is uncommented it will compile.

BOSTON
UNIVERSITY

#ifndef SQUARE H
#define SQUARE H

#include "rectangle.h"

class Log {
virtual void LogInfo()=0 ;

};

class Square : public Rectangle, Log

{
public:
Square (float length);
virtual ~Square() ;
// virtual void LogInfo () {}
protected:

private:

};

#endif // SQUARE H




Putting it all together

= Now let’s revisit our Shapes

2272

project.
= Open the “Shapes with Circle”
project. Rectangle
= This has a Shape base class with a
Rectangle and a Square l

= Add a Circle class to the class

: : : : Square
hierarchy in a sensible fashion. 1

= Hint: Think first, code second.

BOSTON
UNIVERSITY

-«



New pure virtual Shape class

: : : #ifndef SHAPE H
= Slight bit of trickery: fdefine SHAPE H

= An empty constructor is defined in shape.h
= No need to have an extra shape.cpp file if these

functions do nothing! class Shape
{
public:
= Q: How much code can be in the header file? Shape () {}
. . . virtual ~Shape() {}
= A: Most of it with some exceptions. P
= _.hfiles are not compiled into .o files so a virtual float Area()=0 ;
header with a lot of code gets re-compiled protected:

every time it's referenced in a source file.
private:

};

fendif // SHAPE H

BOSTON
UNIVERSITY



Give it a try
= Add inheritance from Shape = |f you just want to see a
to the Rectangle class solution, open the project
= Add a Circle class, inheriting "Shapes with Circle solved”

from wherever you like.

* Implement Area() for the
Circle

BOSTON
UNIVERSITY



A Potential Solution

= A Circle has one dimension
(radius), like a Square.

= Would only need to override the
Area() method

= But...

= Would be storing the radius in the
members m_width and m_length.
This is not a very obvious to

someone else who reads your code.

= Maybe:

= Change m_width and m_length
names tom_dim_1 and m_dim_27?

= Just makes everything more muddled!
UNIVERSITY

Rectangle

|

Square




A Better Solution

= [nherit separately from the Shape
base class

= Seems logical, to most people a
circle is not a specialized form of
rectangle...

= Add a member m_radius to store
the radius.

= |mplement the Area() method
= Makes more sense!

= Easy to extend to add an Oval
class, etc.

BOSTON
UNIVERSITY

Rectangle

|

Square




#ifndef CIRCLE H
#define CIRCLE H

New Circle class

#include "shape.h"

= Also inherits from Shape class Circle : public Shape

= Adds a constant value for &t {
= Constant values can be defined right in the public:
header file. Circle();

Circle(float radius) ;

= |f you accidentally try to change the value of PI
y yuy g virtual ~Circle();

the compiler will throw an error.

virtual float Area() ;

const float PI = 3.14;
float m radius ;

protected:

private:

};

BOSTON #endif // CIRCLE H
UNIVERSITY -




#include "circle.h"

Circle: :Circle()

{
//ctor

= circle.cpp
. Circle: :~Circle()
= Questions? {

//dtor
}

// Use a member initialization list.
Circle::Circle(float radius) : m radius{radius}

{}

float Circle::Area()

{
// Quiz: what happens if this line 1is
// uncommented and then compiled:
//PI=3.14159 ;
return m radius * m radius * PI ;

BOSTON
UNIVERSITY



Quiz time!

void PrintArea (Shape &shape) {

cout << "Area: " << shape.Area() << endl ;
}
= What happens behind e maan 0
the scenes when the Square sQ(4) ;

. . . Circle circ(3.5) ;
function PrintArea iIs Rectangle o7 (1.2
called?

i . . // Print everything
= How about if PrintArea’s PrintArea(sQ)
argument was instead.: PrintArea(rT) ;
PrintArea(circ) ;
return O;
vold PrintArea (Shape shape) }

BOSTON
UNIVERSITY



Quick mention...

= Aside from overriding functions it
IS also possible to override

operators in C++.

= As seeninthe C++ string. The +
operator concatenates strings:

= |t's possible to override +,-,=,<,>,
brackets, parentheses, etc.

BOSTON
UNIVERSITY

string str = "ARC" ;
str = str + "DEF" ;
// str is now "ABCDEE"

Syntax:

MyClass operator* (const MyClass& mC) {...}

Recommendation:

= Generally speaking, avoid this. This
IS an easy way to generate very
confusing code.

= A well-named function will almost
always be easier to understand than
an operator.
An exceptions is the assignment

operator. operator=



Summary

= C++ classes can be created in hierarchies via = Subclasses can override a superclass
inheritance, a core concept in OOP. method for their own purposes and can still

= Classes that inherit from others can make use explicitly call the superclass method.
of the superclass’ public and protected = Abstraction means hiding details when they
members and methods don’t need to be accessed by external code.

=  You write less code! = Reduces the chances for bugs.

= Virtual methods should be used = While there is a lot of complexity here —in
whenever methods will be overridden in terms of concepts, syntax, and application —
subclasses. keep in mllnc_j that OOP is a highly successful

way of building programs!

= Avoid multiple inheritance, use interfaces

Instead.

BOSTON
UNIVERSITY



