
Fall 2017

Learning Perl Through Examples
Part 2

L1110@BUMC

9/22/2017

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

Tutorial Resource

Before we start, please take a note - all the codes and
supporting documents are accessible through:

• http://rcs.bu.edu/examples/perl/tutorials/

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

Sign In Sheet

We prepared sign-in sheet for each one to sign
We do this for internal management and quality control
So please SIGN IN if you haven’t done so

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

Evaluation

One last piece of information before we start:

• DON’T FORGET TO GO TO:

• http://rcs.bu.edu/survey/tutorial_evaluation.html

Leave your feedback for this tutorial (both good and bad as
long as it is honest are welcome. Thank you)

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

Today’s Topic

• Basics on creating your code

• About Today’s Example

• Learn Through Example 1 – fanconi_example_io.pl

• Learn Through Example 2 – fanconi_example_str_process.pl

• Learn Through Example 3 – fanconi_example_gene_anno.pl

• Extra Examples (if time permit)

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Basics on creating your code
How to combine specs, tools, modules and knowledge.

Fall 2017

What is needed

Consider your code/software a ‘product’, what will it take to produce it?

• User Requirements (domain knowledge, that’s very important)

• Development Environment (Emacs/gedit/Eclipse/etc)

• Third Party Modules/Toolboxes (CPAN)

• Some workman’s craft (You/Programmer)

• Help systems (Help documentation/reference books/stackflow/etc)

• Language specification (Perldoc/reference guide)

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

User Requirements
Specify what software is expected to do

Can be formal or casual, but better keep records of.

Formal – User Requirement Documentation (URD)

Casual – email conversations, scratch paper memos, etc.

Types of Requirements

M – Mandatory

D – Desirable

O – Optional

E – Enhanceable

Serve as contract – keep project on track

Pitfall – often ignored

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

Development Environment

It is like your workshop where you go to work and make your product

How to pick your development tools (mainly editor or IDE)

- Convenient

- Sufficient enough

- Extensible/adaptive

- Personal preference

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

Development Environment

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Some commonly used tools:

1) Editor Only:
emacs
vim
gedit

2) IDE (Integrated Development Environment)
Eclipse
Padre

You may go to http://perlide.org/poll200910/ for the poll result conducted
by a Perl guru for Perl Editors

Fall 2017

CPAN – Where Third Party Modules Resides

• Perl is a community built software system, enriched by third party contributors.
All efforts go to build CPAN open source archive network for Perl.

• Perl’s richness and power comes from CPAN and the 3rd party modules and toolkits
covering various domains, for example, Finance, BioPerl, Catalyst, DBI, and many
others.

• CPAN official site: www.cpan.org

• Two search engine interfaces:

search.cpan.org (old, traditional)

metacpan.org (new, modern, provides rich APIs for automation)

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

Help systems

One significant criteria for a good programming language is its documentation and help
system – In this sense, Perl is quite good

Its own:

• Language Specification itself well written

• Organized well (divided by categories)

• Presented well (perldoc utility/man, Internet available)

Online Resource:

• Rich online help, tutorials, and e-books (many for free)

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

Language specification
Also called ‘Reference Guide’

Perldoc Official Site: http://perldoc.perl.org

Divided to eight subcategories:

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

1. Language

2. Functions

3. Operators

4. Special variables

5. Pragmas

6. Utilities

7. Internals

8. Platform Specific

Fall 2017

Workman’s Crafts

Hard Part

Takes time to build, but takes no time to start (practice is the best way to learn)

Skills Needed Include:

• Familiarity to language elements

• Software Engineering Methodology

• Algorithm Design

• Code Implementation

• Debugging

• Domain knowledge

Metaphor : How do we acquire skills on natural language

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Before We Start …

Fall 2017

Connecting to SCC

• Option 1: You are able to keep everything you generate
Use your Shared Computing Cluster account if you have one.

• Option 2: all that you do in the tutorial may be wiped out after
tutorial ends unless you move the contents to somewhere belong to
you.

Tutorial accounts if you need one (will be provided in class)
Username : TBD
Password : TBD

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

Download source code

Follow these steps to download the code:

ssh user@sccN.bu.edu (‘user’ is an account on SCC, ‘N’ can be 1-4)

mkdir perlThruEx

cd perlThruEx

wget http://scv.bu.edu/examples/perl/tutorials/src/perlThruExamples.zip

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Today’s Example Overview

Fall 2017

Example Preview – Fanconi Gene Introduction

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

• Fanconi genes refer to the genes that have been identified as closely related
to a genetic disease called ‘Fanconi Amaemia’(FA).

• 17 genes are identified so far, and 15 of them named as ‘FANC[A-S]’, 2 others
have totally non-revealing names, ‘RAD51C’ and ‘XPF’.

• For this example, we will only take the 15 genes that start with ‘FANC’ as the
input gene list.

Fall 2017

Example Preview – Content Coverage

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

This tutorial will use fanconi genes example to go through three main functional
strengths of Perl – File IOs, string match and process, and last, power in using
3rd party modules, in this case, we use BioPerl’s gene annotation module,
GenBank.

• Example 1: File IOs

• Example 2: String Processing

• Example 3: Gene Annotation

Fall 2017

Example Preview – Code Organization

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

General Setting:

• Input directory – the place to put all input files

• ./code/session2/data_in

• Output directory – the place where end result is put

• ./code/session2/data_out

• Script directory – the place where Perl scripts reside

• ./code/session2/scripts

Fall 2017

Example 1 Preview

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Script: fanconi_example_io.pl

Purpose: build up the standard File IO concepts.

• contains 6 subroutines, each demonstrates a slightly different way Perl handles input
and output

Command: perl fanconi_example_io.pl --example n

Note: fanconi_example_io_fancy.pl is a bit fancier version, which adds support of
command line arguments for the flexibility

Fall 2017

Example 2 Preview

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Script: fanconi_example_str_process.pl

Purpose: Demonstrate regular expressions in Perl.

Contains 2 subroutines:
• input file format conversion, from csv to tab format
• gene selection using specified criteria, from all 15 genes, only pick first 5 with

FANC[A-D].

Command: perl fanconi_example_str_process.pl --example n

Fall 2017

Example 3 Preview

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Script: fanconi_example_gene_anno.pl

Purpose: Demonstrate the comprehensive coding and debugging skills.

• Use BioPerl module (Bio::DB::EntrezGene) for gene annotation from entrez gene id.

• Go through code in detail with debugger

Command: fanconi_example_gene_anno.pl

This will consume the most of the tutorial time.

Fall 2017

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Learn Through Example - File IO

fanconi_example_io.pl

Fall 2017

File IO basics - Filehandle
A structure used to associate a physical file with name

Three standard file handles:

• STDIN – Standard input, usually set to be keyboard

• STDOUT – Standard output, usually set to be screen, using device id ‘1’

• STDERR – Standard error, to display error info (usually set to be same screen),
using device id ‘2’

One special file handle - /dev/null, logical file handle to absorb all unwanted output, like
black hole, no return once get in. For example:

>/dev/null 2>&1

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

File IO basics – File IO functions
• These are the actual functions one may use to manipulate files

• Basic File IO functions:

Form full list:
http://perldoc.perl.org/index-functions-by-cat.html#Input-and-output-functions

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

• open

• close

• opendir

• closedir

• read

• print

• rename

• unlink

• tell

• seek

Fall 2017

File IO basics - Operators

Operators are actually functions of special type, which are predefined by language to
accomplish specific operations upon operand, usually independent of operand(s) it
involves.

<> : File handle operator, used to read file using handle; can be single line or multiple
lines, depending on context, for example:

$single_line = <STDIN>; # read single line from screen
@multi_lines = <DATA>; # read whole data file

- : File test operator, used to test various attributes of the file
-e check file existence
-s check file size
-d check if file is actually a directory
-z check if file size is zero

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

File IO basics – Special variables
There are many File IO related special variables in Perl

For example:

$/ Input file line separator (delimiter)

$\ Output file line separator (delimiter)

$. Line number

$| No buffer flush (if set to true, flush right away)

$! Error information

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

Common Scenarios involving file/data processing
1. Conversion between file formats.

For example, convert Excel spreadsheet to plain text (.csv or .tab) for downstream
processing (pre-processing).

2. Data filtering/cleaning/verification

For example, clean and preview/summary the input data (pre-processing/in-
processing)

3. Apply business logic to the clean/filtered input data file.

4. Output is not restricted to files. Could be a table in database, or memory block to
feed the downstream in an integrated pipeline setting (but beyond this tutorial).

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

Input file – fanconi_genes.csv

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

File IO - Example 1 code (use default)

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

File IO – Example 1 output

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

File IO – Example 2 code (explicit)

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

File IO – Example 2 output

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Observation: compare Example 1 and Example 2, the output are the same.

Fall 2017

File IO – Example 3 code (STDERR)

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

File IO – Example 3 output

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Observation: Example 3 seems to output same result as Example 1 and Example 2.

Fall 2017

File IO – Example 2 vs Example 3 output

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Observation:

Example 3 actually is not as
same as example 1 and ;

Example 1 and 2 -> STDOUT
Example 3 -> STDERR

Fall 2017

File IO – Example 4 code (die)

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

File IO – Example 4 output

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Observation 1: using ‘die’ is a good practice when open file;
Observation 2: using ‘$!’ special variable shows the system error message;

Fall 2017

File IO – Example 5 code (STDIN)

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

File IO – Example 5 output

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

File IO – Example 5 output

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

File IO – Example 5 redirect

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

File IO – Example 5 redirect

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

What extra we learn from Example 5:

Redirection is a very powerful mechanism in Linux;
It can make code a lot more flexible;
It is built upon the concept of Linux/Unix fundamentals –
everything is a file

Fall 2017

File IO – Example 6 code (output to file)

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

File IO – Example 6 output

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

File IO – Example 7 code (special variables)

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

File IO – Example 7 output

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Learn Through Example - RegEx

fanconi_example_str_process.pl

Fall 2017

RegEx – String Process Example 1 code

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

RegEx – String Process Example 1 output

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

RegEx – String Process Example 2 code

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

RegEx – String Process Example 2 output

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Learn Through Example - BioPerl

fanconi_example_gene_anno.pl

Fall 2017

Fanconi_example_gene_anno.pl structure

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

1. Set up environment;
2. Open input file and get the gene list of interest
3. Initalize EntrezGene factory object
4. Call get_Stream_by_id() to fetch gene annotation info through gene id info
5. Go through the iteration of each gene
6. In each iteration, parse all the annotation attributes returned and print out

result
7. Close file handle and exit.

Next, we will go through it step by step…

Fall 2017

Load Perl on SCC

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Notes, we will use Bio::DB:EntrezGene module in BioPerl suites, which is only
available on SCC. So we need the two ‘module load’ commands;
Start Perl debugger by add ‘-d’ command option;

Fall 2017

Preview the Result – screen output

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Fall 2017

Preview the Result – how output file looks like

www.perl.org

Fall 2017

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Q & A

Fall 2017

www.perl.org

Yun Shen, Programmer Analyst
yshen16@bu.edu
IS&T Research Computing Services

Evaluation Please @
http://scv.bu.edu/survey/tutorial_evaluation.html

Thank You !!

