
Introduction to C++: Part 2

Tutorial Outline: Part 2

 References and Pointers

 The formal concepts in OOP

 More about C++ classes

Pass by Value

 C++ defaults to pass by value behavior when calling a function.

 The function arguments are copied when used in the function.

 Changing the value of L or W in the RectangleArea1 function does not effect their original values in

the main() function

 When passing objects as function arguments it is important to be aware that potentially large data

structures are automatically copied!

main()

float L

float W

RectangleArea1(float L, float W)

float L

float W

copy

copy

Pass by Reference

 Pass by reference behavior is triggered when the & character is used to modify the type of the

argument.

 This is the type of behavior you see in Fortran, Matlab, Python, and others.

 Pass by reference function arguments are NOT copied. Instead the compiler sends a pointer to the

function that references the memory location of the original variable. The syntax of using the

argument in the function does not change.

 Pass by reference arguments almost always act just like a pass by value argument when writing

code EXCEPT that changing their value changes the value of the original variable!!

 The const modifier can be used to prevent changes to the original variable in main().

main()

float L

float W

RectangleArea3(const float& L, const float& W)

float L

float W

reference

reference

 In RectangleArea4 the pass by reference behavior is used as a way to

return the result without the function returning a value.

 The value of the area argument is modified in the main() routine by the

function.

 This can be a useful way for a function to return multiple values in the

calling routine.

void RectangleArea4(const float& L, const float& W, float& area) {

area= L*W ;

}

void does not return a value.

 In C++ arguments to functions can be objects…which can contain any

quantity of data you’ve defined!
 Example: Consider a string variable containing 1 million characters (approx. 1 MB of RAM).

 Pass by value requires a copy – 1 MB.

 Pass by reference requires 8 bytes!

 Pass by value could potentially mean the accidental copying of large

amounts of memory which can greatly impact program memory usage and

performance.

 When passing by reference, use the const modifier whenever appropriate

to protect yourself from coding errors.
 Generally speaking – use const anytime you don’t want to modify function arguments in a

function.

“C makes it easy to shoot yourself in the foot; C++ makes it harder, but

when you do it blows your whole leg off.” – Bjarne Stroustrop

A first C++ class

 Start a new project. Call it

BasicRectangle.

 In the main.cpp, we’ll define a

class called BasicRectangle

 First, just the basics: length and

width

 Enter the code on the right

before the main() function in the

main.cpp file (copy & paste is

fine) and create a

BasicRectangle object in

main.cpp:

#include <iostream>

using namespace std;

class BasicRectangle

{

public:

// width

float W ;

// length

float L ;

};

int main()

{

cout << "Hello world!" << endl;

BasicRectangle rectangle ;

rectangle.W = 1.0 ;

rectangle.L = 2.0 ;

return 0;

}

Basic C++ Class Syntax

Curly braces at the

beginning and end

followed by a semi-colon

class BasicRectangle

{

public:

// width ;

float W ;

// length

float L ;

};

class keyword Name of class

Internal variables are called

members

public keyword indicates everything

following the keyword is accessible

by any other code outside of this

class.

BasicRectangle rectangle ;

rectangle.W = 1.0 ;

rectangle.L = 2.0 ;

The class can now be used to

declare an object named rectangle.

The width and length of the rectangle

can be set.

Accessing data in the class

 Public members in an object

can be accessed (for reading

or writing) with the syntax:

object.member

 Next let’s add a function

inside the object (called a

method) to calculate the

area.

int main()

{

cout << "Hello world!" << endl;

BasicRectangle rectangle ;

rectangle.W = 1.0 ;

rectangle.L = 2.0 ;

return 0;

}

Methods are accessed just like members:

object.method(arguments)

class BasicRectangle

{

public:

// width ;

float W ;

// length

float L ;

float Area() {

return W * L ;

}

};

int main()

{

cout << "Hello world!" << endl;

BasicRectangle rectangle ;

rectangle.W = 21.0 ;

rectangle.L = 2.0 ;

cout << rectangle.Area() << endl ;

return 0;

}

method Area does not take any

arguments, it just returns the

calculation based on the object

members.

Basic C++ Class Summary

 C++ classes are defined with the keyword class and must be enclosed in

a pair of curly braces plus a semi-colon:

class ClassName { …. } ;

 The public keyword is used to mark members (variables) and methods

(functions) as accessible to code outside the class.

 The combination of data and the functions that operate on it is the OOP

concept of encapsulation.

Encapsulation in Action

 In C – calculate the area of a few shapes…

 In C++ with Circle and Rectangle classes…not possible to miscalculate.

 Well, provided the respective Area() methods are implemented correctly!

/* assume radius and width_square are assigned

already ; */

float a1 = AreaOfCircle(radius) ; // ok

float a2 = AreaOfSquare(width_square) ; // ok

float a3 = AreaOfCircle(width_square) ; // !! OOPS

Circle c1 ;

Rectangle r1 ;

// ... assign radius and width ...

float a1 = c1.Area() ;

float a2 = r1.Area() ;

Now for a “real” class

 Defining a class in the main.cpp file is not typical.

 Two parts to a C++ class:
 Header file (my_class.h)

 Contains the interface (definition) of the class – members, methods, etc.

 The interface is used by the compiler for type checking, enforcing access to private or

protected data, and so on.

 Also useful for programmers when using a class – no need to read the source code, just

rely on the interface.

 Source file (my_class.cc)

 Compiled by the compiler.

 Contains implementation of methods, initialization of members.

 In some circumstances there is no source file to go with a header file.

Create a new class in C::B

 Using an IDE is especially convenient in C++ to

keep the details straight when defining a class

 Typically header and source files are needed

 Some default methods are created to save you some

typing

 Create another project in C::B, call it Shapes.

 Once open, go the File menu, click New, then click

Class.

 This opens a wizard GUI that helps get things

started.

 This will create the header and source files for you.

 Name the class Rectangle

 Uncheck the Documentation

option
 This will just confuse things for now

 Click Create!

 2 files are automatically generated: rectangle.h and rectangle.h.cpp

#ifndef RECTANGLE_H

#define RECTANGLE_H

class Rectangle

{

public:

Rectangle();

virtual ~Rectangle();

protected:

private:

};

#endif // RECTANGLE_H

#include “rectangle.h"

Rectangle::Rectangle()

{

//ctor

}

Rectangle::~Rectangle()

{

//dtor

}

rectangle.h rectangle.cpp

Modify rectangle.h

 As in the sample BasicRectangle,

add storage for the length and

width to the header file. Add a

declaration for the Area method.

 The protected keyword will be

discussed later.

 The private keyword declares

anything following it (members,

methods) to be visible only to

code in this class.

#ifndef RECTANGLE_H

#define RECTANGLE_H

class Rectangle

{

public:

Rectangle();

virtual ~Rectangle();

float m_length ;

float m_width ;

float Area() ;

protected:

private:

};

#endif // RECTANGLE_H

Modify rectangle.cpp

 The Area() method is automatically

found from the header file.

 Click OK.

 This will now contain the code for the Area()

method.

 Use the C::B environment to help out here!

 Open rectangle.cpp (under Sources/src)

 Right-click and choose Insert/All class

methods without implementation

rectangle.cpp

 The Area() method now has a

basic definition added.

 The syntax:

class::method

tells the compiler that this is the

code for the Area() method declared

in rectangle.h

 Now take a few minutes to fill in

the code for Area().

 Hint – look at the code used in

BasicRectangle...

#include "rectangle.h"

Rectangle::Rectangle()

{

//ctor

}

Rectangle::~Rectangle()

{

//dtor

}

float Rectangle::Area()

{

}

More C::B assistance

 You may have noticed C::B trying

to help when entering the code for

Area()

 Press the Tab key to accept the

suggestion

 It will offer up variable names,

member names, class names, etc.

that match what you’re typing

when appropriate to save you

effort.

 This can be a huge convenience

when dealing with large code bases.

Last Step

 Go to the main.cpp file

 Add an include statement for “rectangle.h”

 Create a Rectangle object in main()

 Add a length and width

 Print out the area using cout.

 Hint: just like the BasicRectangle example…

Solution

 You should have come up with

something like this:

#include <iostream>

using namespace std;

#include "rectangle.h"

int main()

{

Rectangle rT ;

rT.m_width = 1.0 ;

rT.m_length = 2.0 ;

cout << rT.Area() << endl ;

return 0;

}

References and Pointers

 Part 1 introduced the concept of passing by reference when calling functions.
 Selected by using the & character in function argument types: int add (int &a, int b)

 References hold a memory address of a value.
 int add (int &a, int b) a has the value of a memory address, b has an integer value.

 Used like regular variables and C++ automatically fills in the value of the reference when needed:

int c = a + b ;  “retrieve the value of a and add it to the value of b”

 From C there is another way to deal with the memory address of a variable: via pointer

types.

 Similar syntax in functions except that the & is replaced with a *:

int add (int *a, int b)

 To get a value a pointer requires manual intervention by the programmer:

int c = *a + b ;  “retrieve the value of a and add it to the value of b”

Reference Pointer

Declaration int &ref ; int *ptr ;

Set memory address to something in

memory

int a = 0 ;

int &ref = a ;

int a = 0 ;

int *ptr = &a ;

Fetch value of thing in memory cout << ref ; cout << *ptr ;

Can refer/point to nothing (null value)? No Yes

Can change address that it refers to/points

at?

No.

int a = 0 ;

int b = 1 ;

int &ref = a ;

ref = b ;

// value of a is now 1!

Yes

int a = 0 ;

int b = 1 ;

int *ptr = &a ;

ptr = &b ;

// ptr now points at b

Object member/method syntax MyClass obj ;

MyClass &ref = obj ;

ref.member ;

ref.method();

MyClass obj ;

MyClass *ptr = obj ;

ptr->member ;

ptr->method();

// OR

(*ptr).member ;

(*ptr).method() ;

int a = 0 ;

int &ref = a ;

int *ptr = &a ;

int a: 4 bytes in memory at

address 0xAABBFF with a

value of 0.

Value stored in ref:

0xAABBFF

Value stored in ptr:

0xAABBFF

When to use a reference or a pointer

 Both references and pointers can be used to refer to objects in memory in

methods, functions, loops, etc.

 Avoids copying due to default call-by-value C++ behavior
 Could lead to memory/performance problems.

 Or cause issues with open files, databases, etc.

 If you need to:
 Hold a null value (i.e. point at nothing), use a pointer.

 Re-assign the memory address stored, use a pointer.

 Otherwise, use a reference.
 References are much easier to use, no funky C-style pointer syntax.

 Same benefits as a pointer, with less chance for error.

 Also no need to check if a reference has a null value…since they can’t hold one!

// Pointer to a null value

int *a = NULL ; // C-style

int *b = nullptr ; // C++11 style.

// Reference to a null value

// won't compile.

int &c = nullptr ;

Null Value Checking

 A null value means the pointer is not currently pointing at anything.

 It’s a good idea to check before accessing the value they point at.

 References cannot be null, so the code on the right does not need checking.

// Pointer version

void add(const int *a, const int b, int *c)

{

if (a && c) { // check for null pointer

*c = *a + b ;

}

}

// a && c  this means if a AND c are not

// null

// Reference version

void add(const int &a, const int b, int &c)

{

c = a + b ;

}

The formal concepts in OOP

 Object-oriented programming

(OOP):
 Defines classes to represent data and logic

in a program. Classes can contain members

(data) and methods (internal functions).

 Creates instances of classes, aka objects,

and builds the programs out of their

interactions.

 The core concepts in addition to

classes and objects are:
 Encapsulation

 Inheritance

 Polymorphism

 Abstraction

Polymorphism

Encapsulation

Inheritance

Abstraction

OOP

Core Concepts

 Encapsulation

 As mentioned while building the C++

class in the last session.

 Bundles related data and functions

into a class

 Inheritance

 Builds a relationship between classes

to share class members and methods

 Abstraction

 The hiding of members, methods,

and implementation details inside of a

class.

 Polymorphism

 The application of the same code to

multiple data types

 There are 3 kinds, all of which are

supported in C++. However only 1 is

actually called polymorphism in C++

jargon (!)

C++ Classes

 Open the Part 2 Shapes project in C::B

 In the Rectangle class C::B generated

two methods automatically.

 Rectangle() is a constructor. This is a

method that is called when an object is

instantiated for this class.

 Multiple constructors per class are

allowed

 ~Rectangle() is a destructor. This is

called when an object is removed from

memory.

 Only one destructor per class is allowed!

 (ignore the virtual keyword for now)

#ifndef RECTANGLE_H

#define RECTANGLE_H

class Rectangle

{

public:

Rectangle();

virtual ~Rectangle();

float m_length ;

float m_width ;

float Area() ;

protected:

private:

};

#endif // RECTANGLE_H

Encapsulation

 Bundling the data and area calculation for a rectangle into a

single class is and example of the concept of encapsulation.

Construction and Destruction

 The constructor is called when an

object is created.

 This is used to initialize an object:

 Load values into member variables

 Open files

 Connect to hardware, databases,

networks, etc.

 The destructor is called when an

object goes out of scope.

 Example:

 Object c1 is created when the

program reaches the first line of

the function, and destroyed when

the program leaves the function.

void function() {

ClassOne c1 ;

}

When an object is instantiated…

 The rT object is created in memory.

 When it is created its constructor is called to

do any necessary initialization.

 Here the constructor is empty so nothing is done.

 The constructor can take any number of

arguments like any other function but it

cannot return any values.
 Essentially the return value is the object itself!

 What if there are multiple constructors?
 The compiler chooses the correct one based on the

arguments given.

#include "rectangle.h"

int main()

{

Rectangle rT ;

rT.m_width = 1.0 ;

}

#include "rectangle.h"

Rectangle::Rectangle()

{

//ctor

}

Note the constructor has no

return type!

A second constructor

rectangle.h

class Rectangle

{

public:

Rectangle();

Rectangle(float width, float length) ;

/* etc */

};

rectangle.cpp

#include "rectangle.h"

/* OK to do this */

Rectangle::Rectangle(float width, float length)

{

m_width = width ;

m_length = length ;

}

 Two styles of constructor. Above is the C++11 member

initialization list style. At the top is the old way. C++11 is

preferred.

 With the old way the empty constructor is called automatically

even though it does nothing – it still adds a function call.

 Same rectangle.h for both styles.

#include "rectangle.h“

/* Better to do this */

Rectangle::Rectangle(float width, float length) :

m_width(width),m_length(length) { }

OR

Member Initialization Lists

 Syntax:

MyClass(int A, OtherClass &B, float C):

m_A(A),

m_B(B),

m_C(C) {

/* other code can go here */

}

Colon goes here

Members assigned

and separated with

commas. Note: order

doesn’t matter.

Additional code can be

added in the code

block.

And now use both constructors

 Both constructors are now used.

The new constructor initializes the

values when the object is created.

 Constructors are used to:

 Initialize members

 Open files

 Connect to databases

 Etc.

#include <iostream>

using namespace std;

#include "rectangle.h"

int main()

{

Rectangle rT ;

rT.m_width = 1.0 ;

rT.m_length = 2.0 ;

cout << rT.Area() << endl ;

Rectangle rT_2(2.0,2.0) ;

cout << rT_2.Area() << endl ;

return 0;

}

Default values

 C++11 added the ability to define default

values in headers in an intuitive way.

 Pre-C++11 default values would have been

coded into constructors.

 If members with default values get their value

set in constructor than the default value is

ignored.
 i.e. no “double setting” of the value.

#ifndef RECTANGLE_H

#define RECTANGLE_H

class Rectangle

{

public:

Rectangle();

virtual ~Rectangle();

// could do:

float m_length = 0.0 ;

float m_width = 0.0 ;

float Area() ;

protected:

private:

};

#endif // RECTANGLE_H

Using the C::B Debugger

 To show how this works we will use the C::B interactive debugger to step through the program line-by-line to follow the

constructor calls.

 Make sure you are running in Debug mode. This turns off compiler optimizations and has the compiler include information in the

compiled code for effective debugging.

Add a Breakpoint

 Breakpoints tell the debugger to halt at a

particular line so that the state of the

program can be inspected.

 In rectangle.cpp, double click to the left

of the lines in the constructors to set a

pair of breakpoints. A red dot will appear.

 Click the red arrow to start the code in

the debugger.

 The program has paused at the first

breakpoint in the default constructor.

 Use the Next Line button to go back to

the main() routine.

 Press the red arrow to continue

execution – stops at the next breakpoint.

Default constructors and destructors

 The two methods created by C::B automatically are

explicit versions of the default C++ constructors and

destructors.

 Every class has them – if you don’t define them then

empty ones that do nothing will be created for you by

the compiler.

 If you really don’t want the default constructor you can

delete it with the delete keyword.

 Also in the header file you can use the default keyword

if you like to be clear that you are using the default.

class Foo {

public:

Foo() = delete ;

// Another constructor

// must be defined!

Foo(int x) ;

};

class Bar {

public:

Bar() = default ;

};

Custom constructors and destructors

 You must define your own constructor when you want to initialize an

object with arguments.

 A custom destructor is always needed when internal members in the

class need special handling.

 Examples: manually allocated memory, open files, hardware drivers, database or

network connections, custom data structures, etc.

Destructors

 Destructors are called when an object is

destroyed.

 There is only one destructor allowed per

class.

 Objects are destroyed when they go out

of scope.

 Destructors are never called explicitly by

the programmer. Calls to destructors are

inserted automatically by the compiler.

Rectangle::~Rectangle()

{

//dtor

}

Note the destructor has no return type and is named with

a ~. This class just has 2 floats as members which are

automatically removed from memory by the compiler.

House object

~House() destructor

Destructors

 Example:

class Example {

public:

Example() = delete ;

Example(int count) ;

virtual ~Example() ;

// A pointer to some memory

// that will be allocated.

float *values = nullptr ;

};

Example::Example(int count) {

// Allocate memory to store "count"

// floats.

values = new float[count];

}

Example::~Example() {

// The destructor must free this

// memory. Only do so if values is not

// null.

if (values) {

delete[] values ;

}

}

Scope
 Scope is the region where a variable is valid.

 Constructors are called when an object is created.

 Destructors are only ever called implicitly.

int main() { // Start of a code block

// in main function scope

float x ; // No constructors for built-in types

ClassOne c1 ; // c1 constructor ClassOne() is called.

if (1){ // Start of an inner code block

// scope of c2 is this inner code block

ClassOne c2 ; //c2 constructor ClassOne() is called.

} // c2 destructor ~ClassOne() is called.

ClassOne c3 ; // c3 constructor ClassOne() is called.

} // leaving program, call destructors for c3 and c1 ~ClassOne()

// variable x: no destructor for built-in type

Copy, Assignment, and Move Constructors

 The compiler will automatically create constructors to deal with copying, assignment, and

moving.

 Moving occurs, for example, when an object is created and added to a list in a loop.

 Moving is an optimization feature that’s part of C++11.

 Dealing with the details of these constructors is outside of the scope of this tutorial

 How do you know if you need to write one?

 When you move, assign, or copy an object in your code and the code won’t compile!

 OR you move, assign, or copy an object, it compiles, but unexpected things happen when running.

 You may require custom code when...

 dealing with open files inside an object

 The class manually allocated memory

 Hardware resources (a serial port) opened inside an object

 Etc.

Rectangle rT_1(1.0,2.0) ;

// Now use the copy constructor

Rectangle rT_2(rT_1) ;

// Do an assignment, with the

// default assignment operator

rT_2 = rT_1 ;

So Far…

 Define a C++ class
 Adding members and methods

 Use separate header and source files for a C++ class.

 Class constructors & destructors

 OOP concept: Encapsulation

The formal concepts in OOP
Polymorphism

Encapsulation

Inheritance

Abstraction

OOP

 Next up: Inheritance

Inheritance

 Inheritance is the ability to form a

hierarchy of classes where they

share common members and

methods.
 Helps with: code re-use, consistent

programming, program organization

 This is a powerful concept!

Molecule

Inorganic

Mineral

Organic

Protein

Inheritance
 The class being derived from is referred

to as the base, parent, or super class.

 The class being derived is the derived,

child, or sub class.

 For consistency, we’ll use superclass

and subclass in this tutorial. A base class

is the one at the top of the hierarchy.

Molecule

Inorganic

Mineral

Organic

Protein

Superclass

Subclass

Base Class

Inheritance in Action

 Streams in C++ are series of characters

– the C+ I/O system is based on this

concept.

 cout is an object of the class ostream. It

is a write-only series of characters that

prints to the terminal.

 There are two subclasses of ostream:

 ofstream – write characters to a file

 ostringstream – write characters to a string

 Writing to the terminal is straightforward:

cout << some_variable ;

 How might an object of class ofstream or

ostringstream be used if we want to write

characters to a file or to a string?

Inheritance in Action

 For ofstream and ofstringstream the << operator is inherited from ostream

and behaves the same way for each from the programmer’s point of view.

 The ofstream class adds a constructor to open a file and a close() method.

 ofstringstream adds a method to retrieve the underlying string, str()

 If you wanted a class to write to something else, like a USB port…
 Maybe look into inheriting from ostream!

 Or its underlying class, basic_ostream which handles types other than characters…

Inheritance in Action

#include <iostream> // cout

#include <fstream> // ofstream

#include <sstream> // ostringstream

using namespace std ;

void some_func(string msg) {

cout << msg ; // to the terminal

// The constructor opens a file for writing

ofstream my_file("filename.txt") ;

// Write to the file.

my_file << msg ;

// close the file.

my_file.close() ;

ostringstream oss ;

// Write to the stringstream

oss << msg ;

// Get the string from stringstream

cout << oss.str() ;

}

Public, protected, private

 These keywords were added by

C::B to our Rectangle class.

 These are used to control access

to different parts of the class

during inheritance by other pieces

of code.

class Rectangle

{

public:

Rectangle();

Rectangle(float width, float length) ;

virtual ~Rectangle();

float m_width ;

float m_length ;

float Area() ;

protected:

private:

};

“There are only two things wrong with C++: The initial concept

and the implementation.”

– Bertrand Meyer (inventor of the Eiffel OOP language)

C++ Access Control and Inheritance

 A summary of the accessibility of members and methods:

Access public protected private

Same class Yes Yes Yes

Subclass Yes Yes No

Outside classes Yes No No

Sub myobj ;

Myobj.i = 10 ; // ok

Myobj.j = 3 ; // Compiler error

class Super {

public:

int i;

protected:

int j ;

private:

int k ;

};

class Sub : public Super {

// in methods, could access

// i and j from Parent only.

};

Inheritance

Outside code

Inheritance

 With inheritance subclasses have access

to private and protected members and

methods all the way back to the base

class.

 Each subclass can still define its own

public, protected, and private members

and methods along the way.

class A

public

protected

private

class B : public A

public

protected

private

public A

protected A

class C : public B

public A

protected A

public

protected

public B

protected B

private

Single vs Multiple Inheritance

 C++ supports creating relationships where a subclass

inherits data members and methods from a single

superclass: single inheritance

 C++ also support inheriting from multiple classes

simultaneously: Multiple inheritance

 This tutorial will only cover single inheritance.

 Generally speaking…

 Multiple inheritance requires a large amount of design effort

 It’s an easy way to end up with overly complex, fragile code

 Java, C#, and Python (all came after C++) exclude multiple

inheritance on purpose to avoid problems with it.

 With multiple inheritance a hierarchy like

this is possible to create. This is

nicknamed the Deadly Diamond of

Death as it creates ambiguity in the code.

D

B C

A

Abstraction

 Having private (internal) data and methods separated from public ones is

the OOP concept of abstraction.

C++ Inheritance Syntax

 Inheritance syntax pattern:
class SubclassName : public SuperclassName

 Here the public keyword is used.
 Methods implemented in class Sub can access any public or

protected members and methods in Super but cannot access

anything that is private.

 Other inheritance types are protected and private.

class Super {

public:

int i;

protected:

int j ;

private:

int k ;

};

class Sub : public Super {

// ...

};

It is now time to inherit

 The C::B program will help with the

syntax when defining a class that

inherits from another class.

 With the Shapes project open, click on

File  New  Class

 Give it the name Square and check

the “Inherits another class” option.

 Enter Rectangle as the superclass and

the include as “rectangle.h” (note the

lowercase r)

 Click Create!

 2 files are automatically generated: square.h and square.cpp

 Class Square inherits from class Rectangle

square.h square.cpp

#ifndef SQUARE_H

#define SQUARE_H

#include "rectangle.h"

class Square : public Rectangle

{

public:

Square();

virtual ~Square();

protected:

private:

};

#endif // SQUARE_H

#include "square.h"

Square::Square()

{

//ctor

}

Square::~Square()

{

//dtor

}

 Note that subclasses are free to add any number

of new methods or members, they are not limited

to those in the superclass.

A new constructor is needed.

 A square is, of course, just a rectangle with equal length and width.

 The area can be calculated the same way as a rectangle.

 Our Square class therefore needs just one value to initialize it and it can

re-use the Rectangle.Area() method for its area.

 Go ahead and try it:

 Add an argument to the default constructor in square.h

 Update the constructor in square.cpp to do…?

 Remember Square can access the public members and methods in its superclass

Solution 1

 Square can access the public members in its superclass.

 Its constructor can then just assign the length of the side to the

Rectangle m_width and m_length.

 This is unsatisfying – while there is nothing wrong with this it’s

not the OOP way to do things.

 Why re-code the perfectly good constructor in Rectangle?

#ifndef SQUARE_H

#define SQUARE_H

#include "rectangle.h"

class Square : public Rectangle

{

public:

Square(float width);

virtual ~Square();

protected:

private:

};

#endif // SQUARE_H

#include "square.h"

Square::Square(float length)

{

m_width = width ;

m_length = length ;

}

The delegating constructor

 C++11 added a new constructor type

called the delegating constructor.

 Using member initialization lists you can

call one constructor from another.

 Even better: with member initialization

lists C++ can call superclass

constructors!

Square::Square(float length) :

Rectangle(length,length)

{

// other code could go here.

}

class class_c {

public:

int max;

int min;

int middle;

class_c(int my_max) {

max = my_max > 0 ? my_max : 10;

}

class_c(int my_max, int my_min) : class_c(my_max) {

min = my_min > 0 && my_min < max ? my_min : 1;

}

class_c(int my_max, int my_min, int my_middle) :

class_c (my_max, my_min){

middle = my_middle < max &&

my_middle > min ? my_middle : 5;

}

};

Reference:
https://msdn.microsoft.com/en-us/library/dn387583.aspx

Solution 2

 Square can directly call its superclass constructor and let the

Rectangle constructor make the assignment to m_width and

m_float.

 This saves typing, time, and reduces the chance of adding

bugs to your code.

 The more complex your code, the more compelling this statement

is.

 Code re-use is one of the prime reasons to use OOP.

#ifndef SQUARE_H

#define SQUARE_H

#include "rectangle.h"

class Square : public Rectangle

{

public:

Square(float width);

virtual ~Square();

protected:

private:

};

#endif // SQUARE_H

#include "square.h"

Square::Square(float length) :

Rectangle(length, length) {}

Trying it out in main()

 What happens behind the scenes

when this is compiled….

#include <iostream>

using namespace std;

#include "square.h"

int main()

{

Square sQ(4) ;

// Uses the Rectangle Area() method!

cout << sQ.Area() << endl ;

return 0;

}

sQ.Area()

Square class
does not

implement Area()
so compiler looks

to superclass

Finds Area() in
Rectangle class.

Inserts call to
Rectangle.Area()

method in
compiled code.

More on Destructors
 When a subclass object is

removed from memory, its

destructor is called as it is for any

object.

 Its superclass destructor is than

also called .

 Each subclass should only clean

up its own problems and let

superclasses clean up theirs.

Square object is
removed from

memory

~Square() is called

~Rectangle() is
called

The formal concepts in OOP
Polymorphism

Encapsulation

Inheritance

Abstraction

OOP

 Next up: Polymorphism

Using subclasses
 A function that takes a superclass

argument can also be called with

a subclass as the argument.

 The reverse is not true – a

function expecting a subclass

argument cannot accept its

superclass.

 Copy the code to the right and

add it to your main.cpp file.

void PrintArea(Rectangle &rT) {

cout << rT.Area() << endl ;

}

int main() {

Rectangle rT(1.0,2.0) ;

Square sQ(3.0) ;

PrintArea(rT) ;

PrintArea(sQ) ;

}

The PrintArea function

can accept the Square

object sQ because

Square is a subclass of

Rectangle.

Overriding Methods
 Sometimes a subclass needs to have the

same interface to a method as a

superclass with different functionality.

 This is achieved by overriding a method.

 Overriding a method is simple: just re-

implement the method with the same

name and arguments in the subclass.

In C::B open project:

CodeBlocks Projects  Part 2  Virtual Method Calls

class Super {

public:

void PrintNum() {

cout << 1 << endl ;

}

} ;

class Sub : public Super {

public:

// Override

void PrintNum() {

cout << 2 << endl ;

}

} ;

Super sP ;

sP.PrintNum() ; // Prints 1

Sub sB ;

sB.PrintNum() ; // Prints 2

Overriding Methods

 Seems simple, right?

 To quote from slide 10 in Part 1 of this

tutorial, C++: “Includes all the subtleties

of C and adds its own”

 Overriding methods is one of those

subtleties.

class Super {

public:

void PrintNum() {

cout << 1 << endl ;

}

} ;

class Sub : public Super {

public:

// Override

void PrintNum() {

cout << 2 << endl ;

}

} ;

Super sP ;

sP.PrintNum() ; // Prints 1

Sub sB ;

sB.PrintNum() ; // Prints 2

How about in a function call…

 Given the class definitions, what

is happening in this function call?

 Using a single function to operate

on different types is

polymorphism.

class Super {

public:

void PrintNum() {

cout << 1 << endl ;

}

} ;

class Sub : public Super {

public:

// Override

void PrintNum() {

cout << 2 << endl ;

}

} ;

void FuncRef(Super &sP) {

sP.PrintNum() ;

}

Super sP ;

Func(sP) ; // Prints 1

Sub sB ;

Func(sB) ; // Hey!! Prints 1!!

“C++ is an insult to the human brain”

– Niklaus Wirth (designer of Pascal)

Type casting

 The Func function passes the argument as a reference (Super &sP).

 What’s happening here is dynamic type casting, the process of converting from

one type to another at runtime.

 Same mechanism as the dynamic_cast function

 The incoming object is treated as though it were a superclass object in

the function.

 When methods are overridden and called there are two points where

the proper version of the method can be identified: either at compile

time or at runtime.

void FuncRef(Super &sP) {

sP.PrintNum() ;

}

Virtual methods
 When a method is labeled as virtual and

overridden the compiler will generate

code that will check the type of an object

at runtime when the method is called.

 The type check will then result in the

expected version of the method being

called.

 When overriding a virtual method in a

subclass, it’s a good idea to label the

method as virtual in the subclass as well.

 …just in case this gets subclassed again!

class SuperVirtual

{

public:

virtual void PrintNum()

{

cout << 1 << endl ;

}

} ;

class SubVirtual : public SuperVirtual

{

public:

// Override

virtual void PrintNum()

{

cout << 2 << endl ;

}

} ;

void Func(SuperVirtual &sP)

{

sP.PrintNum() ;

}

SuperVirtual sP ;

Func(sP) ; // Prints 1

SubVirtual sB ;

Func(sB) ; // Prints 2!!

Early (static) vs. Late (dynamic) binding

 What is going on here?

 Leaving out the virtual keyword on a

method that is overridden results in the

compiler deciding at compile time which

version (subclass or superclass) of the

method to call.

 This is called early or static binding.

 At compile time, a function that takes a

superclass argument will only call the

non-virtual superclass method under

early binding.

 Making a method virtual adds code

behind the scenes (that you, the

programmer, never interact with directly)

 Lookups in a hidden table (the vtable are

done to figure out what override of the

virtual method should be run.

 This is called late or dynamic binding.

 There is a small performance penalty for

late binding due to the vtable lookup.

 This only applies when an object is

referred to by a reference or pointer.

Behind the scenes – vptr and vtable

 C++ classes have a hidden pointer (vptr)

generated that points to a table of virtual

methods associated with a class (vtable).

 When a virtual class method (base class

or its subclasses) is called by reference (

or pointer) when the programming is

running the following happens:

 The object’s class vptr is followed to its class

vtable

 The virtual method is looked up in the vtable

and is then called.

 One vptr and one vtable per class so minimal

memory overhead

 If a method override is non-virtual it won’t be in

the vtable and it is selected at compile time.

Func(SuperVirtual &sP)

sP is a reference to a…

SuperVirtual SubVirtual

SuperVirtual’s

vptr

SubVirtual’s

vptr

Vtable

& SuperVirtual::PrintNum()

Vtable

& SubVirtual::PrintNum()

Let’s run this through the debugger

 Open the project: Parts 2-

3/Virtual Method Calls.

 Everything here is

implemented in one big

main.cpp

 Place a breakpoint at the first

line in main() and in the two

implemenations of Func()

 Make sure the “Watches”

debugging window is open.

When to make methods virtual

 If a method will be (or might be)

overridden in a subclass, make it virtual

 There is a minor performance penalty.

Will that even matter to you?
 i.e. Have you profiled and tested your code to

show that virtual method calls are a performance

issue?

 When is this true?
 Almost always! Who knows how your code will

be used in the future?

 Constructors are never virtual in C++.

 Destructors in a base class should

always be virtual.

 Also – if any method in a class is virtual,

make the destructor virtual

 These are important when dealing with

objects via reference and it avoids some

subtleties when manually allocating

memory.

Why all this complexity?

 Late binding allows for code libraries to be updated for new functionality. As methods are identified at runtime

the executable does not need to be updated.

 This is done all the time! Your C++ code may be, for example, a plugin to an existing simulation code.

 Greater flexibility when dealing with multiple subclasses of a superclass.

 Most of the time this is the behavior you are looking for when building class hierarchies.

void FuncLate(SuperVirtual sP)

{

sP.PrintNum() ;

}

void FuncEarly(SuperVirtual &sP)

{

sP.PrintNum() ;

}

 Called by reference – late binding

to PrintNum()
 Called by value – early binding to

PrintNum even though it’s virtual!

 Remember the Deadly Diamond of

Death? Let’s explain.

 Look at the class hierarchy on the right.

 Square and Circle inherit from Shape

 Squircle inherits from both Square and Circle

 Syntax:

class Squircle : public Square, public Circle

 The Shape class implements an empty

Area() method. The Square and Circle

classes override it. Squircle does not.

 Under late binding, which version of Area

is accessed from Squircle?

Square.Area() or Circle.Area()?

Shape

virtual float Area() {}

Square

virtual float

Area() {…}

Circle

virtual float

Area() {…}

Squircle

Interfaces

 Another pitfall of multiple inheritance: the

fragile base class problem.

 If many classes inherit from a single base

(super) class then changes to methods in the

base class can have unexpected

consequences in the program.

 This can happen with single inheritance but it’s

much easier to run into with multiple

inheritance.

 Interfaces are a way to have your

classes share behavior without them

sharing actual code.

 Gives much of the benefit of multiple

inheritance without the complexity and

pitfalls

Shape

Square Circle

 Example: for debugging you’d like each class

to have a Log() method that would write some

info to a file.

 But each class has different types of

information to print!

 With multiple inheritance each subclass might

implement its own Log() method (or not). If an

override is left out in a subclass it may call the

Log() method on a superclass and print

unexpected information.

Log

Interfaces

 An interface class in C++ is called a pure virtual class.

 It contains virtual methods only with a special syntax.

Instead of {} the function is set to 0.
 Any subclass needs to implement the methods!

 Modified square.h shown.

 What happens when this is compiled?

 Once the LogInfo() is uncommented it will compile.

#ifndef SQUARE_H

#define SQUARE_H

#include "rectangle.h"

class Log {

virtual void LogInfo()=0 ;

};

class Square : public Rectangle, Log

{

public:

Square(float length);

virtual ~Square();

// virtual void LogInfo() {}

protected:

private:

};

#endif // SQUARE_H

(…error…)

include/square.h:10:7: note: because the following virtual

functions are pure within 'Square':

class Square : public Rectangle, Log

^

include/square.h:7:18: note: virtual void Log::LogInfo()

virtual void LogInfo()=0 ;

 C++ offers another fix for the diamond problem, Virtual inheritance. See: https://en.wikipedia.org/wiki/Virtual_inheritance

Putting it all together

 Now let’s revisit our Shapes

project.

 In the directory of C::B Part 2

projects, open the “Shapes with

Circle” project.

 This has a Shape base class with a

Rectangle and a Square

 Add a Circle class to the class

hierarchy in a sensible fashion.

Shape

Rectangle

Square

 Hint: Think first, code second.

Circle

???

New pure virtual Shape class

 Slight bit of trickery:

 An empty constructor is defined in shape.h

 No need to have an extra shape.cpp file if these

functions do nothing!

 Q: How much code can be in the header file?

 A: Most of it with some exceptions.

 .h files are not compiled into .o files so a header with

a lot of code gets re-compiled every time it’s

referenced in a source file.

#ifndef SHAPE_H

#define SHAPE_H

class Shape

{

public:

Shape() {}

virtual ~Shape() {}

virtual float Area()=0 ;

protected:

private:

};

#endif // SHAPE_H

Give it a try

 Add inheritance from Shape

to the Rectangle class

 Add a Circle class, inheriting

from wherever you like.

 Implement Area() for the

Circle

 If you just want to see a

solution, open the project

“Shapes with Circle solved”

A Potential Solution

 A Circle has one dimension

(radius), like a Square.

 Would only need to override the

Area() method

 But…

 Would be storing the radius in the

members m_width and m_length.

This is not a very obvious to

someone else who reads your code.

 Maybe:

 Change m_width and m_length

names to m_dim_1 and m_dim_2?

 Just makes everything more muddled!

Shape

Rectangle

Square

Circle

A Better Solution

 Inherit separately from the Shape

base class

 Seems logical, to most people a

circle is not a specialized form of

rectangle…

 Add a member m_radius to store

the radius.

 Implement the Area() method

 Makes more sense!

 Easy to extend to add an Oval

class, etc.

Shape

Rectangle

Square

Circle

New Circle class

 Also inherits from Shape

 Adds a constant value for p

 Constant values can be defined right in the

header file.

 If you accidentally try to change the value of PI

the compiler will throw an error.

#ifndef CIRCLE_H

#define CIRCLE_H

#include "shape.h"

class Circle : public Shape

{

public:

Circle();

Circle(float radius) ;

virtual ~Circle();

virtual float Area() ;

const float PI = 3.14;

float m_radius ;

protected:

private:

};

#endif // CIRCLE_H

 circle.cpp

 Questions?

#include "circle.h"

Circle::Circle()

{

//ctor

}

Circle::~Circle()

{

//dtor

}

// Use a member initialization list.

Circle::Circle(float radius) : m_radius{radius}

{}

float Circle::Area()

{

// Quiz: what happens if this line is

// uncommented and then compiled:

//PI=3.14159 ;

return m_radius * m_radius * PI ;

}

Quiz time!

 What happens behind

the scenes when the

function PrintArea is

called?

 How about if PrintArea’s

argument was instead:

void PrintArea(Shape shape)

void PrintArea(Shape &shape) {

cout << "Area: " << shape.Area() << endl ;

}

int main()

{

Square sQ(4) ;

Circle circ(3.5) ;

Rectangle rT(21,2) ;

// Print everything

PrintArea(sQ) ;

PrintArea(rT) ;

PrintArea(circ) ;

return 0;

}

Quick mention…

 Aside from overriding functions it

is also possible to override

operators in C++.

 As seen in the C++ string. The +

operator concatenates strings:

 It’s possible to override +,-,=,<,>,

brackets, parentheses, etc.

 Syntax:

 Recommendation:

 Generally speaking, avoid this. This

is an easy way to generate very

confusing code.

 A well-named function will almost

always be easier to understand than

an operator.

 Exceptions:

 Assignment: operator=

 For certain special functions:

operator()

string str = "ABC" ;

str = str + "DEF" ;

// str is now "ABCDEF"

MyClass operator*(const MyClass& mC) {...}

Summary

 C++ classes can be created in hierarchies via

inheritance, a core concept in OOP.

 Classes that inherit from others can make use

of the superclass’ public and protected

members and methods

 You write less code!

 Virtual methods should be used

whenever methods will be overridden in

subclasses.

 Avoid multiple inheritance, use interfaces

instead.

 Subclasses can override a superclass

method for their own purposes and can still

explicitly call the superclass method.

 Abstraction means hiding details when they

don’t need to be accessed by external code.
 Reduces the chances for bugs.

 While there is a lot of complexity here – in

terms of concepts, syntax, and application –

keep in mind that OOP is a highly successful

way of building programs!

