
Introduction to C++: Part 2

Tutorial Outline: Part 2

 References and Pointers

 The formal concepts in OOP

 More about C++ classes

Pass by Value

 C++ defaults to pass by value behavior when calling a function.

 The function arguments are copied when used in the function.

 Changing the value of L or W in the RectangleArea1 function does not effect their original values in

the main() function

 When passing objects as function arguments it is important to be aware that potentially large data

structures are automatically copied!

main()

float L

float W

RectangleArea1(float L, float W)

float L

float W

copy

copy

Pass by Reference

 Pass by reference behavior is triggered when the & character is used to modify the type of the

argument.

 This is the type of behavior you see in Fortran, Matlab, Python, and others.

 Pass by reference function arguments are NOT copied. Instead the compiler sends a pointer to the

function that references the memory location of the original variable. The syntax of using the

argument in the function does not change.

 Pass by reference arguments almost always act just like a pass by value argument when writing

code EXCEPT that changing their value changes the value of the original variable!!

 The const modifier can be used to prevent changes to the original variable in main().

main()

float L

float W

RectangleArea3(const float& L, const float& W)

float L

float W

reference

reference

 In RectangleArea4 the pass by reference behavior is used as a way to

return the result without the function returning a value.

 The value of the area argument is modified in the main() routine by the

function.

 This can be a useful way for a function to return multiple values in the

calling routine.

void RectangleArea4(const float& L, const float& W, float& area) {

area= L*W ;

}

void does not return a value.

 In C++ arguments to functions can be objects…which can contain any

quantity of data you’ve defined!
 Example: Consider a string variable containing 1 million characters (approx. 1 MB of RAM).

 Pass by value requires a copy – 1 MB.

 Pass by reference requires 8 bytes!

 Pass by value could potentially mean the accidental copying of large

amounts of memory which can greatly impact program memory usage and

performance.

 When passing by reference, use the const modifier whenever appropriate

to protect yourself from coding errors.
 Generally speaking – use const anytime you don’t want to modify function arguments in a

function.

“C makes it easy to shoot yourself in the foot; C++ makes it harder, but

when you do it blows your whole leg off.” – Bjarne Stroustrop

A first C++ class

 Start a new project. Call it

BasicRectangle.

 In the main.cpp, we’ll define a

class called BasicRectangle

 First, just the basics: length and

width

 Enter the code on the right

before the main() function in the

main.cpp file (copy & paste is

fine) and create a

BasicRectangle object in

main.cpp:

#include <iostream>

using namespace std;

class BasicRectangle

{

public:

// width

float W ;

// length

float L ;

};

int main()

{

cout << "Hello world!" << endl;

BasicRectangle rectangle ;

rectangle.W = 1.0 ;

rectangle.L = 2.0 ;

return 0;

}

Basic C++ Class Syntax

Curly braces at the

beginning and end

followed by a semi-colon

class BasicRectangle

{

public:

// width ;

float W ;

// length

float L ;

};

class keyword Name of class

Internal variables are called

members

public keyword indicates everything

following the keyword is accessible

by any other code outside of this

class.

BasicRectangle rectangle ;

rectangle.W = 1.0 ;

rectangle.L = 2.0 ;

The class can now be used to

declare an object named rectangle.

The width and length of the rectangle

can be set.

Accessing data in the class

 Public members in an object

can be accessed (for reading

or writing) with the syntax:

object.member

 Next let’s add a function

inside the object (called a

method) to calculate the

area.

int main()

{

cout << "Hello world!" << endl;

BasicRectangle rectangle ;

rectangle.W = 1.0 ;

rectangle.L = 2.0 ;

return 0;

}

Methods are accessed just like members:

object.method(arguments)

class BasicRectangle

{

public:

// width ;

float W ;

// length

float L ;

float Area() {

return W * L ;

}

};

int main()

{

cout << "Hello world!" << endl;

BasicRectangle rectangle ;

rectangle.W = 21.0 ;

rectangle.L = 2.0 ;

cout << rectangle.Area() << endl ;

return 0;

}

method Area does not take any

arguments, it just returns the

calculation based on the object

members.

Basic C++ Class Summary

 C++ classes are defined with the keyword class and must be enclosed in

a pair of curly braces plus a semi-colon:

class ClassName { …. } ;

 The public keyword is used to mark members (variables) and methods

(functions) as accessible to code outside the class.

 The combination of data and the functions that operate on it is the OOP

concept of encapsulation.

Encapsulation in Action

 In C – calculate the area of a few shapes…

 In C++ with Circle and Rectangle classes…not possible to miscalculate.

 Well, provided the respective Area() methods are implemented correctly!

/* assume radius and width_square are assigned

already ; */

float a1 = AreaOfCircle(radius) ; // ok

float a2 = AreaOfSquare(width_square) ; // ok

float a3 = AreaOfCircle(width_square) ; // !! OOPS

Circle c1 ;

Rectangle r1 ;

// ... assign radius and width ...

float a1 = c1.Area() ;

float a2 = r1.Area() ;

Now for a “real” class

 Defining a class in the main.cpp file is not typical.

 Two parts to a C++ class:
 Header file (my_class.h)

 Contains the interface (definition) of the class – members, methods, etc.

 The interface is used by the compiler for type checking, enforcing access to private or

protected data, and so on.

 Also useful for programmers when using a class – no need to read the source code, just

rely on the interface.

 Source file (my_class.cc)

 Compiled by the compiler.

 Contains implementation of methods, initialization of members.

 In some circumstances there is no source file to go with a header file.

Create a new class in C::B

 Using an IDE is especially convenient in C++ to

keep the details straight when defining a class

 Typically header and source files are needed

 Some default methods are created to save you some

typing

 Create another project in C::B, call it Shapes.

 Once open, go the File menu, click New, then click

Class.

 This opens a wizard GUI that helps get things

started.

 This will create the header and source files for you.

 Name the class Rectangle

 Uncheck the Documentation

option
 This will just confuse things for now

 Click Create!

 2 files are automatically generated: rectangle.h and rectangle.h.cpp

#ifndef RECTANGLE_H

#define RECTANGLE_H

class Rectangle

{

public:

Rectangle();

virtual ~Rectangle();

protected:

private:

};

#endif // RECTANGLE_H

#include “rectangle.h"

Rectangle::Rectangle()

{

//ctor

}

Rectangle::~Rectangle()

{

//dtor

}

rectangle.h rectangle.cpp

Modify rectangle.h

 As in the sample BasicRectangle,

add storage for the length and

width to the header file. Add a

declaration for the Area method.

 The protected keyword will be

discussed later.

 The private keyword declares

anything following it (members,

methods) to be visible only to

code in this class.

#ifndef RECTANGLE_H

#define RECTANGLE_H

class Rectangle

{

public:

Rectangle();

virtual ~Rectangle();

float m_length ;

float m_width ;

float Area() ;

protected:

private:

};

#endif // RECTANGLE_H

Modify rectangle.cpp

 The Area() method is automatically

found from the header file.

 Click OK.

 This will now contain the code for the Area()

method.

 Use the C::B environment to help out here!

 Open rectangle.cpp (under Sources/src)

 Right-click and choose Insert/All class

methods without implementation

rectangle.cpp

 The Area() method now has a

basic definition added.

 The syntax:

class::method

tells the compiler that this is the

code for the Area() method declared

in rectangle.h

 Now take a few minutes to fill in

the code for Area().

 Hint – look at the code used in

BasicRectangle...

#include "rectangle.h"

Rectangle::Rectangle()

{

//ctor

}

Rectangle::~Rectangle()

{

//dtor

}

float Rectangle::Area()

{

}

More C::B assistance

 You may have noticed C::B trying

to help when entering the code for

Area()

 Press the Tab key to accept the

suggestion

 It will offer up variable names,

member names, class names, etc.

that match what you’re typing

when appropriate to save you

effort.

 This can be a huge convenience

when dealing with large code bases.

Last Step

 Go to the main.cpp file

 Add an include statement for “rectangle.h”

 Create a Rectangle object in main()

 Add a length and width

 Print out the area using cout.

 Hint: just like the BasicRectangle example…

Solution

 You should have come up with

something like this:

#include <iostream>

using namespace std;

#include "rectangle.h"

int main()

{

Rectangle rT ;

rT.m_width = 1.0 ;

rT.m_length = 2.0 ;

cout << rT.Area() << endl ;

return 0;

}

References and Pointers

 Part 1 introduced the concept of passing by reference when calling functions.
 Selected by using the & character in function argument types: int add (int &a, int b)

 References hold a memory address of a value.
 int add (int &a, int b) a has the value of a memory address, b has an integer value.

 Used like regular variables and C++ automatically fills in the value of the reference when needed:

int c = a + b ; “retrieve the value of a and add it to the value of b”

 From C there is another way to deal with the memory address of a variable: via pointer

types.

 Similar syntax in functions except that the & is replaced with a *:

int add (int *a, int b)

 To get a value a pointer requires manual intervention by the programmer:

int c = *a + b ; “retrieve the value of a and add it to the value of b”

Reference Pointer

Declaration int &ref ; int *ptr ;

Set memory address to something in

memory

int a = 0 ;

int &ref = a ;

int a = 0 ;

int *ptr = &a ;

Fetch value of thing in memory cout << ref ; cout << *ptr ;

Can refer/point to nothing (null value)? No Yes

Can change address that it refers to/points

at?

No.

int a = 0 ;

int b = 1 ;

int &ref = a ;

ref = b ;

// value of a is now 1!

Yes

int a = 0 ;

int b = 1 ;

int *ptr = &a ;

ptr = &b ;

// ptr now points at b

Object member/method syntax MyClass obj ;

MyClass &ref = obj ;

ref.member ;

ref.method();

MyClass obj ;

MyClass *ptr = obj ;

ptr->member ;

ptr->method();

// OR

(*ptr).member ;

(*ptr).method() ;

int a = 0 ;

int &ref = a ;

int *ptr = &a ;

int a: 4 bytes in memory at

address 0xAABBFF with a

value of 0.

Value stored in ref:

0xAABBFF

Value stored in ptr:

0xAABBFF

When to use a reference or a pointer

 Both references and pointers can be used to refer to objects in memory in

methods, functions, loops, etc.

 Avoids copying due to default call-by-value C++ behavior
 Could lead to memory/performance problems.

 Or cause issues with open files, databases, etc.

 If you need to:
 Hold a null value (i.e. point at nothing), use a pointer.

 Re-assign the memory address stored, use a pointer.

 Otherwise, use a reference.
 References are much easier to use, no funky C-style pointer syntax.

 Same benefits as a pointer, with less chance for error.

 Also no need to check if a reference has a null value…since they can’t hold one!

// Pointer to a null value

int *a = NULL ; // C-style

int *b = nullptr ; // C++11 style.

// Reference to a null value

// won't compile.

int &c = nullptr ;

Null Value Checking

 A null value means the pointer is not currently pointing at anything.

 It’s a good idea to check before accessing the value they point at.

 References cannot be null, so the code on the right does not need checking.

// Pointer version

void add(const int *a, const int b, int *c)

{

if (a && c) { // check for null pointer

*c = *a + b ;

}

}

// a && c this means if a AND c are not

// null

// Reference version

void add(const int &a, const int b, int &c)

{

c = a + b ;

}

The formal concepts in OOP

 Object-oriented programming

(OOP):
 Defines classes to represent data and logic

in a program. Classes can contain members

(data) and methods (internal functions).

 Creates instances of classes, aka objects,

and builds the programs out of their

interactions.

 The core concepts in addition to

classes and objects are:
 Encapsulation

 Inheritance

 Polymorphism

 Abstraction

Polymorphism

Encapsulation

Inheritance

Abstraction

OOP

Core Concepts

 Encapsulation

 As mentioned while building the C++

class in the last session.

 Bundles related data and functions

into a class

 Inheritance

 Builds a relationship between classes

to share class members and methods

 Abstraction

 The hiding of members, methods,

and implementation details inside of a

class.

 Polymorphism

 The application of the same code to

multiple data types

 There are 3 kinds, all of which are

supported in C++. However only 1 is

actually called polymorphism in C++

jargon (!)

C++ Classes

 Open the Part 2 Shapes project in C::B

 In the Rectangle class C::B generated

two methods automatically.

 Rectangle() is a constructor. This is a

method that is called when an object is

instantiated for this class.

 Multiple constructors per class are

allowed

 ~Rectangle() is a destructor. This is

called when an object is removed from

memory.

 Only one destructor per class is allowed!

 (ignore the virtual keyword for now)

#ifndef RECTANGLE_H

#define RECTANGLE_H

class Rectangle

{

public:

Rectangle();

virtual ~Rectangle();

float m_length ;

float m_width ;

float Area() ;

protected:

private:

};

#endif // RECTANGLE_H

Encapsulation

 Bundling the data and area calculation for a rectangle into a

single class is and example of the concept of encapsulation.

Construction and Destruction

 The constructor is called when an

object is created.

 This is used to initialize an object:

 Load values into member variables

 Open files

 Connect to hardware, databases,

networks, etc.

 The destructor is called when an

object goes out of scope.

 Example:

 Object c1 is created when the

program reaches the first line of

the function, and destroyed when

the program leaves the function.

void function() {

ClassOne c1 ;

}

When an object is instantiated…

 The rT object is created in memory.

 When it is created its constructor is called to

do any necessary initialization.

 Here the constructor is empty so nothing is done.

 The constructor can take any number of

arguments like any other function but it

cannot return any values.
 Essentially the return value is the object itself!

 What if there are multiple constructors?
 The compiler chooses the correct one based on the

arguments given.

#include "rectangle.h"

int main()

{

Rectangle rT ;

rT.m_width = 1.0 ;

}

#include "rectangle.h"

Rectangle::Rectangle()

{

//ctor

}

Note the constructor has no

return type!

A second constructor

rectangle.h

class Rectangle

{

public:

Rectangle();

Rectangle(float width, float length) ;

/* etc */

};

rectangle.cpp

#include "rectangle.h"

/* OK to do this */

Rectangle::Rectangle(float width, float length)

{

m_width = width ;

m_length = length ;

}

 Two styles of constructor. Above is the C++11 member

initialization list style. At the top is the old way. C++11 is

preferred.

 With the old way the empty constructor is called automatically

even though it does nothing – it still adds a function call.

 Same rectangle.h for both styles.

#include "rectangle.h“

/* Better to do this */

Rectangle::Rectangle(float width, float length) :

m_width(width),m_length(length) { }

OR

Member Initialization Lists

 Syntax:

MyClass(int A, OtherClass &B, float C):

m_A(A),

m_B(B),

m_C(C) {

/* other code can go here */

}

Colon goes here

Members assigned

and separated with

commas. Note: order

doesn’t matter.

Additional code can be

added in the code

block.

And now use both constructors

 Both constructors are now used.

The new constructor initializes the

values when the object is created.

 Constructors are used to:

 Initialize members

 Open files

 Connect to databases

 Etc.

#include <iostream>

using namespace std;

#include "rectangle.h"

int main()

{

Rectangle rT ;

rT.m_width = 1.0 ;

rT.m_length = 2.0 ;

cout << rT.Area() << endl ;

Rectangle rT_2(2.0,2.0) ;

cout << rT_2.Area() << endl ;

return 0;

}

Default values

 C++11 added the ability to define default

values in headers in an intuitive way.

 Pre-C++11 default values would have been

coded into constructors.

 If members with default values get their value

set in constructor than the default value is

ignored.
 i.e. no “double setting” of the value.

#ifndef RECTANGLE_H

#define RECTANGLE_H

class Rectangle

{

public:

Rectangle();

virtual ~Rectangle();

// could do:

float m_length = 0.0 ;

float m_width = 0.0 ;

float Area() ;

protected:

private:

};

#endif // RECTANGLE_H

Using the C::B Debugger

 To show how this works we will use the C::B interactive debugger to step through the program line-by-line to follow the

constructor calls.

 Make sure you are running in Debug mode. This turns off compiler optimizations and has the compiler include information in the

compiled code for effective debugging.

Add a Breakpoint

 Breakpoints tell the debugger to halt at a

particular line so that the state of the

program can be inspected.

 In rectangle.cpp, double click to the left

of the lines in the constructors to set a

pair of breakpoints. A red dot will appear.

 Click the red arrow to start the code in

the debugger.

 The program has paused at the first

breakpoint in the default constructor.

 Use the Next Line button to go back to

the main() routine.

 Press the red arrow to continue

execution – stops at the next breakpoint.

Default constructors and destructors

 The two methods created by C::B automatically are

explicit versions of the default C++ constructors and

destructors.

 Every class has them – if you don’t define them then

empty ones that do nothing will be created for you by

the compiler.

 If you really don’t want the default constructor you can

delete it with the delete keyword.

 Also in the header file you can use the default keyword

if you like to be clear that you are using the default.

class Foo {

public:

Foo() = delete ;

// Another constructor

// must be defined!

Foo(int x) ;

};

class Bar {

public:

Bar() = default ;

};

Custom constructors and destructors

 You must define your own constructor when you want to initialize an

object with arguments.

 A custom destructor is always needed when internal members in the

class need special handling.

 Examples: manually allocated memory, open files, hardware drivers, database or

network connections, custom data structures, etc.

Destructors

 Destructors are called when an object is

destroyed.

 There is only one destructor allowed per

class.

 Objects are destroyed when they go out

of scope.

 Destructors are never called explicitly by

the programmer. Calls to destructors are

inserted automatically by the compiler.

Rectangle::~Rectangle()

{

//dtor

}

Note the destructor has no return type and is named with

a ~. This class just has 2 floats as members which are

automatically removed from memory by the compiler.

House object

~House() destructor

Destructors

 Example:

class Example {

public:

Example() = delete ;

Example(int count) ;

virtual ~Example() ;

// A pointer to some memory

// that will be allocated.

float *values = nullptr ;

};

Example::Example(int count) {

// Allocate memory to store "count"

// floats.

values = new float[count];

}

Example::~Example() {

// The destructor must free this

// memory. Only do so if values is not

// null.

if (values) {

delete[] values ;

}

}

Scope
 Scope is the region where a variable is valid.

 Constructors are called when an object is created.

 Destructors are only ever called implicitly.

int main() { // Start of a code block

// in main function scope

float x ; // No constructors for built-in types

ClassOne c1 ; // c1 constructor ClassOne() is called.

if (1){ // Start of an inner code block

// scope of c2 is this inner code block

ClassOne c2 ; //c2 constructor ClassOne() is called.

} // c2 destructor ~ClassOne() is called.

ClassOne c3 ; // c3 constructor ClassOne() is called.

} // leaving program, call destructors for c3 and c1 ~ClassOne()

// variable x: no destructor for built-in type

Copy, Assignment, and Move Constructors

 The compiler will automatically create constructors to deal with copying, assignment, and

moving.

 Moving occurs, for example, when an object is created and added to a list in a loop.

 Moving is an optimization feature that’s part of C++11.

 Dealing with the details of these constructors is outside of the scope of this tutorial

 How do you know if you need to write one?

 When you move, assign, or copy an object in your code and the code won’t compile!

 OR you move, assign, or copy an object, it compiles, but unexpected things happen when running.

 You may require custom code when...

 dealing with open files inside an object

 The class manually allocated memory

 Hardware resources (a serial port) opened inside an object

 Etc.

Rectangle rT_1(1.0,2.0) ;

// Now use the copy constructor

Rectangle rT_2(rT_1) ;

// Do an assignment, with the

// default assignment operator

rT_2 = rT_1 ;

So Far…

 Define a C++ class
 Adding members and methods

 Use separate header and source files for a C++ class.

 Class constructors & destructors

 OOP concept: Encapsulation

The formal concepts in OOP
Polymorphism

Encapsulation

Inheritance

Abstraction

OOP

 Next up: Inheritance

Inheritance

 Inheritance is the ability to form a

hierarchy of classes where they

share common members and

methods.
 Helps with: code re-use, consistent

programming, program organization

 This is a powerful concept!

Molecule

Inorganic

Mineral

Organic

Protein

Inheritance
 The class being derived from is referred

to as the base, parent, or super class.

 The class being derived is the derived,

child, or sub class.

 For consistency, we’ll use superclass

and subclass in this tutorial. A base class

is the one at the top of the hierarchy.

Molecule

Inorganic

Mineral

Organic

Protein

Superclass

Subclass

Base Class

Inheritance in Action

 Streams in C++ are series of characters

– the C+ I/O system is based on this

concept.

 cout is an object of the class ostream. It

is a write-only series of characters that

prints to the terminal.

 There are two subclasses of ostream:

 ofstream – write characters to a file

 ostringstream – write characters to a string

 Writing to the terminal is straightforward:

cout << some_variable ;

 How might an object of class ofstream or

ostringstream be used if we want to write

characters to a file or to a string?

Inheritance in Action

 For ofstream and ofstringstream the << operator is inherited from ostream

and behaves the same way for each from the programmer’s point of view.

 The ofstream class adds a constructor to open a file and a close() method.

 ofstringstream adds a method to retrieve the underlying string, str()

 If you wanted a class to write to something else, like a USB port…
 Maybe look into inheriting from ostream!

 Or its underlying class, basic_ostream which handles types other than characters…

Inheritance in Action

#include <iostream> // cout

#include <fstream> // ofstream

#include <sstream> // ostringstream

using namespace std ;

void some_func(string msg) {

cout << msg ; // to the terminal

// The constructor opens a file for writing

ofstream my_file("filename.txt") ;

// Write to the file.

my_file << msg ;

// close the file.

my_file.close() ;

ostringstream oss ;

// Write to the stringstream

oss << msg ;

// Get the string from stringstream

cout << oss.str() ;

}

Public, protected, private

 These keywords were added by

C::B to our Rectangle class.

 These are used to control access

to different parts of the class

during inheritance by other pieces

of code.

class Rectangle

{

public:

Rectangle();

Rectangle(float width, float length) ;

virtual ~Rectangle();

float m_width ;

float m_length ;

float Area() ;

protected:

private:

};

“There are only two things wrong with C++: The initial concept

and the implementation.”

– Bertrand Meyer (inventor of the Eiffel OOP language)

C++ Access Control and Inheritance

 A summary of the accessibility of members and methods:

Access public protected private

Same class Yes Yes Yes

Subclass Yes Yes No

Outside classes Yes No No

Sub myobj ;

Myobj.i = 10 ; // ok

Myobj.j = 3 ; // Compiler error

class Super {

public:

int i;

protected:

int j ;

private:

int k ;

};

class Sub : public Super {

// in methods, could access

// i and j from Parent only.

};

Inheritance

Outside code

Inheritance

 With inheritance subclasses have access

to private and protected members and

methods all the way back to the base

class.

 Each subclass can still define its own

public, protected, and private members

and methods along the way.

class A

public

protected

private

class B : public A

public

protected

private

public A

protected A

class C : public B

public A

protected A

public

protected

public B

protected B

private

Single vs Multiple Inheritance

 C++ supports creating relationships where a subclass

inherits data members and methods from a single

superclass: single inheritance

 C++ also support inheriting from multiple classes

simultaneously: Multiple inheritance

 This tutorial will only cover single inheritance.

 Generally speaking…

 Multiple inheritance requires a large amount of design effort

 It’s an easy way to end up with overly complex, fragile code

 Java, C#, and Python (all came after C++) exclude multiple

inheritance on purpose to avoid problems with it.

 With multiple inheritance a hierarchy like

this is possible to create. This is

nicknamed the Deadly Diamond of

Death as it creates ambiguity in the code.

D

B C

A

Abstraction

 Having private (internal) data and methods separated from public ones is

the OOP concept of abstraction.

C++ Inheritance Syntax

 Inheritance syntax pattern:
class SubclassName : public SuperclassName

 Here the public keyword is used.
 Methods implemented in class Sub can access any public or

protected members and methods in Super but cannot access

anything that is private.

 Other inheritance types are protected and private.

class Super {

public:

int i;

protected:

int j ;

private:

int k ;

};

class Sub : public Super {

// ...

};

It is now time to inherit

 The C::B program will help with the

syntax when defining a class that

inherits from another class.

 With the Shapes project open, click on

File New Class

 Give it the name Square and check

the “Inherits another class” option.

 Enter Rectangle as the superclass and

the include as “rectangle.h” (note the

lowercase r)

 Click Create!

 2 files are automatically generated: square.h and square.cpp

 Class Square inherits from class Rectangle

square.h square.cpp

#ifndef SQUARE_H

#define SQUARE_H

#include "rectangle.h"

class Square : public Rectangle

{

public:

Square();

virtual ~Square();

protected:

private:

};

#endif // SQUARE_H

#include "square.h"

Square::Square()

{

//ctor

}

Square::~Square()

{

//dtor

}

 Note that subclasses are free to add any number

of new methods or members, they are not limited

to those in the superclass.

A new constructor is needed.

 A square is, of course, just a rectangle with equal length and width.

 The area can be calculated the same way as a rectangle.

 Our Square class therefore needs just one value to initialize it and it can

re-use the Rectangle.Area() method for its area.

 Go ahead and try it:

 Add an argument to the default constructor in square.h

 Update the constructor in square.cpp to do…?

 Remember Square can access the public members and methods in its superclass

Solution 1

 Square can access the public members in its superclass.

 Its constructor can then just assign the length of the side to the

Rectangle m_width and m_length.

 This is unsatisfying – while there is nothing wrong with this it’s

not the OOP way to do things.

 Why re-code the perfectly good constructor in Rectangle?

#ifndef SQUARE_H

#define SQUARE_H

#include "rectangle.h"

class Square : public Rectangle

{

public:

Square(float width);

virtual ~Square();

protected:

private:

};

#endif // SQUARE_H

#include "square.h"

Square::Square(float length)

{

m_width = width ;

m_length = length ;

}

The delegating constructor

 C++11 added a new constructor type

called the delegating constructor.

 Using member initialization lists you can

call one constructor from another.

 Even better: with member initialization

lists C++ can call superclass

constructors!

Square::Square(float length) :

Rectangle(length,length)

{

// other code could go here.

}

class class_c {

public:

int max;

int min;

int middle;

class_c(int my_max) {

max = my_max > 0 ? my_max : 10;

}

class_c(int my_max, int my_min) : class_c(my_max) {

min = my_min > 0 && my_min < max ? my_min : 1;

}

class_c(int my_max, int my_min, int my_middle) :

class_c (my_max, my_min){

middle = my_middle < max &&

my_middle > min ? my_middle : 5;

}

};

Reference:
https://msdn.microsoft.com/en-us/library/dn387583.aspx

Solution 2

 Square can directly call its superclass constructor and let the

Rectangle constructor make the assignment to m_width and

m_float.

 This saves typing, time, and reduces the chance of adding

bugs to your code.

 The more complex your code, the more compelling this statement

is.

 Code re-use is one of the prime reasons to use OOP.

#ifndef SQUARE_H

#define SQUARE_H

#include "rectangle.h"

class Square : public Rectangle

{

public:

Square(float width);

virtual ~Square();

protected:

private:

};

#endif // SQUARE_H

#include "square.h"

Square::Square(float length) :

Rectangle(length, length) {}

Trying it out in main()

 What happens behind the scenes

when this is compiled….

#include <iostream>

using namespace std;

#include "square.h"

int main()

{

Square sQ(4) ;

// Uses the Rectangle Area() method!

cout << sQ.Area() << endl ;

return 0;

}

sQ.Area()

Square class
does not

implement Area()
so compiler looks

to superclass

Finds Area() in
Rectangle class.

Inserts call to
Rectangle.Area()

method in
compiled code.

More on Destructors
 When a subclass object is

removed from memory, its

destructor is called as it is for any

object.

 Its superclass destructor is than

also called .

 Each subclass should only clean

up its own problems and let

superclasses clean up theirs.

Square object is
removed from

memory

~Square() is called

~Rectangle() is
called

The formal concepts in OOP
Polymorphism

Encapsulation

Inheritance

Abstraction

OOP

 Next up: Polymorphism

Using subclasses
 A function that takes a superclass

argument can also be called with

a subclass as the argument.

 The reverse is not true – a

function expecting a subclass

argument cannot accept its

superclass.

 Copy the code to the right and

add it to your main.cpp file.

void PrintArea(Rectangle &rT) {

cout << rT.Area() << endl ;

}

int main() {

Rectangle rT(1.0,2.0) ;

Square sQ(3.0) ;

PrintArea(rT) ;

PrintArea(sQ) ;

}

The PrintArea function

can accept the Square

object sQ because

Square is a subclass of

Rectangle.

Overriding Methods
 Sometimes a subclass needs to have the

same interface to a method as a

superclass with different functionality.

 This is achieved by overriding a method.

 Overriding a method is simple: just re-

implement the method with the same

name and arguments in the subclass.

In C::B open project:

CodeBlocks Projects Part 2 Virtual Method Calls

class Super {

public:

void PrintNum() {

cout << 1 << endl ;

}

} ;

class Sub : public Super {

public:

// Override

void PrintNum() {

cout << 2 << endl ;

}

} ;

Super sP ;

sP.PrintNum() ; // Prints 1

Sub sB ;

sB.PrintNum() ; // Prints 2

Overriding Methods

 Seems simple, right?

 To quote from slide 10 in Part 1 of this

tutorial, C++: “Includes all the subtleties

of C and adds its own”

 Overriding methods is one of those

subtleties.

class Super {

public:

void PrintNum() {

cout << 1 << endl ;

}

} ;

class Sub : public Super {

public:

// Override

void PrintNum() {

cout << 2 << endl ;

}

} ;

Super sP ;

sP.PrintNum() ; // Prints 1

Sub sB ;

sB.PrintNum() ; // Prints 2

How about in a function call…

 Given the class definitions, what

is happening in this function call?

 Using a single function to operate

on different types is

polymorphism.

class Super {

public:

void PrintNum() {

cout << 1 << endl ;

}

} ;

class Sub : public Super {

public:

// Override

void PrintNum() {

cout << 2 << endl ;

}

} ;

void FuncRef(Super &sP) {

sP.PrintNum() ;

}

Super sP ;

Func(sP) ; // Prints 1

Sub sB ;

Func(sB) ; // Hey!! Prints 1!!

“C++ is an insult to the human brain”

– Niklaus Wirth (designer of Pascal)

Type casting

 The Func function passes the argument as a reference (Super &sP).

 What’s happening here is dynamic type casting, the process of converting from

one type to another at runtime.

 Same mechanism as the dynamic_cast function

 The incoming object is treated as though it were a superclass object in

the function.

 When methods are overridden and called there are two points where

the proper version of the method can be identified: either at compile

time or at runtime.

void FuncRef(Super &sP) {

sP.PrintNum() ;

}

Virtual methods
 When a method is labeled as virtual and

overridden the compiler will generate

code that will check the type of an object

at runtime when the method is called.

 The type check will then result in the

expected version of the method being

called.

 When overriding a virtual method in a

subclass, it’s a good idea to label the

method as virtual in the subclass as well.

 …just in case this gets subclassed again!

class SuperVirtual

{

public:

virtual void PrintNum()

{

cout << 1 << endl ;

}

} ;

class SubVirtual : public SuperVirtual

{

public:

// Override

virtual void PrintNum()

{

cout << 2 << endl ;

}

} ;

void Func(SuperVirtual &sP)

{

sP.PrintNum() ;

}

SuperVirtual sP ;

Func(sP) ; // Prints 1

SubVirtual sB ;

Func(sB) ; // Prints 2!!

Early (static) vs. Late (dynamic) binding

 What is going on here?

 Leaving out the virtual keyword on a

method that is overridden results in the

compiler deciding at compile time which

version (subclass or superclass) of the

method to call.

 This is called early or static binding.

 At compile time, a function that takes a

superclass argument will only call the

non-virtual superclass method under

early binding.

 Making a method virtual adds code

behind the scenes (that you, the

programmer, never interact with directly)

 Lookups in a hidden table (the vtable are

done to figure out what override of the

virtual method should be run.

 This is called late or dynamic binding.

 There is a small performance penalty for

late binding due to the vtable lookup.

 This only applies when an object is

referred to by a reference or pointer.

Behind the scenes – vptr and vtable

 C++ classes have a hidden pointer (vptr)

generated that points to a table of virtual

methods associated with a class (vtable).

 When a virtual class method (base class

or its subclasses) is called by reference (

or pointer) when the programming is

running the following happens:

 The object’s class vptr is followed to its class

vtable

 The virtual method is looked up in the vtable

and is then called.

 One vptr and one vtable per class so minimal

memory overhead

 If a method override is non-virtual it won’t be in

the vtable and it is selected at compile time.

Func(SuperVirtual &sP)

sP is a reference to a…

SuperVirtual SubVirtual

SuperVirtual’s

vptr

SubVirtual’s

vptr

Vtable

& SuperVirtual::PrintNum()

Vtable

& SubVirtual::PrintNum()

Let’s run this through the debugger

 Open the project: Parts 2-

3/Virtual Method Calls.

 Everything here is

implemented in one big

main.cpp

 Place a breakpoint at the first

line in main() and in the two

implemenations of Func()

 Make sure the “Watches”

debugging window is open.

When to make methods virtual

 If a method will be (or might be)

overridden in a subclass, make it virtual

 There is a minor performance penalty.

Will that even matter to you?
 i.e. Have you profiled and tested your code to

show that virtual method calls are a performance

issue?

 When is this true?
 Almost always! Who knows how your code will

be used in the future?

 Constructors are never virtual in C++.

 Destructors in a base class should

always be virtual.

 Also – if any method in a class is virtual,

make the destructor virtual

 These are important when dealing with

objects via reference and it avoids some

subtleties when manually allocating

memory.

Why all this complexity?

 Late binding allows for code libraries to be updated for new functionality. As methods are identified at runtime

the executable does not need to be updated.

 This is done all the time! Your C++ code may be, for example, a plugin to an existing simulation code.

 Greater flexibility when dealing with multiple subclasses of a superclass.

 Most of the time this is the behavior you are looking for when building class hierarchies.

void FuncLate(SuperVirtual sP)

{

sP.PrintNum() ;

}

void FuncEarly(SuperVirtual &sP)

{

sP.PrintNum() ;

}

 Called by reference – late binding

to PrintNum()
 Called by value – early binding to

PrintNum even though it’s virtual!

 Remember the Deadly Diamond of

Death? Let’s explain.

 Look at the class hierarchy on the right.

 Square and Circle inherit from Shape

 Squircle inherits from both Square and Circle

 Syntax:

class Squircle : public Square, public Circle

 The Shape class implements an empty

Area() method. The Square and Circle

classes override it. Squircle does not.

 Under late binding, which version of Area

is accessed from Squircle?

Square.Area() or Circle.Area()?

Shape

virtual float Area() {}

Square

virtual float

Area() {…}

Circle

virtual float

Area() {…}

Squircle

Interfaces

 Another pitfall of multiple inheritance: the

fragile base class problem.

 If many classes inherit from a single base

(super) class then changes to methods in the

base class can have unexpected

consequences in the program.

 This can happen with single inheritance but it’s

much easier to run into with multiple

inheritance.

 Interfaces are a way to have your

classes share behavior without them

sharing actual code.

 Gives much of the benefit of multiple

inheritance without the complexity and

pitfalls

Shape

Square Circle

 Example: for debugging you’d like each class

to have a Log() method that would write some

info to a file.

 But each class has different types of

information to print!

 With multiple inheritance each subclass might

implement its own Log() method (or not). If an

override is left out in a subclass it may call the

Log() method on a superclass and print

unexpected information.

Log

Interfaces

 An interface class in C++ is called a pure virtual class.

 It contains virtual methods only with a special syntax.

Instead of {} the function is set to 0.
 Any subclass needs to implement the methods!

 Modified square.h shown.

 What happens when this is compiled?

 Once the LogInfo() is uncommented it will compile.

#ifndef SQUARE_H

#define SQUARE_H

#include "rectangle.h"

class Log {

virtual void LogInfo()=0 ;

};

class Square : public Rectangle, Log

{

public:

Square(float length);

virtual ~Square();

// virtual void LogInfo() {}

protected:

private:

};

#endif // SQUARE_H

(…error…)

include/square.h:10:7: note: because the following virtual

functions are pure within 'Square':

class Square : public Rectangle, Log

^

include/square.h:7:18: note: virtual void Log::LogInfo()

virtual void LogInfo()=0 ;

 C++ offers another fix for the diamond problem, Virtual inheritance. See: https://en.wikipedia.org/wiki/Virtual_inheritance

Putting it all together

 Now let’s revisit our Shapes

project.

 In the directory of C::B Part 2

projects, open the “Shapes with

Circle” project.

 This has a Shape base class with a

Rectangle and a Square

 Add a Circle class to the class

hierarchy in a sensible fashion.

Shape

Rectangle

Square

 Hint: Think first, code second.

Circle

???

New pure virtual Shape class

 Slight bit of trickery:

 An empty constructor is defined in shape.h

 No need to have an extra shape.cpp file if these

functions do nothing!

 Q: How much code can be in the header file?

 A: Most of it with some exceptions.

 .h files are not compiled into .o files so a header with

a lot of code gets re-compiled every time it’s

referenced in a source file.

#ifndef SHAPE_H

#define SHAPE_H

class Shape

{

public:

Shape() {}

virtual ~Shape() {}

virtual float Area()=0 ;

protected:

private:

};

#endif // SHAPE_H

Give it a try

 Add inheritance from Shape

to the Rectangle class

 Add a Circle class, inheriting

from wherever you like.

 Implement Area() for the

Circle

 If you just want to see a

solution, open the project

“Shapes with Circle solved”

A Potential Solution

 A Circle has one dimension

(radius), like a Square.

 Would only need to override the

Area() method

 But…

 Would be storing the radius in the

members m_width and m_length.

This is not a very obvious to

someone else who reads your code.

 Maybe:

 Change m_width and m_length

names to m_dim_1 and m_dim_2?

 Just makes everything more muddled!

Shape

Rectangle

Square

Circle

A Better Solution

 Inherit separately from the Shape

base class

 Seems logical, to most people a

circle is not a specialized form of

rectangle…

 Add a member m_radius to store

the radius.

 Implement the Area() method

 Makes more sense!

 Easy to extend to add an Oval

class, etc.

Shape

Rectangle

Square

Circle

New Circle class

 Also inherits from Shape

 Adds a constant value for p

 Constant values can be defined right in the

header file.

 If you accidentally try to change the value of PI

the compiler will throw an error.

#ifndef CIRCLE_H

#define CIRCLE_H

#include "shape.h"

class Circle : public Shape

{

public:

Circle();

Circle(float radius) ;

virtual ~Circle();

virtual float Area() ;

const float PI = 3.14;

float m_radius ;

protected:

private:

};

#endif // CIRCLE_H

 circle.cpp

 Questions?

#include "circle.h"

Circle::Circle()

{

//ctor

}

Circle::~Circle()

{

//dtor

}

// Use a member initialization list.

Circle::Circle(float radius) : m_radius{radius}

{}

float Circle::Area()

{

// Quiz: what happens if this line is

// uncommented and then compiled:

//PI=3.14159 ;

return m_radius * m_radius * PI ;

}

Quiz time!

 What happens behind

the scenes when the

function PrintArea is

called?

 How about if PrintArea’s

argument was instead:

void PrintArea(Shape shape)

void PrintArea(Shape &shape) {

cout << "Area: " << shape.Area() << endl ;

}

int main()

{

Square sQ(4) ;

Circle circ(3.5) ;

Rectangle rT(21,2) ;

// Print everything

PrintArea(sQ) ;

PrintArea(rT) ;

PrintArea(circ) ;

return 0;

}

Quick mention…

 Aside from overriding functions it

is also possible to override

operators in C++.

 As seen in the C++ string. The +

operator concatenates strings:

 It’s possible to override +,-,=,<,>,

brackets, parentheses, etc.

 Syntax:

 Recommendation:

 Generally speaking, avoid this. This

is an easy way to generate very

confusing code.

 A well-named function will almost

always be easier to understand than

an operator.

 Exceptions:

 Assignment: operator=

 For certain special functions:

operator()

string str = "ABC" ;

str = str + "DEF" ;

// str is now "ABCDEF"

MyClass operator*(const MyClass& mC) {...}

Summary

 C++ classes can be created in hierarchies via

inheritance, a core concept in OOP.

 Classes that inherit from others can make use

of the superclass’ public and protected

members and methods

 You write less code!

 Virtual methods should be used

whenever methods will be overridden in

subclasses.

 Avoid multiple inheritance, use interfaces

instead.

 Subclasses can override a superclass

method for their own purposes and can still

explicitly call the superclass method.

 Abstraction means hiding details when they

don’t need to be accessed by external code.
 Reduces the chances for bugs.

 While there is a lot of complexity here – in

terms of concepts, syntax, and application –

keep in mind that OOP is a highly successful

way of building programs!

