Python for Data Analysis

Research Computing Services
Katia Oleinik (koleinik@bu.edu)
Overview of Python Libraries for Data Scientists

Reading Data; Selecting and Filtering the Data; Data manipulation, sorting, grouping, rearranging

Plotting the data

Descriptive statistics

Inferential statistics
Python Libraries for Data Science

Many popular Python toolboxes/libraries:

- NumPy
- SciPy
- Pandas
- SciKit-Learn

Visualization libraries

- matplotlib
- Seaborn

and many more ...
Python Libraries for Data Science

NumPy:

- introduces objects for multidimensional arrays and matrices, as well as functions that allow to easily perform advanced mathematical and statistical operations on those objects

- provides vectorization of mathematical operations on arrays and matrices which significantly improves the performance

- many other python libraries are built on NumPy

Link: http://www.numpy.org/
Python Libraries for Data Science

SciPy:
- collection of algorithms for linear algebra, differential equations, numerical integration, optimization, statistics and more
- part of SciPy Stack
- built on NumPy

Link: https://www.scipy.org/scipylib/
Python Libraries for Data Science

Pandas:
- adds data structures and tools designed to work with table-like data (similar to Series and Data Frames in R)
- provides tools for data manipulation: reshaping, merging, sorting, slicing, aggregation etc.
- allows handling missing data

Link: http://pandas.pydata.org/
Python Libraries for Data Science

SciKit-Learn:
- provides machine learning algorithms: classification, regression, clustering, model validation etc.
- built on NumPy, SciPy and matplotlib

Link: http://scikit-learn.org/
Python Libraries for Data Science

matplotlib:
- python 2D plotting library which produces publication quality figures in a variety of hardcopy formats
- a set of functionalities similar to those of MATLAB
- line plots, scatter plots, barcharts, histograms, pie charts etc.
- relatively low-level; some effort needed to create advanced visualization

Link: https://matplotlib.org/
Python Libraries for Data Science

Seaborn:
- Based on matplotlib
- Provides high level interface for drawing attractive statistical graphics
- Similar (in style) to the popular ggplot2 library in R

Link: https://seaborn.pydata.org/
Login to the Shared Computing Cluster

• Use your SCC login information if you have SCC account

• If you are using tutorial accounts see info on the blackboard

Note: Your password will not be displayed while you enter it.
Selecting Python Version on the SCC

view available python versions on the SCC

```
[scc1 ~] module avail python
```

load python 3 version

```
[scc1 ~] module load python/3.6.2
```
Download tutorial notebook

On the Shared Computing Cluster
```
```

On a local computer save the link:
http://rcs.bu.edu/examples/python/data_analysis/dataScience.ipynb
Start Jupyter notebook

On the Shared Computing Cluster

[start]

jupyter notebook
Loading Python Libraries

```
In [ ]: #Import Python Libraries
import numpy as np
import scipy as sp
import pandas as pd
import matplotlib as mpl
import seaborn as sns
```

Press Shift+Enter to execute the jupyter cell
Reading data using pandas

```python
In [ ]:
#Read csv file
df = pd.read_csv("http://rcs.bu.edu/examples/python/data_analysis/Salaries.csv")
```

Note: The above command has many optional arguments to fine-tune the data import process.

There is a number of pandas commands to read other data formats:

```python
pd.read_excel('myfile.xlsx', sheet_name='Sheet1', index_col=None, na_values=['NA'])
pd.read_stata('myfile.dta')
pd.read_sas('myfile.sas7bdat')
pd.read_hdf('myfile.h5', 'df')
```
Exploring data frames

```
In [3]: #List first 5 records
df.head()
```

```
Out[3]:
   rank discipline  phd  service sex salary
0  0  Prof      B    56     49 Male  186960
1  1  Prof      A    12     6 Male   93000
2  2  Prof      A    23     20 Male  110515
3  3  Prof      A    40     31 Male  131205
4  4  Prof      B    20     18 Male   104800
```
Hands-on exercises

✓ Try to read the first 10, 20, 50 records;

✓ Can you guess how to view the last few records;

Hint:
Data Frame data types

<table>
<thead>
<tr>
<th>Pandas Type</th>
<th>Native Python Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>string</td>
<td>The most general dtype. Will be assigned to your column if column has mixed types (numbers and strings).</td>
</tr>
<tr>
<td>int64</td>
<td>int</td>
<td>Numeric characters. 64 refers to the memory allocated to hold this character.</td>
</tr>
<tr>
<td>float64</td>
<td>float</td>
<td>Numeric characters with decimals. If a column contains numbers and NaNs(see below), pandas will default to float64, in case your missing value has a decimal.</td>
</tr>
<tr>
<td>datetime64, timedelta[ns]</td>
<td>N/A (but see the <code>datetime</code> module in Python’s standard library)</td>
<td>Values meant to hold time data. Look into these for time series experiments.</td>
</tr>
</tbody>
</table>
Data Frame data types

In [4]: #Check a particular column type
df['salary'].dtype

Out[4]: dtype('int64')

In [5]: #Check types for all the columns
df.dtypes

Out[4]:
rank object
discipline object
phd int64
service int64
sex int64
salary object
dtype: object
Data Frames attributes

Python objects have *attributes* and *methods*.

<table>
<thead>
<tr>
<th>df.attribute</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dtypes</td>
<td>list the types of the columns</td>
</tr>
<tr>
<td>columns</td>
<td>list the column names</td>
</tr>
<tr>
<td>axes</td>
<td>list the row labels and column names</td>
</tr>
<tr>
<td>ndim</td>
<td>number of dimensions</td>
</tr>
<tr>
<td>size</td>
<td>number of elements</td>
</tr>
<tr>
<td>shape</td>
<td>return a tuple representing the dimensionality</td>
</tr>
<tr>
<td>values</td>
<td>numpy representation of the data</td>
</tr>
</tbody>
</table>
Hands-on exercises

✓ Find how many records this data frame has;
✓ How many elements are there?
✓ What are the column names?
✓ What types of columns we have in this data frame?
Data Frames methods

Unlike attributes, python methods have *parenthesis*. All attributes and methods can be listed with a `dir()` function: `dir(df)`

<table>
<thead>
<tr>
<th>df.method()</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>head([n], tail([n])</td>
<td>first/last n rows</td>
</tr>
<tr>
<td>describe()</td>
<td>generate descriptive statistics (for numeric columns only)</td>
</tr>
<tr>
<td>max(), min()</td>
<td>return max/min values for all numeric columns</td>
</tr>
<tr>
<td>mean(), median()</td>
<td>return mean/median values for all numeric columns</td>
</tr>
<tr>
<td>std()</td>
<td>standard deviation</td>
</tr>
<tr>
<td>sample([n])</td>
<td>returns a random sample of the data frame</td>
</tr>
<tr>
<td>dropna()</td>
<td>drop all the records with missing values</td>
</tr>
</tbody>
</table>
Hands-on exercises

✓ Give the summary for the numeric columns in the dataset

✓ Calculate standard deviation for all numeric columns;

✓ What are the mean values of the first 50 records in the dataset? **Hint:** use `head()` method to subset the first 50 records and then calculate the mean
Selecting a column in a Data Frame

Method 1: Subset the data frame using column name:
\[
df[\text{'sex'}]
\]

Method 2: Use the column name as an attribute:
\[
df\.sex
\]

Note: there is an attribute `rank` for pandas data frames, so to select a column with a name "rank" we should use method 1.
Hands-on exercises

✓ Calculate the basic statistics for the salary column;

✓ Find how many values in the salary column (use count method);

✓ Calculate the average salary;
Data Frames `groupby` method

Using "group by" method we can:

- Split the data into groups based on some criteria
- Calculate statistics (or apply a function) to each group
- Similar to `dplyr()` function in R

In []:

```python
#Group data using rank
df_rank = df.groupby(['rank'])
```

In []:

```python
#Calculate mean value for each numeric column per each group
df_rank.mean()
```

```
     phd        service     salary
 rank
AssocProf  15.076923   11.307692   91786.230769
AsstProf   5.052632    2.210526    81362.789474
Prof      27.065217   21.413043   123624.804348
```
Once groupby object is create we can calculate various statistics for each group:

In []:

```
#Calculate mean salary for each professor rank:
df.groupby('rank')[['salary']].mean()
```

<table>
<thead>
<tr>
<th>rank</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>AssocProf</td>
<td>917862.230769</td>
</tr>
<tr>
<td>AsstProf</td>
<td>81362.789474</td>
</tr>
<tr>
<td>Prof</td>
<td>123624.804848</td>
</tr>
</tbody>
</table>

Note: If single brackets are used to specify the column (e.g. salary), then the output is Pandas Series object. When double brackets are used the output is a Data Frame.
Data Frames *groupby* method

groupby performance notes:

- no grouping/splitting occurs until it's needed. Creating the *groupby* object only verifies that you have passed a valid mapping
- by default the group keys are sorted during the *groupby* operation. You may want to pass sort=False for potential speedup:

```python
In [ ]: #Calculate mean salary for each professor rank:
    df.groupby(['rank'], sort=False)[['salary']].mean()
```
Data Frame: filtering

To subset the data we can apply Boolean indexing. This indexing is commonly known as a filter. For example if we want to subset the rows in which the salary value is greater than $120K:

\[
\begin{align*}
\text{In []:} & \quad \#\text{Calculate mean salary for each professor rank:} \\
& \quad \text{df} _\text{sub} = \text{df[df[}'salary'\text{]} > 120000]
\end{align*}
\]

Any Boolean operator can be used to subset the data:
- > greater;
- >= greater or equal;
- < less;
- <= less or equal;
- == equal;
- != not equal;

\[
\begin{align*}
\text{In []:} & \quad \#\text{Select only those rows that contain female professors:} \\
& \quad \text{df} _f = \text{df[df[}'sex'\text{]} == 'Female']}
\end{align*}
\]
Data Frames: Slicing

There are a number of ways to subset the Data Frame:

- one or more columns
- one or more rows
- a subset of rows and columns

Rows and columns can be selected by their position or label
Data Frames: Slicing

When selecting one column, it is possible to use single set of brackets, but the resulting object will be a Series (not a DataFrame):

In []: #Select column salary:
 df['salary']

When we need to select more than one column and/or make the output to be a DataFrame, we should use double brackets:

In []: #Select column salary:
 df[['rank','salary']]
Data Frames: Selecting rows

If we need to select a range of rows, we can specify the range using "::"

In []: #Select rows by their position:
 df[10:20]

Notice that the first row has a position 0, and the last value in the range is omitted: So for 0:10 range the first 10 rows are returned with the positions starting with 0 and ending with 9
Data Frames: method loc

If we need to select a range of rows, using their labels we can use method `loc`:

```
#Select rows by their labels:
df_sub.loc[10:20,['rank','sex','salary']]
```

<table>
<thead>
<tr>
<th>rank</th>
<th>sex</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Prof</td>
<td>128250</td>
</tr>
<tr>
<td>11</td>
<td>Prof</td>
<td>134778</td>
</tr>
<tr>
<td>13</td>
<td>Prof</td>
<td>162200</td>
</tr>
<tr>
<td>14</td>
<td>Prof</td>
<td>153750</td>
</tr>
<tr>
<td>15</td>
<td>Prof</td>
<td>150480</td>
</tr>
<tr>
<td>19</td>
<td>Prof</td>
<td>150500</td>
</tr>
</tbody>
</table>
Data Frames: method iloc

If we need to select a range of rows and/or columns, using their positions we can use method iloc:

In []:
```
#Select rows by their labels:
df_sub.iloc[10:20, [0, 3, 4, 5]]
```

Out[]:
```
<table>
<thead>
<tr>
<th>rank</th>
<th>service</th>
<th>sex</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Prof</td>
<td>Male</td>
<td>148750</td>
</tr>
<tr>
<td>27</td>
<td>Prof</td>
<td>Male</td>
<td>155865</td>
</tr>
<tr>
<td>29</td>
<td>Prof</td>
<td>Male</td>
<td>123683</td>
</tr>
<tr>
<td>31</td>
<td>Prof</td>
<td>Male</td>
<td>155750</td>
</tr>
<tr>
<td>35</td>
<td>Prof</td>
<td>Male</td>
<td>126933</td>
</tr>
<tr>
<td>36</td>
<td>Prof</td>
<td>Male</td>
<td>140850</td>
</tr>
<tr>
<td>39</td>
<td>Prof</td>
<td>Female</td>
<td>129000</td>
</tr>
<tr>
<td>40</td>
<td>Prof</td>
<td>Female</td>
<td>137000</td>
</tr>
<tr>
<td>44</td>
<td>Prof</td>
<td>Female</td>
<td>151788</td>
</tr>
<tr>
<td>45</td>
<td>Prof</td>
<td>Female</td>
<td>140096</td>
</tr>
</tbody>
</table>
```
Data Frames: method iloc (summary)

```
df.iloc[0]  # First row of a data frame
df.iloc[i]  #(i+1)th row
df.iloc[-1] # Last row

df.iloc[:, 0]  # First column
df.iloc[:, -1] # Last column

df.iloc[0:7]    # First 7 rows
df.iloc[:, 0:2] # First 2 columns
df.iloc[1:3, 0:2] # Second through third rows and first 2 columns
df.iloc[[0,5], [1,3]] # 1st and 6th rows and 2nd and 4th columns
```
Data Frames: Sorting

We can sort the data by a value in the column. By default the sorting will occur in ascending order and a new data frame is return.

In []:

```python
# Create a new data frame from the original sorted by the column Salary
df_sorted = df.sort_values(by='service')
df_sorted.head()
```

Out[]:

```
<table>
<thead>
<tr>
<th>rank</th>
<th>discipline</th>
<th>phd</th>
<th>service</th>
<th>sex</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>AsstProf</td>
<td>2</td>
<td>0</td>
<td>Female</td>
<td>72500</td>
</tr>
<tr>
<td>23</td>
<td>AsstProf</td>
<td>2</td>
<td>0</td>
<td>Male</td>
<td>85000</td>
</tr>
<tr>
<td>43</td>
<td>AsstProf</td>
<td>5</td>
<td>0</td>
<td>Female</td>
<td>77000</td>
</tr>
<tr>
<td>17</td>
<td>AsstProf</td>
<td>4</td>
<td>0</td>
<td>Male</td>
<td>92000</td>
</tr>
<tr>
<td>12</td>
<td>AsstProf</td>
<td>1</td>
<td>0</td>
<td>Male</td>
<td>88000</td>
</tr>
</tbody>
</table>
```
We can sort the data using 2 or more columns:

```python
In [ ]:

```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
Missing Values

Missing values are marked as NaN

In [ ]:
# Read a dataset with missing values
flights = pd.read_csv("http://rcs.bu.edu/examples/python/data_analysis/flights.csv")

In [ ]:
# Select the rows that have at least one missing value
flights[flights.isnull().any(axis=1)].head()

Out[ ]:

<table>
<thead>
<tr>
<th></th>
<th>year</th>
<th>month</th>
<th>day</th>
<th>dep_time</th>
<th>dep_delay</th>
<th>arr_time</th>
<th>arr_delay</th>
<th>carrier</th>
<th>tailnum</th>
<th>flight</th>
<th>origin</th>
<th>dest</th>
<th>air_time</th>
<th>distance</th>
<th>hour</th>
<th>minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>330</td>
<td>2013</td>
<td>1</td>
<td>1</td>
<td>1807.0</td>
<td>29.0</td>
<td>2251.0</td>
<td>NaN</td>
<td>UA</td>
<td>N31412</td>
<td>1228</td>
<td>EWR</td>
<td>SAN</td>
<td>NaN</td>
<td>2425</td>
<td>18.0</td>
<td>7.0</td>
</tr>
<tr>
<td>403</td>
<td>2013</td>
<td>1</td>
<td>1</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>AA</td>
<td>N3EHA</td>
<td>791</td>
<td>LGA</td>
<td>DFW</td>
<td>NaN</td>
<td>1389</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>404</td>
<td>2013</td>
<td>1</td>
<td>1</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>AA</td>
<td>NGEVAA</td>
<td>1925</td>
<td>LGA</td>
<td>MIA</td>
<td>NaN</td>
<td>1096</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>855</td>
<td>2013</td>
<td>1</td>
<td>2</td>
<td>2145.0</td>
<td>18.0</td>
<td>NaN</td>
<td>NaN</td>
<td>UA</td>
<td>N12221</td>
<td>1299</td>
<td>EWR</td>
<td>RSW</td>
<td>NaN</td>
<td>1068</td>
<td>21.0</td>
<td>45.0</td>
</tr>
<tr>
<td>855</td>
<td>2013</td>
<td>1</td>
<td>2</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>AA</td>
<td>NaN</td>
<td>133</td>
<td>JFK</td>
<td>LAX</td>
<td>NaN</td>
<td>2475</td>
<td>NaN</td>
<td>NaN</td>
</tr>
</tbody>
</table>
## Missing Values

There are a number of methods to deal with missing values in the data frame:

<table>
<thead>
<tr>
<th>df.method()</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dropna()</td>
<td>Drop missing observations</td>
</tr>
<tr>
<td>dropna(how='all')</td>
<td>Drop observations where all cells is NA</td>
</tr>
<tr>
<td>dropna(axis=1, how='all')</td>
<td>Drop column if all the values are missing</td>
</tr>
<tr>
<td>dropna(thresh = 5)</td>
<td>Drop rows that contain less than 5 non-missing values</td>
</tr>
<tr>
<td>fillna(0)</td>
<td>Replace missing values with zeros</td>
</tr>
<tr>
<td>isnull()</td>
<td>returns True if the value is missing</td>
</tr>
<tr>
<td>isnull()</td>
<td>Returns True for non-missing values</td>
</tr>
</tbody>
</table>
Missing Values

• When summing the data, missing values will be treated as zero
• If all values are missing, the sum will be equal to NaN
• `cumsum()` and `cumprod()` methods ignore missing values but preserve them in the resulting arrays
• Missing values in GroupBy method are excluded (just like in R)
• Many descriptive statistics methods have `skipna` option to control if missing data should be excluded. This value is set to `True` by default (unlike R)
Aggregation Functions in Pandas

Aggregation - computing a summary statistic about each group, i.e.
- compute group sums or means
- compute group sizes/counts

Common aggregation functions:

- min, max
- count, sum, prod
- mean, median, mode, mad
- std, var
Aggregation Functions in Pandas

`agg()` method are useful when multiple statistics are computed per column:

```python
In []: flights[['dep_delay','arr_delay']].agg(['min','mean','max'])
```

```
Out[]:

<table>
<thead>
<tr>
<th></th>
<th>dep_delay</th>
<th>arr_delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>-16.000000</td>
<td>-62.000000</td>
</tr>
<tr>
<td>mean</td>
<td>9.384302</td>
<td>2.298675</td>
</tr>
<tr>
<td>max</td>
<td>351.000000</td>
<td>389.000000</td>
</tr>
</tbody>
</table>
```
# Basic Descriptive Statistics

<table>
<thead>
<tr>
<th>df.method()</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>describe</td>
<td>Basic statistics (count, mean, std, min, quantiles, max)</td>
</tr>
<tr>
<td>min, max</td>
<td>Minimum and maximum values</td>
</tr>
<tr>
<td>mean, median, mode</td>
<td>Arithmetic average, median and mode</td>
</tr>
<tr>
<td>var, std</td>
<td>Variance and standard deviation</td>
</tr>
<tr>
<td>sem</td>
<td>Standard error of mean</td>
</tr>
<tr>
<td>skew</td>
<td>Sample skewness</td>
</tr>
<tr>
<td>kurt</td>
<td>kurtosis</td>
</tr>
</tbody>
</table>
Graphics to explore the data

Seaborn package is built on matplotlib but provides high level interface for drawing attractive statistical graphics, similar to ggplot2 library in R. It specifically targets statistical data visualization.

To show graphs within Python notebook include inline directive:

In [ ]: %matplotlib inline
# Graphics

<table>
<thead>
<tr>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>distplot</td>
</tr>
<tr>
<td>barplot</td>
</tr>
<tr>
<td>violinplot</td>
</tr>
<tr>
<td>jointplot</td>
</tr>
<tr>
<td>regplot</td>
</tr>
<tr>
<td>pairplot</td>
</tr>
<tr>
<td>boxplot</td>
</tr>
<tr>
<td>swarmplot</td>
</tr>
<tr>
<td>factorplot</td>
</tr>
</tbody>
</table>
Basic statistical Analysis

statsmodel and scikit-learn - both have a number of function for statistical analysis

The first one is mostly used for regular analysis using R style formulas, while scikit-learn is more tailored for Machine Learning.

statsmodels:
  • linear regressions
  • ANOVA tests
  • hypothesis testings
  • many more ...

scikit-learn:
  • kmeans
  • support vector machines
  • random forests
  • many more ...

See examples in the Tutorial Notebook
Conclusion

Thank you for attending the tutorial.

Please fill the evaluation form:
http://scv.bu.edu/survey/tutorial_evaluation.html

Questions:

email: koleinik@bu.edu (Katia Oleinik)