

Tutorial Outline: Part 4

= Generics and templates
= C++ template syntax
= What happens during compilation

= Using generics: the C++ Standard Template Library (STL)
= STL Containers, Algorithms, and Iterators

= Coding recommendations for a C++ code

= Useful libraries

= Example: Speeding up Python

"= Resources

BOSTON
UNIVERSITY

The formal concepts in OOP

= Object-oriented programming Polymorphism

(OOP):.
/

= Defines classes to represent data and logic
In a program. Classes can contain members
(data) and methods (internal functions).

= Creates instances of classes, aka objects,
and builds the programs out of their
interactions.

= The core concepts in addition to
classes and objects are:
= Encapsulation
= Inheritance
= Polymorphism
= Abstraction

BOSTON
UNIVERSITY

Encapsulation

Abstraction

Polymorphism

This has already been seen in the last tutorial:

void PrintArea (Shape &shape) {
cout << "Area: " << shape.Area() << endl ;

}

The different subclasses of Shape automatically call their own Area()
method depending on their type.

= ..if virtual method calls are being used!
= This is called polymorphism in C++.

There are two other kinds defined in computer science:

= ad hoc polymorphism — function overloading in C++
= parametric polymorphism — generics in C++

BOSTON
UNIVERSITY

Function overloading

= Briefly: the same function can be float sum(float a, float b) {
Implemented multiple times with return a+b ;
different arguments. :

= This allows for special cases to be int sum(int a, int b) {
handled, or specialized behavior } return atb

for different types.

= Multiple constructors in a class are
an example of function
overloading.

BOSTON
UNIVERSITY

Generics aka C++ Templates

= Generic code is code that works on multiple different data types but is
only coded once.

= In C++ generic code is called a template.

= A C++ template is implemented entirely in a header file to define
generic classes and functions.

= The actual code is generated by the compiler wherever the template
IS used in your code.
= There is NO PENALTY when your code is running!
= |f you don’t use the template code it doesn’t get compiled at all.
= For the sake of time in this tutorial we will focus on using the C++
Standard Template Library and walk thru some templates with C::B.

BOSTON
UNIVERSITY

Sample template function

= The template Is started with the
keyword template and is told it’ll handle
a type which is referred to as T in the
code.

= Templates can be created with multiple
different types, not limited to just one.

= You don’t have to use T, any non-reserved
word will do.

= Methods inside a class can be template even
if the class is not.
= When the compiler sees the call to the
template function it will automatically
generate a function that takes and

returns float types.

If the compiler can figure it out you can sometimes
skip the type declaration.

BOSTON

UNIVERSITY

\

template <typename T>

T sum template (T a, T b) {
return a+b ;

}

// Then call the function:

float x=1.0 ;

float y=2.0 ;

float z=sum template<float>(x,y)

z = sum_ template (x,y) ;

14

Templates

= The only limit is that any type or class used with the example function sum<> has to
support or implement the + operator

= |f you use a template function or class and the type you want to use doesn’t work with the
generated code the compiler will tell you with an error message.
= This may generate an ENORMOUS AMOUNT of error messages from the compiler.

= |f that happens, scroll back to the 15t error, that’s usually the point in your code with the erroneous line
creating a templated object.

= |If you only have one type to worry about (e.g. only one type of image format), templates
are unlikely to offer much (except longer compiles).

= Use them when needed by a library or when you find yourself repeating the same code
for multiple types over and over.

BOSTON
UNIVERSITY

template <typename T>
class Sample

A Template Class :

public:
Sample (T value) : m stored value(value) {}
- . : . virtual ~Sample() {} // <-- {} not ;
Open the COdeBIOCkS prOJeCt // There's no .cpp file so all methods must
= Part 4/Overloads_and_Templates // have a function body here.

T sum with stored value(T value) {

- Let;s use the C::B debugger tO } return m stored value + value ;
walk through some function protected:
overloads, a template function, private:

T m stored value ;

and a template class to see how s
the code Is created by the
compiler.

// Create an object of Sample cast to hold a specifc

type.
Sample<int> int Sample (100) ;

BOSTON cout << int Sample.sum with stored value(50) << endl ;
UNIVERSITY

class Subclassl
public BaseClassTemplate<int> ({

Template Class Inheritance pablic:

virtual ~Subclassl () {}

= C++ lets you define a base or super class using templates.
= A subclass can inherit as a template or as a specific type. int m_some new_val ;
= Reference: C::B project Part 4/Template Class_Inheritance b/

template<typename T>

class Subclass?2
public BaseClassTemplate<T> {

template<typename T>

class BaseClassTemplate .
{ public:
public: Subclass2() {}
BaseClassTemplate () {} virtual ~Subclass2() {}
virtual ~BaseClassTemplate() {}
int m some new val ;
T m base value ; } - - -
protected: !
private: template<typename T, typename Q>
}; class Subclass3
public BaseClassTemplate<T> {
public:

Subclass3 () {}
virtual ~Subclass3() {}

Q m some new val ;

BOSTON
UNIVERSITY };

The Standard Template Library

= The STL is a large collection of containers and algorithms that are part of
C++.

= |t provides many of the basic algorithms and data structures used in computer science.

= As the name implies, it consists of generic code that you specialize as
needed.

= When developing C++ code it is a good idea to use the STL when
possible.
= Well-vetted and tested.
= Lots of resources available for help.
= Programming is hard enough — why write extra code if you don’t have to?

BOSTON
UNIVERSITY

Containers

= There are 16 types of containers in the STL.:

array 1D list of elements. Unique collection in a specific
vector 1D list of elements order

multiset Elements stored in a specific
deque Double ended queue order, can have duplicates.
forward_list Linked list map Key-value storage in a specific
st Double-linked list order
stack Last-in. first-out list multimap Like a map but values can

’ ' have the same key.
queue First-in, first-out list. unordered_set Same as set, sans ordering
. t : _ _
priority_queue Ils elemenals always the unordered_multiset Same as multisetset, sans
argest in the container ordering
unordered_map Same as map, sans ordering
unordered_multimap Same as multimap, sans

BOSTON - .
ordering

Algorithms

= There are 85 of these.
= Example: find, count, replace, sort, is_sorted, max, min, binary_search, reverse

= Algorithms manipulate the data stored in containers but is not tied to STL containers
= These can be applied to your own collections or containers of data

= Example:
vector<int> v (3); // Declare a vector of 3 elements.
v[0] = 7;
v[1l] = 3;
v[2] = v[0] + Vv[1]; // v[0] == 7, v[l] == 3, v[2] == 10
reverse (v.begin(), v.end()) ; // v[0] == 10, v[1l] == 3, v[2] == 7

= The implementation is hidden and the necessary code for reverse() is generated from
templates at compile time.

BOSTON
UNIVERSITY

vector<T>

= A very common and useful class in C++ is the vector class. Access it with:
#include <vector>

= Vector has many methods:
= Various constructors
= Ways to iterate or loop through its contents
= Copy or assign to another vector
= Query vector for the number of elements it contains or its backing storage size.

= Example usage: vector<float> my vec ;
= Or, create my_vec with storage pre-allocated: vector<float> my vec(50) ;

= Hidden from the programmer is the backing store:

= An array allocated in memory that is at least the size of the number of elements you have added or requested.

= The array will auto-reallocate a new array, copy in the old data, and delete the old array if it hits its size limit.
Allocated for a total of M’ elements

Add some more to thﬁ vector { ‘
\ J

Y .
Contains N elements. Given by size() method. I New memory is allocated.

Old data is copied in.
New M > old M.

!

Allocated for a total of M elements

1:J@ R K@ IN| CGven by capacity() method. ey Ol allocation is destroyed.
UNIVERSITY

Destructors

= vector<t> can hold objects of any type:
= Primitive (aka basic) types: int, float, char, etc.
= Objects: string, your own classes, file stream objects (ex. ostream), etc.
= Pointers: int*, string*, etc.

= When a vector is destroyed:

= |f it holds primitive types or pointers it just deallocates its backing store.
= If it holds objects it will call each object’s destructor before freeing its backing store.

BOSTON
UNIVERSITY

vector<t> with objects |/ Lo e

vector<MyClass> my vec(1000) ;

// Now make a vector with 1000 MyClass objects
// that are initialized using the MyClass constructor

= If a vector<MyClass> has had some

elements added to it the objects can vector<MyClass> my_vec2(1000,MyClass (argl,arg2)) ;
_be accesse_d via the vecto_r using // Becess an obiect's method.
index notation, iterators, via the at() my vec2[100].some method() ;
method, etc. [/ O @ member
’ my vec2[10] .member integer = 100 ;

= vec.at(2) is equivalent to vec[2] except
that at(2) double checks the size of the
vector before returning the value. // Or in a loop. const prevents the elem
// reference variable from editing the object
// 1t refers to.
for (const auto &elem : my vec2) ({
cout << elem.some method() << endl ;

}

// Or...without the reference elem 1s now a
// COPY of the vector element!!
for (auto elem : my vec2) {

cout << elem.some method() << endl ;
BOSTON }
UNIVERSITY

for (int index = 0 ; index < vec.size() ,; ++index)

{

// ++index means "add 1 to the wvalue of index"
cout << vec[index] << " " ;

= Loop with a “for” loop, referencing the value of vec using brackets.
= 1sttime through:

= index=0
= Print value at vec|0]
= index gets incremented by 1

= 2nd time through:
= Index=1
= Etc

= After last time through

= Index now equal to vec.size()
= Loop exits

= Careful! Using an out of range index will likely cause a memory error that crashes your
program.

BOSTON = Note we call the size() method on every iteration.
UNIVERSITY

Looping

lterators v.begin () +2
\ /
v.begin () » v[0] vI[1] v[2] — V.end()

= |terators are generalized ways of keeping track of positions in a container.
= 3 types: forward iterators, bidirectional, random access

= Forward iterators can only be incremented (as seen here)

= Bidirectional can be added or subtracted to move both directions

= Random access can be used to access the container at any location

BOSTON
UNIVERSITY

for (vector<int>::iterator itr = vec.begin(); itr !'= vec.end() ,;, ++itr)
{

cout << *itr << " " ;

// iterators are pointers!
}

= Loop with a “for” loop, referencing the value of vec using an iterator type.
" vector<int>::iterator Iis atype that iterates through a vector of int’s.

= 1sttime through:

= itr points at 15t element in vec
= Print value pointed at by itr: *itr
= jtris incremented to the next element in the vector

= |terators are very useful C++ concepts. They work on any STL container!

= No need to worry about the # of elements!
= Exact iterator behavior depends on the type of container but they are guaranteed to always reach every value.

= Note we are now retrieving the end iterator at every loop to see if we've reached it: vec.end()

Looping

BOSTON
UNIVERSITY

for (auto itr = vec.begin(), auto vec end = vec.end() ; itr != vec end ; ++itr)

{
cout << *itr << " "

= Let the auto type asks the C++ compiler to figure out the iterator type automatically.
= This is MUCH easier code to read.

= An extra modification: Assigning the vec_end variable avoids calling vec.end() on every loop.
= This is faster, for when it matters.

Looping

BOSTON
UNIVERSITY

for(auto &element : wvec)

{
cout << element << " " ;

}

= Another iterator-based loop: iterator behavior is handled automatically by the compiler
and the element type is also handled by the compiler.

= Uses a reference so there is no annoying pointer syntax.
= Option: use a const auto type so the reference to the element can't alter the vector.

= Less typing == less chance for program bugs!
= The compiler doesn’t mind doing extra work.

Looping

= Performance considerations:

= The iterators are general purpose and safer than bracket notation but a wee bit
slower. Usually safety and less debugging effort wins over micro-optimizing your code.

= Using them allow you to substitute different container types if you need to as not every
container supports the bracket notation.

= ...meaning you can write a function that takes in begin and end iterators and works on
UNIVERSITY any STL container type!

Using vector<> with our Shape classes

= Open the C::B project Part = Let's debug our way through

4/STL Containers the code to see how a

= This has some worked vector<> handles objects that
examples using the vector<> are members of a class
class. hierarchy.

= It includes the Shape class = |Introduced in the code: some
hierarchy worked out in Part memory allocations and

3 of the tutorial. management.

Some OOP Guidelines

= Here are some guidelines for putting together a program using OOP to keep in mind while getting
up and running with C++.

= Keep your classes simple and single = Follow the KISS principle:
purpose. = “Keep it simple stupid”

= Logically organize your classes to re-use = “Keep it simple, silly”
code via inheritance. = “Keep it short and sweet”

: : : = “Make Simple Tasks Simple!” — Bjarne
= Use interfaces in place of multiple P P J

_ _ Stroustroup
inheritance = “Make everything as simple as possible, but
= Don’t make your life harder while trying to learn not simpler” — Albert Einstein

the language.

= Keep your methods short

= [t's better to have many descriptive methods
that do little things than giant methods that do
lots of things.

This also makes for easier debugging.
UNIVERSITY

Putting your classes together

= Effective use of OOP demands that the programmer think/plan/design first and code second.
= There is a large body of information on this topic:

GO gle approaches to designing object oriented software Q

All Shopping mages News Videos More Settings Tools

About 6,130,000 results (0.65 seconds)

= As this is an academic institution your code may:
= Live onin your lab long after you have graduated
= Be worked on by multiple researchers
= Adapted to new problems you haven’t considered
= Be shared with collaborators

= For more structured environments (ex. a team of professional programmers) there exist concepts
like SOLID that seek to create OOP code that is maintainable and easily debuggable over time:

= https://en.wikipedia.org/wiki/SOLID (object-oriented design)
= ...and there are many others.

BOSTON
UNIVERSITY

https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

Keep your classes simple

= Avoid “monster” classes that implement everything including the kitchen sink.

= Our Rectangle class just holds dimensions and calculates its area.
= |t cannot print out its area, send email, draw to the screen, etc.

= Two standard approaches to help with this are below.

= Single responsibility principle: = Resource Allocation Is Initialization (RAII):
= Every class has responsibility for one piece of = Alate 80’s concept, widely used in OOP.
functionality in the program. = https://en.wikipedia.org/wiki/Resource_acquisiti
= https://en.wikipedia.org/wiki/Single_responsibility principle on is initialization
= Example:

= Resources in a class are created in the
constructor and released in the destructor.

= Example: opening files, allocating memory, etc.

= An Image class holds image data and can read
and write it from disk.

= A second class, ImageFilter, has methods that Theref diob
manipulate Image objects and return new ones. erefore resources are guaranteed to be

available before the object is used and will be
properly handled during program errors.

BOSTON
UNIVERSITY

https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://en.wikipedia.org/wiki/Single_responsibility_principle

C++ Libraries

= There are a LOT of libraries available for = Many libraries contain code
C++ code. developed by professionals or
= Sourceforge alone has >7300 experts in a particular field.
https://s.ourceforq.e.net/di.rectorvllanqu?q-e:cpp/os:windows/’?qzlibrarv - Cons'der What you are '[I‘ylng tO
= Before jumping into writing your code, accomplish in your research:

consider what you need and see if there

. . . = A) accomplishments in your field or
are libraries available.) P y

= B) C++ programming?
= Probably (A) but there’s nothing
wrong with (B), especially if C++ skills
will be important to you in the future!

BOSTON
UNIVERSITY

https://sourceforge.net/directory/language:cpp/os:windows/?q=library

Multithreading

= OpenMP

= Open MP is a standard approach to writing multithreaded code to exploit multiple CPU cores
with your program.

= Fully supported in C++
= See http://www.openmp.org/ for details, or take an RCS tutorial on using it.

= Intel Thread Building Blocks

C++ specific library

Available on the SCC from Intel and is also open source.

Much more flexible and much more C++-ish than OpenMP

Offers high performance memory allocators for multithreaded code

Includes concurrent data types (vectors, etc.) that can automatically be shared amongst
threads with no added effort for the programmer to control access to them.

If you want to use this and need help email help@scc.bu.edu

|
||
||
||
|
||
BOSTON
UNIVERSITY

http://www.openmp.org/

Math and Linear Algebra

= Eigen

http://eigen.tuxfamily.org/index.php?titte=Main_Page
Available on the SCC.
“Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms.”

= Armadillo

http://arma.sourceforge.net/

Available on the SCC.

“‘Armadillo is a high quality linear algebra library (matrix maths) for the C++ language, aiming towards a good balance
between speed and ease of use. Provides high-level syntax (API) deliberately similar to Matlab.”

Also see matlab2cpp (https://github.com/jonathf/matlab2cpp), a semi-automatic tool for converting Matlab code to C++ with
Armadillo.

And also see PyJet (https://github.com/wolfv/pyjet), which converts Python and Numpy code to Armadillo/C++ code.

= As nice as the vector<> class is, it's not going to come close to competing with optimized libraries
for handling linear algebra.

BOSTON
UNIVERSITY

http://arma.sourceforge.net/
https://github.com/jonathf/matlab2cpp
https://github.com/wolfv/pyjet

.
Example: Speeding up Python

= Let’s take a terrible Python function: a naive matrix-matrix multiplication implemented
with lists.

= Implemented as a method in a barebones Python Matrix class.

= A C++ version should be faster (even keeping the naive multiplication algorithm).
= |deally we’d like to drop the C++ code into our Python script.

= For fun, compare against the same routine run with numpy (uses optimized C).

BOSTON
UNIVERSITY

class Matrix:

n Python code: def init (self, size=100):

self.size=size
self.matrix=[[0.0 for x in range(self.size)] for y in range(self.size)]

= Please do not ever use
this terrible in your own
code, this is for
i # Allocate an output matrix.
demonstration purposes ol = Matrix(self.size)

orﬂy! for i in range(self.size):
for j in range(self.size):
for k in range(self.size):
No such thing as private data in Python classes!
val.matrix[1]1[]j] += self.matrix[i][k] * mat.matrix[k][]]

def multiply(self,mat):

return val

def str (self):
strval=""
for i in range(self.size):
strval += str(self.matrix[i]) + '"\n'
return strval

BOSTON
UNIVERSITY

#include <vector>
using namespace std ;

C++ CIaSS class Matrix Plugin {

public:
Matrix Plugin(const int) ;
// Don't allow for an empty constructor,
// only create if a matrix size is given.

= matrix_plugin.h //Matrix Plugin()=delete ;

// Duplicate the Python methods for code compatibility
= An equivalent C++ class.

)) Matrix Plugin multiply(const Matrix Plugin &mat) ;
= Stores its matrix as a vector of

// Add an extra "get" method for the size. This lets

Vectors. // outside code read the size from the private member.
= Uses the same algorithm. int get matrix size() ;
= Will it be faster? // In order to make this work like the Python class it
// would be nice to use mymatrix[][] but there is no [][] operator
// in C++. The () operator can be used instead but that gets a little
// complicated for this example. So use a get/set combo

double get val (const int row, const int col) ;
void set val(const int row, const int col, double val) ;

private:
// Need to store the matrix...let's use an STL vector
// A vector of vectors of doubles will do the trick.
vector< vector<double> > m matrix ;

// And store the matrix size

BOSTON int m matrix size ;
UNIVERSITY }o;

= matrix_plugin.cpp

= This is a snippet, showing just the
matrix multiplication method. Exact
same implementation as in
Python.

BOSTON
UNIVERSITY

#include "matrix plugin.h"

Matrix Plugin Matrix Plugin::multiply(const Matrix Plugin &mat) {
// Implement the exact same algorithm as in Python
Matrix Plugin C(m matrix size)
for (int 1 = 0 ; 1 < m matrix size ; ++1i) {
for (int jJ = 0 ; j < m matrix size ; ++j) {
for (int k = 0 ; k < m matrix size ; ++k) {
C.m matrix[i][j] += m matrix[i][k] * mat.m matrix[k][]]
}
}
}

return C ;

Python Calling C++

Python

interface
(aka “glue”)
code

= Python requires interface or glue code to be written to translate back and forth between the Python
interpreter and the C++ code.

= This interface code is written in C.

= [tis a fair amount of labor to write this code and it has to be modified any time the C++ code is
changed.

= |f only it could be auto-generated...

BOSTON
UNIVERSITY

SWIG — Software Wrapper Interface Generator

Fortunately there is more than one way to generate the interface code automatically!

SWIG is a popular and well-tested tool.
= http://www.swig.org/
= Can generate wrappers for C and C++ code so it can be called in Python, Perl , Java, R, and ~20 other
scripting languages
An alternative is the Boost.Python library
= http://www.boost.org/doc/libs/1_63_0/libs/python/doc/html/index.html
= More powerful and more flexible than SWIG.
= Much steeper learning curve.

To finish the tutorial let’s walk through wrapping faster C++ code with SWIG and plugging
It into Python.

BOSTON
UNIVERSITY

http://www.swig.org/
http://www.boost.org/doc/libs/1_63_0/libs/python/doc/html/index.html

smodule matrix plugin
SWIG interface file ‘.
#include "matrix plugin.h"
5}
= File: matrix_plugin.i $include "matrix plugin.h"
= SWIG needs an interface file, which tells it module load swig
. le 1 h 2.7.11
what parts of the C++ code it should create module load python/
module load gcc/6.2.0
wrappers around for Python. # The matrix plugin.i is the SWIG interface file.
= |n this case it’s pretty minimal. The swig -et+ -python matrix plugin.l
rGQUirementS for th|S f”e are in the SWIG # SWIG has produced a Python interface file:
documentation but for more straightforward # matrix plugin wrap.c

C++ COde yOU JUSt need the header flleS. # Compile the C++ plugin and the SWIG interface files

g++ -03 -fPIC -std=c++11 -c matrix plugin.cpp

. ++ -03 -fPIC -std=c++11 -c -I /python2.7 \
= The C++ class will appear as a Python class. 7 matrix plugin wrap.cxx

= The SCC build script is to the right. # Link into a shared library

. . g++ -shared matrix plugin.o matrix plugin wrap.o -o matrix plugin.so
= The generated Python interface code is much
longer than a human would write at 3661 lines
(but it works)!

In Python now do:
import matrix plugin
matrix plugin.Matrix Plugin (mat sz)

to use the new C++ class!
BOSTON
UNIVERSITY

= o S e

How does it compare In speed?

= Compare: original terrible Python code, SWIG'd C++ duplicate code, and numpy.
= Run on scc2.bu.edu

= Time is in seconds.

= Lesson 1. SWIG and C++ are faster than Python!

Bad Python

100x100 0.387 0.0015 6.89e-05
200x200 3.35 0.014 0.0002
300x300 11.01 0.049 0.0004
500x500 58.6 0.29 0.0012

= Lesson 2: a crummy algorithm always loses to an optimized algorithm.

BOSTON
UNIVERSITY

Some Web and Print Resources

= C++ Primer (5th Edition) by Stanley B. Lippmanm,Josée
Lajoie, Barbara E. Moo
= A well-regarded book for anyone learning C++

= Effective Modern C++: 42 Specific Ways to Improve Your
Use of C++11 and C++14 (1st Edition) by Scott Meyers

= Not a beginner’s book, but excellent once you feel confident in
C++

= The C++ Standard Library: A Tutorial and Reference (2nd
Edition) by Nicolai M. Josuttis

= An excellent reference on the STL.

BOSTON
UNIVERSITY

http://www.cplusplus.com/

= Has tutorials, articles, C++ information, reference materials, and a forum.
= The reference is excellent with clear explanations and good example code.

http://en.cppreference.com/w/cpp

= Ahighly detailed and technical reference. Useful when cplusplus.com
doesn’t describe enough of the underlying behavior of things in the C++
language and STL for you.

https://isocpp.org/faq

= The C++ Super FAQ
= A greatresource!

https://www.tutorialspoint.com/cplusplus/index.htm

= Tutorialspoint has tutorials for multiple languages.

http://www.cplusplus.com/
http://en.cppreference.com/w/cpp
https://isocpp.org/faq
https://www.tutorialspoint.com/cplusplus/index.htm

C++ on the SCC

= Gnu g++ compiler. For C++11 use at least version 4.9.2
= EX.:
module load gcc/6.2.0
g++ -0 myprog -std=c++11 myfile.cpp

= Intel icc compiler. Both available versions (2015 and 2016) support C++11.
= EX.:
module load intel/2016
icc -0 myprog -std=c++11 myfile.cpp
= LLVM clang++ compiler. Use at least version 3.9.0
= EX.:
module load llvm/4.0.0
clang++ -0 myprog -std=c++11 myfile.cpp

BOSTON
UNIVERSITY

Tutorial Conclusion

= Topics covered:
= Some basic C++ syntax
= OOP concepts: encapsulation, abstraction, inheritance, polymorphism
= Classes:
= Syntax
= Private / protected / public access
= Methods and members
= Inheritance
= Use of the virtual keyword
Basics of templates and the STL
Use of an IDE (Code::Blocks) to assist with development and debugging
Example of accelerating Python with C++

||
||
||
BOSTON
UNIVERSITY

Topics Not Covered

= Where to start?!

= More C++ syntax
= |f/else, other types of loops

= Manual memory management

= File 1/O

= Pointer intricacies

= Design patterns
= More ways to organize OOP code

= Multithreading

= Template metaprogramming
= Wherein templates are used not just to adapt to types but to generate code for you.
= This is the basis of libraries like Armadillo.
= Really advanced C++.

= |In C++ the template system was accidentally discovered to be Turing complete, meaning it can
compute anything computable (like C++ itself)...in other words it’s like having a separate programming

BOSTON .
language embedded in C++!

Your thoughts please!

= The main tutorial goal was to introduce C++ and to cover the main reason
for choosing it over competitors like FORTRAN or C: object-oriented
programming.

= The focus has been on developing classes and understanding the OOP
concepts underlying the approach.

= This is the first time that a C++ tutorial has been offered by RCS. What
would you change? Add? Remove?

BOSTON
UNIVERSITY

