
Introduction to C++: Part 4

Tutorial Outline: Part 4

 Generics and templates
 C++ template syntax

 What happens during compilation

 Using generics: the C++ Standard Template Library (STL)

 STL Containers, Algorithms, and Iterators

 Coding recommendations for a C++ code

 Useful libraries

 Example: Speeding up Python

 Resources

The formal concepts in OOP

 Object-oriented programming

(OOP):
 Defines classes to represent data and logic

in a program. Classes can contain members

(data) and methods (internal functions).

 Creates instances of classes, aka objects,

and builds the programs out of their

interactions.

 The core concepts in addition to

classes and objects are:
 Encapsulation

 Inheritance

 Polymorphism

 Abstraction

Polymorphism

Encapsulation

Inheritance

Abstraction

OOP

Polymorphism

 This has already been seen in the last tutorial:

 The different subclasses of Shape automatically call their own Area()

method depending on their type.
 …if virtual method calls are being used!

 This is called polymorphism in C++.

 There are two other kinds defined in computer science:
 ad hoc polymorphism – function overloading in C++

 parametric polymorphism – generics in C++

void PrintArea(Shape &shape) {

cout << "Area: " << shape.Area() << endl ;

}

Function overloading

 Briefly: the same function can be

implemented multiple times with

different arguments.

 This allows for special cases to be

handled, or specialized behavior

for different types.

 Multiple constructors in a class are

an example of function

overloading.

float sum(float a, float b) {

return a+b ;

}

int sum(int a, int b) {

return a+b ;

}

Generics aka C++ Templates

 Generic code is code that works on multiple different data types but is

only coded once.

 In C++ generic code is called a template.

 A C++ template is implemented entirely in a header file to define

generic classes and functions.

 The actual code is generated by the compiler wherever the template

is used in your code.

 There is NO PENALTY when your code is running!

 If you don’t use the template code it doesn’t get compiled at all.

 For the sake of time in this tutorial we will focus on using the C++

Standard Template Library and walk thru some templates with C::B.

Sample template function

 The template is started with the

keyword template and is told it’ll handle

a type which is referred to as T in the

code.

 Templates can be created with multiple

different types, not limited to just one.

 You don’t have to use T, any non-reserved

word will do.

 Methods inside a class can be template even

if the class is not.

 When the compiler sees the call to the

template function it will automatically

generate a function that takes and

returns float types.
 If the compiler can figure it out you can sometimes

skip the type declaration.

template <typename T>

T sum_template (T a, T b) {

return a+b ;

}

// Then call the function:

float x=1.0 ;

float y=2.0 ;

float z=sum_template<float>(x,y) ;

z = sum_template (x,y) ;

Templates

 The only limit is that any type or class used with the example function sum<> has to

support or implement the + operator

 If you use a template function or class and the type you want to use doesn’t work with the

generated code the compiler will tell you with an error message.

 This may generate an ENORMOUS AMOUNT of error messages from the compiler.

 If that happens, scroll back to the 1st error, that’s usually the point in your code with the erroneous line

creating a templated object.

 If you only have one type to worry about (e.g. only one type of image format), templates

are unlikely to offer much (except longer compiles).

 Use them when needed by a library or when you find yourself repeating the same code

for multiple types over and over.

A Template Class

 Open the Code::Blocks project:
 Part 4/Overloads_and_Templates

 Let’s use the C::B debugger to

walk through some function

overloads, a template function,

and a template class to see how

the code is created by the

compiler.

template <typename T>

class Sample

{

public:

Sample(T value) : m_stored_value(value) {}

virtual ~Sample() {} // <-- {} not ;

// There's no .cpp file so all methods must

// have a function body here.

T sum_with_stored_value(T value) {

return m_stored_value + value ;

}

protected:

private:

T m_stored_value ;

};

// Create an object of Sample cast to hold a specifc

type.

Sample<int> int_Sample(100) ;

cout << int_Sample.sum_with_stored_value(50) << endl ;

Template Class Inheritance

 C++ lets you define a base or super class using templates.

 A subclass can inherit as a template or as a specific type.

 Reference: C::B project Part 4/Template_Class_Inheritance

template<typename T>

class BaseClassTemplate

{

public:

BaseClassTemplate() {}

virtual ~BaseClassTemplate() {}

T m_base_value ;

protected:

private:

};

class Subclass1 :

public BaseClassTemplate<int> {

public:

Subclass1() {}

virtual ~Subclass1() {}

int m_some_new_val ;

};

template<typename T>

class Subclass2 :

public BaseClassTemplate<T> {

public:

Subclass2() {}

virtual ~Subclass2() {}

int m_some_new_val ;

};

template<typename T, typename Q>

class Subclass3 :

public BaseClassTemplate<T> {

public:

Subclass3() {}

virtual ~Subclass3() {}

Q m_some_new_val ;

};

The Standard Template Library

 The STL is a large collection of containers and algorithms that are part of

C++.
 It provides many of the basic algorithms and data structures used in computer science.

 As the name implies, it consists of generic code that you specialize as

needed.

 When developing C++ code it is a good idea to use the STL when

possible.
 Well-vetted and tested.

 Lots of resources available for help.

 Programming is hard enough – why write extra code if you don’t have to?

Containers

 There are 16 types of containers in the STL:

Container Description

array 1D list of elements.

vector 1D list of elements

deque Double ended queue

forward_list Linked list

list Double-linked list

stack Last-in, first-out list.

queue First-in, first-out list.

priority_queue 1st element is always the

largest in the container

Container Description

set Unique collection in a specific

order

multiset Elements stored in a specific

order, can have duplicates.

map Key-value storage in a specific

order

multimap Like a map but values can

have the same key.

unordered_set Same as set, sans ordering

unordered_multiset Same as multisetset, sans

ordering

unordered_map Same as map, sans ordering

unordered_multimap Same as multimap, sans

ordering

Algorithms

 There are 85 of these.

 Example: find, count, replace, sort, is_sorted, max, min, binary_search, reverse

 Algorithms manipulate the data stored in containers but is not tied to STL containers

 These can be applied to your own collections or containers of data

 Example:

 The implementation is hidden and the necessary code for reverse() is generated from

templates at compile time.

vector<int> v(3); // Declare a vector of 3 elements.

v[0] = 7;

v[1] = 3;

v[2] = v[0] + v[1]; // v[0] == 7, v[1] == 3, v[2] == 10

reverse(v.begin(), v.end()) ; // v[0] == 10, v[1] == 3, v[2] == 7

vector<T>
 A very common and useful class in C++ is the vector class. Access it with:

#include <vector>

 Vector has many methods:
 Various constructors

 Ways to iterate or loop through its contents

 Copy or assign to another vector

 Query vector for the number of elements it contains or its backing storage size.

 Example usage: vector<float> my_vec ;

 Or, create my_vec with storage pre-allocated: vector<float> my_vec(50) ;

 Hidden from the programmer is the backing store:
 An array allocated in memory that is at least the size of the number of elements you have added or requested.

 The array will auto-reallocate a new array, copy in the old data, and delete the old array if it hits its size limit.

Contains N elements. Given by size() method.

Allocated for a total of M elements

Given by capacity() method.

Add some more to the vector

New memory is allocated.

Old data is copied in.

New M > old M.

Old allocation is destroyed.

Allocated for a total of M’ elements

Destructors

 vector<t> can hold objects of any type:
 Primitive (aka basic) types: int, float, char, etc.

 Objects: string, your own classes, file stream objects (ex. ostream), etc.

 Pointers: int*, string*, etc.

 When a vector is destroyed:
 If it holds primitive types or pointers it just deallocates its backing store.

 If it holds objects it will call each object’s destructor before freeing its backing store.

vector<t> with objects

 If a vector<MyClass> has had some

elements added to it the objects can

be accessed via the vector using

index notation, iterators, via the at()

method, etc.

 vec.at(2) is equivalent to vec[2] except

that at(2) double checks the size of the

vector before returning the value.

// a vector with memory preallocated to

// hold 1000 objects.

vector<MyClass> my_vec(1000);

// Now make a vector with 1000 MyClass objects

// that are initialized using the MyClass constructor

vector<MyClass> my_vec2(1000,MyClass(arg1,arg2));

// Access an object's method.

my_vec2[100].some_method() ;

// Or a member

my_vec2[10].member_integer = 100 ;

// Or in a loop. const prevents the elem

// reference variable from editing the object

// it refers to.

for (const auto &elem : my_vec2) {

cout << elem.some_method() << endl ;

}

// Or...without the reference elem is now a

// COPY of the vector element!!

for (auto elem : my_vec2) {

cout << elem.some_method() << endl ;

}

 Loop with a “for” loop, referencing the value of vec using brackets.

 1st time through:
 index = 0

 Print value at vec[0]

 index gets incremented by 1

 2nd time through:
 Index = 1

 Etc

 After last time through
 Index now equal to vec.size()

 Loop exits

 Careful! Using an out of range index will likely cause a memory error that crashes your

program.

 Note we call the size() method on every iteration.

for (int index = 0 ; index < vec.size() ; ++index)

{

// ++index means "add 1 to the value of index"

cout << vec[index] << " " ;

}

L
o
o
p
in

g

Iterators

 Iterators are generalized ways of keeping track of positions in a container.

 3 types: forward iterators, bidirectional, random access

 Forward iterators can only be incremented (as seen here)

 Bidirectional can be added or subtracted to move both directions

 Random access can be used to access the container at any location

v[0] v[1] v[2]v.begin()

v.begin()+1
v.begin()+2

v.end()

for (vector<int>::iterator itr = vec.begin(); itr != vec.end() ; ++itr)

{

cout << *itr << " " ;

// iterators are pointers!

}

 Loop with a “for” loop, referencing the value of vec using an iterator type.

 vector<int>::iterator is a type that iterates through a vector of int’s.

 1st time through:
 itr points at 1st element in vec

 Print value pointed at by itr: *itr

 itr is incremented to the next element in the vector

 Iterators are very useful C++ concepts. They work on any STL container!
 No need to worry about the # of elements!

 Exact iterator behavior depends on the type of container but they are guaranteed to always reach every value.

 Note we are now retrieving the end iterator at every loop to see if we’ve reached it: vec.end()

L
o
o
p
in

g

 Let the auto type asks the C++ compiler to figure out the iterator type automatically.
 This is MUCH easier code to read.

 An extra modification: Assigning the vec_end variable avoids calling vec.end() on every loop.
 This is faster, for when it matters.

for (auto itr = vec.begin(), auto vec_end = vec.end() ; itr != vec_end ; ++itr)

{

cout << *itr << " " ;

}

L
o
o
p
in

g

 Another iterator-based loop: iterator behavior is handled automatically by the compiler

and the element type is also handled by the compiler.

 Uses a reference so there is no annoying pointer syntax.

 Option: use a const auto type so the reference to the element can’t alter the vector.

 Less typing == less chance for program bugs!
 The compiler doesn’t mind doing extra work.

for(auto &element : vec)

{

cout << element << " " ;

}

 Performance considerations:

 The iterators are general purpose and safer than bracket notation but a wee bit

slower. Usually safety and less debugging effort wins over micro-optimizing your code.

 Using them allow you to substitute different container types if you need to as not every

container supports the bracket notation.

 …meaning you can write a function that takes in begin and end iterators and works on

any STL container type!

L
o
o
p
in

g

Using vector<> with our Shape classes

 Open the C::B project Part

4/STL Containers

 This has some worked

examples using the vector<>

class.

 It includes the Shape class

hierarchy worked out in Part

3 of the tutorial.

 Let’s debug our way through

the code to see how a

vector<> handles objects that

are members of a class

hierarchy.

 Introduced in the code: some

memory allocations and

management.

Some OOP Guidelines

 Here are some guidelines for putting together a program using OOP to keep in mind while getting

up and running with C++.

 Keep your classes simple and single

purpose.

 Logically organize your classes to re-use

code via inheritance.

 Use interfaces in place of multiple

inheritance

 Don’t make your life harder while trying to learn

the language.

 Keep your methods short

 It’s better to have many descriptive methods

that do little things than giant methods that do

lots of things.

 This also makes for easier debugging.

 Follow the KISS principle:

 “Keep it simple stupid”

 “Keep it simple, silly”

 “Keep it short and sweet”

 “Make Simple Tasks Simple!” – Bjarne

Stroustroup

 “Make everything as simple as possible, but

not simpler” – Albert Einstein

Putting your classes together

 Effective use of OOP demands that the programmer think/plan/design first and code second.

 There is a large body of information on this topic:

 As this is an academic institution your code may:
 Live on in your lab long after you have graduated

 Be worked on by multiple researchers

 Adapted to new problems you haven’t considered

 Be shared with collaborators

 For more structured environments (ex. a team of professional programmers) there exist concepts

like SOLID that seek to create OOP code that is maintainable and easily debuggable over time:
 https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

 …and there are many others.

https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

Keep your classes simple

 Avoid “monster” classes that implement everything including the kitchen sink.

 Our Rectangle class just holds dimensions and calculates its area.

 It cannot print out its area, send email, draw to the screen, etc.

 Two standard approaches to help with this are below.

 Resource Allocation Is Initialization (RAII):

 A late 80’s concept, widely used in OOP.

 https://en.wikipedia.org/wiki/Resource_acquisiti

on_is_initialization

 Resources in a class are created in the

constructor and released in the destructor.

 Example: opening files, allocating memory, etc.

 Therefore resources are guaranteed to be

available before the object is used and will be

properly handled during program errors.

 Single responsibility principle:

 Every class has responsibility for one piece of

functionality in the program.
 https://en.wikipedia.org/wiki/Single_responsibility_principle

 Example:

 An Image class holds image data and can read

and write it from disk.

 A second class, ImageFilter, has methods that

manipulate Image objects and return new ones.

https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://en.wikipedia.org/wiki/Single_responsibility_principle

C++ Libraries

 There are a LOT of libraries available for

C++ code.

 Sourceforge alone has >7300
 https://sourceforge.net/directory/language:cpp/os:windows/?q=library

 Before jumping into writing your code,

consider what you need and see if there

are libraries available.

 Many libraries contain code

developed by professionals or

experts in a particular field.

 Consider what you are trying to

accomplish in your research:

 A) accomplishments in your field or

 B) C++ programming?

 Probably (A) but there’s nothing

wrong with (B), especially if C++ skills

will be important to you in the future!

https://sourceforge.net/directory/language:cpp/os:windows/?q=library

Multithreading

 OpenMP
 Open MP is a standard approach to writing multithreaded code to exploit multiple CPU cores

with your program.

 Fully supported in C++

 See http://www.openmp.org/ for details, or take an RCS tutorial on using it.

 Intel Thread Building Blocks
 C++ specific library

 Available on the SCC from Intel and is also open source.

 Much more flexible and much more C++-ish than OpenMP

 Offers high performance memory allocators for multithreaded code

 Includes concurrent data types (vectors, etc.) that can automatically be shared amongst

threads with no added effort for the programmer to control access to them.

 If you want to use this and need help email help@scc.bu.edu

http://www.openmp.org/

Math and Linear Algebra
 Eigen

 http://eigen.tuxfamily.org/index.php?title=Main_Page

 Available on the SCC.

 “Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms.”

 Armadillo
 http://arma.sourceforge.net/

 Available on the SCC.

 “Armadillo is a high quality linear algebra library (matrix maths) for the C++ language, aiming towards a good balance

between speed and ease of use. Provides high-level syntax (API) deliberately similar to Matlab.”

 Also see matlab2cpp (https://github.com/jonathf/matlab2cpp), a semi-automatic tool for converting Matlab code to C++ with

Armadillo.

 And also see PyJet (https://github.com/wolfv/pyjet), which converts Python and Numpy code to Armadillo/C++ code.

 As nice as the vector<> class is, it’s not going to come close to competing with optimized libraries

for handling linear algebra.

http://arma.sourceforge.net/
https://github.com/jonathf/matlab2cpp
https://github.com/wolfv/pyjet

Example: Speeding up Python

 Let’s take a terrible Python function: a naïve matrix-matrix multiplication implemented

with lists.

 Implemented as a method in a barebones Python Matrix class.

 A C++ version should be faster (even keeping the naïve multiplication algorithm).

 Ideally we’d like to drop the C++ code into our Python script.

 For fun, compare against the same routine run with numpy (uses optimized C).

 Python code:

 Please do not ever use

this terrible in your own

code, this is for

demonstration purposes

only!

class Matrix:

''' A barebones implementation of a square matrix. Note how

slow the matrix-matrix multiplication is! '''

def __init__(self, size=100):

self.size=size

self.matrix=[[0.0 for x in range(self.size)] for y in range(self.size)]

def multiply(self,mat):

''' Multiply this matrix with another. Return a new matrix.

Assume incoming matrix is the same size.'''

Allocate an output matrix.

val = Matrix(self.size)

for i in range(self.size):

for j in range(self.size):

for k in range(self.size):

No such thing as private data in Python classes!

val.matrix[i][j] += self.matrix[i][k] * mat.matrix[k][j]

return val

def __str__(self):

''' Make this printable '''

strval=''

for i in range(self.size):

strval += str(self.matrix[i]) + '\n'

return strval

C++ Class

 matrix_plugin.h

 An equivalent C++ class.

 Stores its matrix as a vector of

vectors.

 Uses the same algorithm.

 Will it be faster?

#include <vector>

using namespace std ;

class Matrix_Plugin {

public:

Matrix_Plugin(const int) ;

// Don't allow for an empty constructor,

// only create if a matrix size is given.

//Matrix_Plugin()=delete ;

// Duplicate the Python methods for code compatibility

Matrix_Plugin multiply(const Matrix_Plugin &mat) ;

// Add an extra "get" method for the size. This lets

// outside code read the size from the private member.

int get_matrix_size() ;

// In order to make this work like the Python class it

// would be nice to use mymatrix[][] but there is no [][] operator

// in C++. The () operator can be used instead but that gets a little

// complicated for this example. So use a get/set combo

double get_val(const int row, const int col) ;

void set_val(const int row, const int col, double val) ;

private:

// Need to store the matrix...let's use an STL vector

// A vector of vectors of doubles will do the trick.

vector< vector<double> > m_matrix ;

// And store the matrix size

int m_matrix_size ;

} ;

 matrix_plugin.cpp

 This is a snippet, showing just the

matrix multiplication method. Exact

same implementation as in

Python.

#include "matrix_plugin.h"

Matrix_Plugin Matrix_Plugin::multiply(const Matrix_Plugin &mat) {

// Implement the exact same algorithm as in Python

Matrix_Plugin C(m_matrix_size) ;

for (int i = 0 ; i < m_matrix_size ; ++i) {

for (int j = 0 ; j < m_matrix_size ; ++j) {

for (int k = 0 ; k < m_matrix_size ; ++k) {

C.m_matrix[i][j] += m_matrix[i][k] * mat.m_matrix[k][j] ;

}

}

}

return C ;

}

Python Calling C++

 Python requires interface or glue code to be written to translate back and forth between the Python

interpreter and the C++ code.

 This interface code is written in C.

 It is a fair amount of labor to write this code and it has to be modified any time the C++ code is

changed.

 If only it could be auto-generated…

Python C++
interface

(aka “glue”)

code

SWIG – Software Wrapper Interface Generator

 Fortunately there is more than one way to generate the interface code automatically!

 SWIG is a popular and well-tested tool.

 http://www.swig.org/

 Can generate wrappers for C and C++ code so it can be called in Python, Perl , Java, R, and ~20 other

scripting languages

 An alternative is the Boost.Python library

 http://www.boost.org/doc/libs/1_63_0/libs/python/doc/html/index.html

 More powerful and more flexible than SWIG.

 Much steeper learning curve.

 To finish the tutorial let’s walk through wrapping faster C++ code with SWIG and plugging

it into Python.

http://www.swig.org/
http://www.boost.org/doc/libs/1_63_0/libs/python/doc/html/index.html

SWIG interface file

 File: matrix_plugin.i

 SWIG needs an interface file, which tells it

what parts of the C++ code it should create

wrappers around for Python.

 In this case it’s pretty minimal. The

requirements for this file are in the SWIG

documentation but for more straightforward

C++ code you just need the header files.

 The C++ class will appear as a Python class.

 The SCC build script is to the right.

 The generated Python interface code is much

longer than a human would write at 3661 lines

(but it works)!

%module matrix_plugin

%{

#include "matrix_plugin.h"

%}

%include "matrix_plugin.h"

module load swig

module load python/2.7.11

module load gcc/6.2.0

The matrix_plugin.i is the SWIG interface file.

swig -c++ -python matrix_plugin.i

SWIG has produced a Python interface file:

matrix_plugin_wrap.c

Compile the C++ plugin and the SWIG interface files

g++ -O3 -fPIC -std=c++11 -c matrix_plugin.cpp

g++ -O3 -fPIC -std=c++11 -c -I$SCC_PYTHON_INCLUDE/python2.7 \

matrix_plugin_wrap.cxx

Link into a shared library

g++ -shared matrix_plugin.o matrix_plugin_wrap.o -o _matrix_plugin.so

In Python now do:

import matrix_plugin

matrix_plugin.Matrix_Plugin(mat_sz)

to use the new C++ class!

How does it compare in speed?

 Compare: original terrible Python code, SWIG’d C++ duplicate code, and numpy.

 Run on scc2.bu.edu

 Time is in seconds.

 Lesson 1: SWIG and C++ are faster than Python!

 Lesson 2: a crummy algorithm always loses to an optimized algorithm.

Matrix Size Bad Python C++ Conversion Numpy

100x100 0.387 0.0015 6.89e-05

200x200 3.35 0.014 0.0002

300x300 11.01 0.049 0.0004

500x500 58.6 0.29 0.0012

Some Web and Print Resources

 C++ Primer (5th Edition) by Stanley B. Lippmanm,Josée

Lajoie, Barbara E. Moo
 A well-regarded book for anyone learning C++

 Effective Modern C++: 42 Specific Ways to Improve Your

Use of C++11 and C++14 (1st Edition) by Scott Meyers

 Not a beginner’s book, but excellent once you feel confident in

C++

 The C++ Standard Library: A Tutorial and Reference (2nd

Edition) by Nicolai M. Josuttis

 An excellent reference on the STL.

 http://www.cplusplus.com/
 Has tutorials, articles, C++ information, reference materials, and a forum.

 The reference is excellent with clear explanations and good example code.

 http://en.cppreference.com/w/cpp
 A highly detailed and technical reference. Useful when cplusplus.com

doesn’t describe enough of the underlying behavior of things in the C++

language and STL for you.

 https://isocpp.org/faq
 The C++ Super FAQ

 A great resource!

 https://www.tutorialspoint.com/cplusplus/index.htm
 Tutorialspoint has tutorials for multiple languages.

http://www.cplusplus.com/
http://en.cppreference.com/w/cpp
https://isocpp.org/faq
https://www.tutorialspoint.com/cplusplus/index.htm

C++ on the SCC

 Gnu g++ compiler. For C++11 use at least version 4.9.2

 Ex.:

module load gcc/6.2.0

g++ -o myprog -std=c++11 myfile.cpp

 Intel icc compiler. Both available versions (2015 and 2016) support C++11.

 Ex.:

module load intel/2016

icc -o myprog -std=c++11 myfile.cpp

 LLVM clang++ compiler. Use at least version 3.9.0

 Ex.:

module load llvm/4.0.0

clang++ -o myprog -std=c++11 myfile.cpp

Tutorial Conclusion

 Topics covered:
 Some basic C++ syntax

 OOP concepts: encapsulation, abstraction, inheritance, polymorphism

 Classes:

 Syntax

 Private / protected / public access

 Methods and members

 Inheritance

 Use of the virtual keyword

 Basics of templates and the STL

 Use of an IDE (Code::Blocks) to assist with development and debugging

 Example of accelerating Python with C++

Topics Not Covered

 Where to start?!

 More C++ syntax

 If/else, other types of loops

 Manual memory management

 File I/O

 Pointer intricacies

 Design patterns

 More ways to organize OOP code

 Multithreading

 Template metaprogramming

 Wherein templates are used not just to adapt to types but to generate code for you.

 This is the basis of libraries like Armadillo.

 Really advanced C++.

 In C++ the template system was accidentally discovered to be Turing complete, meaning it can

compute anything computable (like C++ itself)…in other words it’s like having a separate programming

language embedded in C++!

Your thoughts please!

 The main tutorial goal was to introduce C++ and to cover the main reason

for choosing it over competitors like FORTRAN or C: object-oriented

programming.

 The focus has been on developing classes and understanding the OOP

concepts underlying the approach.

 This is the first time that a C++ tutorial has been offered by RCS. What

would you change? Add? Remove?

