
Introduction to C++: Part 4

Tutorial Outline: Part 4

 Generics and templates
 C++ template syntax

 What happens during compilation

 Using generics: the C++ Standard Template Library (STL)

 STL Containers, Algorithms, and Iterators

 Coding recommendations for a C++ code

 Useful libraries

 Example: Speeding up Python

 Resources

The formal concepts in OOP

 Object-oriented programming

(OOP):
 Defines classes to represent data and logic

in a program. Classes can contain members

(data) and methods (internal functions).

 Creates instances of classes, aka objects,

and builds the programs out of their

interactions.

 The core concepts in addition to

classes and objects are:
 Encapsulation

 Inheritance

 Polymorphism

 Abstraction

Polymorphism

Encapsulation

Inheritance

Abstraction

OOP

Polymorphism

 This has already been seen in the last tutorial:

 The different subclasses of Shape automatically call their own Area()

method depending on their type.
 …if virtual method calls are being used!

 This is called polymorphism in C++.

 There are two other kinds defined in computer science:
 ad hoc polymorphism – function overloading in C++

 parametric polymorphism – generics in C++

void PrintArea(Shape &shape) {

cout << "Area: " << shape.Area() << endl ;

}

Function overloading

 Briefly: the same function can be

implemented multiple times with

different arguments.

 This allows for special cases to be

handled, or specialized behavior

for different types.

 Multiple constructors in a class are

an example of function

overloading.

float sum(float a, float b) {

return a+b ;

}

int sum(int a, int b) {

return a+b ;

}

Generics aka C++ Templates

 Generic code is code that works on multiple different data types but is

only coded once.

 In C++ generic code is called a template.

 A C++ template is implemented entirely in a header file to define

generic classes and functions.

 The actual code is generated by the compiler wherever the template

is used in your code.

 There is NO PENALTY when your code is running!

 If you don’t use the template code it doesn’t get compiled at all.

 For the sake of time in this tutorial we will focus on using the C++

Standard Template Library and walk thru some templates with C::B.

Sample template function

 The template is started with the

keyword template and is told it’ll handle

a type which is referred to as T in the

code.

 Templates can be created with multiple

different types, not limited to just one.

 You don’t have to use T, any non-reserved

word will do.

 Methods inside a class can be template even

if the class is not.

 When the compiler sees the call to the

template function it will automatically

generate a function that takes and

returns float types.
 If the compiler can figure it out you can sometimes

skip the type declaration.

template <typename T>

T sum_template (T a, T b) {

return a+b ;

}

// Then call the function:

float x=1.0 ;

float y=2.0 ;

float z=sum_template<float>(x,y) ;

z = sum_template (x,y) ;

Templates

 The only limit is that any type or class used with the example function sum<> has to

support or implement the + operator

 If you use a template function or class and the type you want to use doesn’t work with the

generated code the compiler will tell you with an error message.

 This may generate an ENORMOUS AMOUNT of error messages from the compiler.

 If that happens, scroll back to the 1st error, that’s usually the point in your code with the erroneous line

creating a templated object.

 If you only have one type to worry about (e.g. only one type of image format), templates

are unlikely to offer much (except longer compiles).

 Use them when needed by a library or when you find yourself repeating the same code

for multiple types over and over.

A Template Class

 Open the Code::Blocks project:
 Part 4/Overloads_and_Templates

 Let’s use the C::B debugger to

walk through some function

overloads, a template function,

and a template class to see how

the code is created by the

compiler.

template <typename T>

class Sample

{

public:

Sample(T value) : m_stored_value(value) {}

virtual ~Sample() {} // <-- {} not ;

// There's no .cpp file so all methods must

// have a function body here.

T sum_with_stored_value(T value) {

return m_stored_value + value ;

}

protected:

private:

T m_stored_value ;

};

// Create an object of Sample cast to hold a specifc

type.

Sample<int> int_Sample(100) ;

cout << int_Sample.sum_with_stored_value(50) << endl ;

Template Class Inheritance

 C++ lets you define a base or super class using templates.

 A subclass can inherit as a template or as a specific type.

 Reference: C::B project Part 4/Template_Class_Inheritance

template<typename T>

class BaseClassTemplate

{

public:

BaseClassTemplate() {}

virtual ~BaseClassTemplate() {}

T m_base_value ;

protected:

private:

};

class Subclass1 :

public BaseClassTemplate<int> {

public:

Subclass1() {}

virtual ~Subclass1() {}

int m_some_new_val ;

};

template<typename T>

class Subclass2 :

public BaseClassTemplate<T> {

public:

Subclass2() {}

virtual ~Subclass2() {}

int m_some_new_val ;

};

template<typename T, typename Q>

class Subclass3 :

public BaseClassTemplate<T> {

public:

Subclass3() {}

virtual ~Subclass3() {}

Q m_some_new_val ;

};

The Standard Template Library

 The STL is a large collection of containers and algorithms that are part of

C++.
 It provides many of the basic algorithms and data structures used in computer science.

 As the name implies, it consists of generic code that you specialize as

needed.

 When developing C++ code it is a good idea to use the STL when

possible.
 Well-vetted and tested.

 Lots of resources available for help.

 Programming is hard enough – why write extra code if you don’t have to?

Containers

 There are 16 types of containers in the STL:

Container Description

array 1D list of elements.

vector 1D list of elements

deque Double ended queue

forward_list Linked list

list Double-linked list

stack Last-in, first-out list.

queue First-in, first-out list.

priority_queue 1st element is always the

largest in the container

Container Description

set Unique collection in a specific

order

multiset Elements stored in a specific

order, can have duplicates.

map Key-value storage in a specific

order

multimap Like a map but values can

have the same key.

unordered_set Same as set, sans ordering

unordered_multiset Same as multisetset, sans

ordering

unordered_map Same as map, sans ordering

unordered_multimap Same as multimap, sans

ordering

Algorithms

 There are 85 of these.

 Example: find, count, replace, sort, is_sorted, max, min, binary_search, reverse

 Algorithms manipulate the data stored in containers but is not tied to STL containers

 These can be applied to your own collections or containers of data

 Example:

 The implementation is hidden and the necessary code for reverse() is generated from

templates at compile time.

vector<int> v(3); // Declare a vector of 3 elements.

v[0] = 7;

v[1] = 3;

v[2] = v[0] + v[1]; // v[0] == 7, v[1] == 3, v[2] == 10

reverse(v.begin(), v.end()) ; // v[0] == 10, v[1] == 3, v[2] == 7

vector<T>
 A very common and useful class in C++ is the vector class. Access it with:

#include <vector>

 Vector has many methods:
 Various constructors

 Ways to iterate or loop through its contents

 Copy or assign to another vector

 Query vector for the number of elements it contains or its backing storage size.

 Example usage: vector<float> my_vec ;

 Or, create my_vec with storage pre-allocated: vector<float> my_vec(50) ;

 Hidden from the programmer is the backing store:
 An array allocated in memory that is at least the size of the number of elements you have added or requested.

 The array will auto-reallocate a new array, copy in the old data, and delete the old array if it hits its size limit.

Contains N elements. Given by size() method.

Allocated for a total of M elements

Given by capacity() method.

Add some more to the vector

New memory is allocated.

Old data is copied in.

New M > old M.

Old allocation is destroyed.

Allocated for a total of M’ elements

Destructors

 vector<t> can hold objects of any type:
 Primitive (aka basic) types: int, float, char, etc.

 Objects: string, your own classes, file stream objects (ex. ostream), etc.

 Pointers: int*, string*, etc.

 When a vector is destroyed:
 If it holds primitive types or pointers it just deallocates its backing store.

 If it holds objects it will call each object’s destructor before freeing its backing store.

vector<t> with objects

 If a vector<MyClass> has had some

elements added to it the objects can

be accessed via the vector using

index notation, iterators, via the at()

method, etc.

 vec.at(2) is equivalent to vec[2] except

that at(2) double checks the size of the

vector before returning the value.

// a vector with memory preallocated to

// hold 1000 objects.

vector<MyClass> my_vec(1000);

// Now make a vector with 1000 MyClass objects

// that are initialized using the MyClass constructor

vector<MyClass> my_vec2(1000,MyClass(arg1,arg2));

// Access an object's method.

my_vec2[100].some_method() ;

// Or a member

my_vec2[10].member_integer = 100 ;

// Or in a loop. const prevents the elem

// reference variable from editing the object

// it refers to.

for (const auto &elem : my_vec2) {

cout << elem.some_method() << endl ;

}

// Or...without the reference elem is now a

// COPY of the vector element!!

for (auto elem : my_vec2) {

cout << elem.some_method() << endl ;

}

 Loop with a “for” loop, referencing the value of vec using brackets.

 1st time through:
 index = 0

 Print value at vec[0]

 index gets incremented by 1

 2nd time through:
 Index = 1

 Etc

 After last time through
 Index now equal to vec.size()

 Loop exits

 Careful! Using an out of range index will likely cause a memory error that crashes your

program.

 Note we call the size() method on every iteration.

for (int index = 0 ; index < vec.size() ; ++index)

{

// ++index means "add 1 to the value of index"

cout << vec[index] << " " ;

}

L
o
o
p
in

g

Iterators

 Iterators are generalized ways of keeping track of positions in a container.

 3 types: forward iterators, bidirectional, random access

 Forward iterators can only be incremented (as seen here)

 Bidirectional can be added or subtracted to move both directions

 Random access can be used to access the container at any location

v[0] v[1] v[2]v.begin()

v.begin()+1
v.begin()+2

v.end()

for (vector<int>::iterator itr = vec.begin(); itr != vec.end() ; ++itr)

{

cout << *itr << " " ;

// iterators are pointers!

}

 Loop with a “for” loop, referencing the value of vec using an iterator type.

 vector<int>::iterator is a type that iterates through a vector of int’s.

 1st time through:
 itr points at 1st element in vec

 Print value pointed at by itr: *itr

 itr is incremented to the next element in the vector

 Iterators are very useful C++ concepts. They work on any STL container!
 No need to worry about the # of elements!

 Exact iterator behavior depends on the type of container but they are guaranteed to always reach every value.

 Note we are now retrieving the end iterator at every loop to see if we’ve reached it: vec.end()

L
o
o
p
in

g

 Let the auto type asks the C++ compiler to figure out the iterator type automatically.
 This is MUCH easier code to read.

 An extra modification: Assigning the vec_end variable avoids calling vec.end() on every loop.
 This is faster, for when it matters.

for (auto itr = vec.begin(), auto vec_end = vec.end() ; itr != vec_end ; ++itr)

{

cout << *itr << " " ;

}

L
o
o
p
in

g

 Another iterator-based loop: iterator behavior is handled automatically by the compiler

and the element type is also handled by the compiler.

 Uses a reference so there is no annoying pointer syntax.

 Option: use a const auto type so the reference to the element can’t alter the vector.

 Less typing == less chance for program bugs!
 The compiler doesn’t mind doing extra work.

for(auto &element : vec)

{

cout << element << " " ;

}

 Performance considerations:

 The iterators are general purpose and safer than bracket notation but a wee bit

slower. Usually safety and less debugging effort wins over micro-optimizing your code.

 Using them allow you to substitute different container types if you need to as not every

container supports the bracket notation.

 …meaning you can write a function that takes in begin and end iterators and works on

any STL container type!

L
o
o
p
in

g

Using vector<> with our Shape classes

 Open the C::B project Part

4/STL Containers

 This has some worked

examples using the vector<>

class.

 It includes the Shape class

hierarchy worked out in Part

3 of the tutorial.

 Let’s debug our way through

the code to see how a

vector<> handles objects that

are members of a class

hierarchy.

 Introduced in the code: some

memory allocations and

management.

Some OOP Guidelines

 Here are some guidelines for putting together a program using OOP to keep in mind while getting

up and running with C++.

 Keep your classes simple and single

purpose.

 Logically organize your classes to re-use

code via inheritance.

 Use interfaces in place of multiple

inheritance

 Don’t make your life harder while trying to learn

the language.

 Keep your methods short

 It’s better to have many descriptive methods

that do little things than giant methods that do

lots of things.

 This also makes for easier debugging.

 Follow the KISS principle:

 “Keep it simple stupid”

 “Keep it simple, silly”

 “Keep it short and sweet”

 “Make Simple Tasks Simple!” – Bjarne

Stroustroup

 “Make everything as simple as possible, but

not simpler” – Albert Einstein

Putting your classes together

 Effective use of OOP demands that the programmer think/plan/design first and code second.

 There is a large body of information on this topic:

 As this is an academic institution your code may:
 Live on in your lab long after you have graduated

 Be worked on by multiple researchers

 Adapted to new problems you haven’t considered

 Be shared with collaborators

 For more structured environments (ex. a team of professional programmers) there exist concepts

like SOLID that seek to create OOP code that is maintainable and easily debuggable over time:
 https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

 …and there are many others.

https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

Keep your classes simple

 Avoid “monster” classes that implement everything including the kitchen sink.

 Our Rectangle class just holds dimensions and calculates its area.

 It cannot print out its area, send email, draw to the screen, etc.

 Two standard approaches to help with this are below.

 Resource Allocation Is Initialization (RAII):

 A late 80’s concept, widely used in OOP.

 https://en.wikipedia.org/wiki/Resource_acquisiti

on_is_initialization

 Resources in a class are created in the

constructor and released in the destructor.

 Example: opening files, allocating memory, etc.

 Therefore resources are guaranteed to be

available before the object is used and will be

properly handled during program errors.

 Single responsibility principle:

 Every class has responsibility for one piece of

functionality in the program.
 https://en.wikipedia.org/wiki/Single_responsibility_principle

 Example:

 An Image class holds image data and can read

and write it from disk.

 A second class, ImageFilter, has methods that

manipulate Image objects and return new ones.

https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://en.wikipedia.org/wiki/Single_responsibility_principle

C++ Libraries

 There are a LOT of libraries available for

C++ code.

 Sourceforge alone has >7300
 https://sourceforge.net/directory/language:cpp/os:windows/?q=library

 Before jumping into writing your code,

consider what you need and see if there

are libraries available.

 Many libraries contain code

developed by professionals or

experts in a particular field.

 Consider what you are trying to

accomplish in your research:

 A) accomplishments in your field or

 B) C++ programming?

 Probably (A) but there’s nothing

wrong with (B), especially if C++ skills

will be important to you in the future!

https://sourceforge.net/directory/language:cpp/os:windows/?q=library

Multithreading

 OpenMP
 Open MP is a standard approach to writing multithreaded code to exploit multiple CPU cores

with your program.

 Fully supported in C++

 See http://www.openmp.org/ for details, or take an RCS tutorial on using it.

 Intel Thread Building Blocks
 C++ specific library

 Available on the SCC from Intel and is also open source.

 Much more flexible and much more C++-ish than OpenMP

 Offers high performance memory allocators for multithreaded code

 Includes concurrent data types (vectors, etc.) that can automatically be shared amongst

threads with no added effort for the programmer to control access to them.

 If you want to use this and need help email help@scc.bu.edu

http://www.openmp.org/

Math and Linear Algebra
 Eigen

 http://eigen.tuxfamily.org/index.php?title=Main_Page

 Available on the SCC.

 “Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms.”

 Armadillo
 http://arma.sourceforge.net/

 Available on the SCC.

 “Armadillo is a high quality linear algebra library (matrix maths) for the C++ language, aiming towards a good balance

between speed and ease of use. Provides high-level syntax (API) deliberately similar to Matlab.”

 Also see matlab2cpp (https://github.com/jonathf/matlab2cpp), a semi-automatic tool for converting Matlab code to C++ with

Armadillo.

 And also see PyJet (https://github.com/wolfv/pyjet), which converts Python and Numpy code to Armadillo/C++ code.

 As nice as the vector<> class is, it’s not going to come close to competing with optimized libraries

for handling linear algebra.

http://arma.sourceforge.net/
https://github.com/jonathf/matlab2cpp
https://github.com/wolfv/pyjet

Example: Speeding up Python

 Let’s take a terrible Python function: a naïve matrix-matrix multiplication implemented

with lists.

 Implemented as a method in a barebones Python Matrix class.

 A C++ version should be faster (even keeping the naïve multiplication algorithm).

 Ideally we’d like to drop the C++ code into our Python script.

 For fun, compare against the same routine run with numpy (uses optimized C).

 Python code:

 Please do not ever use

this terrible in your own

code, this is for

demonstration purposes

only!

class Matrix:

''' A barebones implementation of a square matrix. Note how

slow the matrix-matrix multiplication is! '''

def __init__(self, size=100):

self.size=size

self.matrix=[[0.0 for x in range(self.size)] for y in range(self.size)]

def multiply(self,mat):

''' Multiply this matrix with another. Return a new matrix.

Assume incoming matrix is the same size.'''

Allocate an output matrix.

val = Matrix(self.size)

for i in range(self.size):

for j in range(self.size):

for k in range(self.size):

No such thing as private data in Python classes!

val.matrix[i][j] += self.matrix[i][k] * mat.matrix[k][j]

return val

def __str__(self):

''' Make this printable '''

strval=''

for i in range(self.size):

strval += str(self.matrix[i]) + '\n'

return strval

C++ Class

 matrix_plugin.h

 An equivalent C++ class.

 Stores its matrix as a vector of

vectors.

 Uses the same algorithm.

 Will it be faster?

#include <vector>

using namespace std ;

class Matrix_Plugin {

public:

Matrix_Plugin(const int) ;

// Don't allow for an empty constructor,

// only create if a matrix size is given.

//Matrix_Plugin()=delete ;

// Duplicate the Python methods for code compatibility

Matrix_Plugin multiply(const Matrix_Plugin &mat) ;

// Add an extra "get" method for the size. This lets

// outside code read the size from the private member.

int get_matrix_size() ;

// In order to make this work like the Python class it

// would be nice to use mymatrix[][] but there is no [][] operator

// in C++. The () operator can be used instead but that gets a little

// complicated for this example. So use a get/set combo

double get_val(const int row, const int col) ;

void set_val(const int row, const int col, double val) ;

private:

// Need to store the matrix...let's use an STL vector

// A vector of vectors of doubles will do the trick.

vector< vector<double> > m_matrix ;

// And store the matrix size

int m_matrix_size ;

} ;

 matrix_plugin.cpp

 This is a snippet, showing just the

matrix multiplication method. Exact

same implementation as in

Python.

#include "matrix_plugin.h"

Matrix_Plugin Matrix_Plugin::multiply(const Matrix_Plugin &mat) {

// Implement the exact same algorithm as in Python

Matrix_Plugin C(m_matrix_size) ;

for (int i = 0 ; i < m_matrix_size ; ++i) {

for (int j = 0 ; j < m_matrix_size ; ++j) {

for (int k = 0 ; k < m_matrix_size ; ++k) {

C.m_matrix[i][j] += m_matrix[i][k] * mat.m_matrix[k][j] ;

}

}

}

return C ;

}

Python Calling C++

 Python requires interface or glue code to be written to translate back and forth between the Python

interpreter and the C++ code.

 This interface code is written in C.

 It is a fair amount of labor to write this code and it has to be modified any time the C++ code is

changed.

 If only it could be auto-generated…

Python C++
interface

(aka “glue”)

code

SWIG – Software Wrapper Interface Generator

 Fortunately there is more than one way to generate the interface code automatically!

 SWIG is a popular and well-tested tool.

 http://www.swig.org/

 Can generate wrappers for C and C++ code so it can be called in Python, Perl , Java, R, and ~20 other

scripting languages

 An alternative is the Boost.Python library

 http://www.boost.org/doc/libs/1_63_0/libs/python/doc/html/index.html

 More powerful and more flexible than SWIG.

 Much steeper learning curve.

 To finish the tutorial let’s walk through wrapping faster C++ code with SWIG and plugging

it into Python.

http://www.swig.org/
http://www.boost.org/doc/libs/1_63_0/libs/python/doc/html/index.html

SWIG interface file

 File: matrix_plugin.i

 SWIG needs an interface file, which tells it

what parts of the C++ code it should create

wrappers around for Python.

 In this case it’s pretty minimal. The

requirements for this file are in the SWIG

documentation but for more straightforward

C++ code you just need the header files.

 The C++ class will appear as a Python class.

 The SCC build script is to the right.

 The generated Python interface code is much

longer than a human would write at 3661 lines

(but it works)!

%module matrix_plugin

%{

#include "matrix_plugin.h"

%}

%include "matrix_plugin.h"

module load swig

module load python/2.7.11

module load gcc/6.2.0

The matrix_plugin.i is the SWIG interface file.

swig -c++ -python matrix_plugin.i

SWIG has produced a Python interface file:

matrix_plugin_wrap.c

Compile the C++ plugin and the SWIG interface files

g++ -O3 -fPIC -std=c++11 -c matrix_plugin.cpp

g++ -O3 -fPIC -std=c++11 -c -I$SCC_PYTHON_INCLUDE/python2.7 \

matrix_plugin_wrap.cxx

Link into a shared library

g++ -shared matrix_plugin.o matrix_plugin_wrap.o -o _matrix_plugin.so

In Python now do:

import matrix_plugin

matrix_plugin.Matrix_Plugin(mat_sz)

to use the new C++ class!

How does it compare in speed?

 Compare: original terrible Python code, SWIG’d C++ duplicate code, and numpy.

 Run on scc2.bu.edu

 Time is in seconds.

 Lesson 1: SWIG and C++ are faster than Python!

 Lesson 2: a crummy algorithm always loses to an optimized algorithm.

Matrix Size Bad Python C++ Conversion Numpy

100x100 0.387 0.0015 6.89e-05

200x200 3.35 0.014 0.0002

300x300 11.01 0.049 0.0004

500x500 58.6 0.29 0.0012

Some Web and Print Resources

 C++ Primer (5th Edition) by Stanley B. Lippmanm,Josée

Lajoie, Barbara E. Moo
 A well-regarded book for anyone learning C++

 Effective Modern C++: 42 Specific Ways to Improve Your

Use of C++11 and C++14 (1st Edition) by Scott Meyers

 Not a beginner’s book, but excellent once you feel confident in

C++

 The C++ Standard Library: A Tutorial and Reference (2nd

Edition) by Nicolai M. Josuttis

 An excellent reference on the STL.

 http://www.cplusplus.com/
 Has tutorials, articles, C++ information, reference materials, and a forum.

 The reference is excellent with clear explanations and good example code.

 http://en.cppreference.com/w/cpp
 A highly detailed and technical reference. Useful when cplusplus.com

doesn’t describe enough of the underlying behavior of things in the C++

language and STL for you.

 https://isocpp.org/faq
 The C++ Super FAQ

 A great resource!

 https://www.tutorialspoint.com/cplusplus/index.htm
 Tutorialspoint has tutorials for multiple languages.

http://www.cplusplus.com/
http://en.cppreference.com/w/cpp
https://isocpp.org/faq
https://www.tutorialspoint.com/cplusplus/index.htm

C++ on the SCC

 Gnu g++ compiler. For C++11 use at least version 4.9.2

 Ex.:

module load gcc/6.2.0

g++ -o myprog -std=c++11 myfile.cpp

 Intel icc compiler. Both available versions (2015 and 2016) support C++11.

 Ex.:

module load intel/2016

icc -o myprog -std=c++11 myfile.cpp

 LLVM clang++ compiler. Use at least version 3.9.0

 Ex.:

module load llvm/4.0.0

clang++ -o myprog -std=c++11 myfile.cpp

Tutorial Conclusion

 Topics covered:
 Some basic C++ syntax

 OOP concepts: encapsulation, abstraction, inheritance, polymorphism

 Classes:

 Syntax

 Private / protected / public access

 Methods and members

 Inheritance

 Use of the virtual keyword

 Basics of templates and the STL

 Use of an IDE (Code::Blocks) to assist with development and debugging

 Example of accelerating Python with C++

Topics Not Covered

 Where to start?!

 More C++ syntax

 If/else, other types of loops

 Manual memory management

 File I/O

 Pointer intricacies

 Design patterns

 More ways to organize OOP code

 Multithreading

 Template metaprogramming

 Wherein templates are used not just to adapt to types but to generate code for you.

 This is the basis of libraries like Armadillo.

 Really advanced C++.

 In C++ the template system was accidentally discovered to be Turing complete, meaning it can

compute anything computable (like C++ itself)…in other words it’s like having a separate programming

language embedded in C++!

Your thoughts please!

 The main tutorial goal was to introduce C++ and to cover the main reason

for choosing it over competitors like FORTRAN or C: object-oriented

programming.

 The focus has been on developing classes and understanding the OOP

concepts underlying the approach.

 This is the first time that a C++ tutorial has been offered by RCS. What

would you change? Add? Remove?

