Introduction to C++: Part 1

tutorial version 0.1

Brian Gregor
Research Computing Services

BOSTON
UNIVERSITY

Getting started with the room B27 terminals m
Ld

Training Files

= Log on with your BU username
= On the desktop is a Training Files folder. Open it and go to the subfolder:

RCS_Tutorials\Tutorial Files\Introduction to C++

= Copy the CodeBlocks Projects folder to your desktop.

BOSTON
UNIVERSITY

Getting started on the SCC

= |f you prefer to work on the SCC and have your own account, login using

your account to the host scc2.bu.edu
= On the room terminals there is a MobaXterm link on the desktop

= Load the codeblocks module: [cauie 10ad gee/s5.3.0

module load hunspell/1.4.1
module load wxwidgets/2.8.12
module load gdb/7.11.1
module load codeblocks

= Make a folder in your home directory and copy in the files:

mkdir cpp tutorial && cd !S$
unzip /scratch/intro to cpp tutorial 0.1.zip

BOSTON
UNIVERSITY

Getting started with your own laptop

Go to:

http://www.bu.edu/tech/support/research/training-consulting/live-tutorials/
and download the Powerpoint or PDF copy of the unified presentation.
= Easy way to get there: Google “bu rcs tutorials” and it’s the 1st or 2Md link.
= Also download the “Additional Materials” file and unzip it to a convenient folder on your laptop.
= Download the Code::Blocks development environment:
http://www.codeblocks.org/downloads/26

= Windows: get the codeblocks-16.01mingw-nosetup.zip file and unzip it to a convenient
folder.

= Linux: likely available from your Linux distro’s package management system

= Mac OSX: get the CodeBlocks-13.12-mac.zip file and unzip it to a convenient folder.
= Also you will need Apple’s Xcode software with the command line tools installed.

BOSTON
UNIVERSITY

http://www.bu.edu/tech/support/research/training-consulting/live-tutorials/
http://www.codeblocks.org/downloads/26

Tutorial Outline: Part 1

= Very brief history of C++

= Definition object-oriented programming
= When C++ is a good choice

= The Code::Blocks IDE

= Object-oriented concepts

= First program!

= Some C++ syntax

= Polymorphism

BOSTON
UNIVERSITY

Very brief history of C++

P Ty

1962
= 2014
Simula | was invented by 1969-1973

i Minor update: C++14 released.
Kristen Mygaard and Qle-Johan ;]r_h%': Ia_ngél_?ghe_ WatSE'”ﬁELntEd P
Dahl as a simulation language y Liennis kiichie at bell Labs T
l i 2011
4 A Major update: C++11 standard
1967 1972 released
simula 67 developed as the first —— [. Ritchie and Ken Thompson
object-oriented language re-write the Unix O35 in C T
- : 1989

ﬁ C++ 2.0 standard released.

1979 1983
Bjarne Stroustrop began ——» "Cwith Classes” renamedto ——» 1.935 .
developing "C with Classes” C++ B

Cfront, released by AT&T

BOSTON) _
UNIVERSITY For details more check out A History of C++: 1979-1991

http://www.stroustrup.com/hopl2.pdf

class GasMolecule

Object-oriented programming |. ..

* molecular weight, structure, common

] . names, etc.
= Programming has many paradigms, or styles, e Methods:
which are used when writing programs. * IR(wavenumStart, wavenumEnd) :

return IR emission spectrum in range

= Wikipedia lists >40!:

https://en.wikipedia.org/wiki/Programming paradigm
= Procedural (C, Fortran, Matlab)

= Dataflow (Simulink, VHDL, Labview) Objects (instances of a class)
= Functional (Excel, Lisp, F#)
. .] GasMolecule ch4
= QObject-oriented programming (OOP): GasMolecule co2 o
~—‘pseudo-code”
= Seeks to define a program in terms of the things spectrum = chd.IR(1000,3500)
in the problem (files, molecules, buildings, cars, Name = co2.common name
people, etc.) and what they need and can do. \ /

BOSTON
UNIVERSITY

https://en.wikipedia.org/wiki/Programming_paradigm

Object-oriented programming Class Car

= OOP defines classes to represent these
things.

= Classes can contain data and methods
(internal functions).

= Classes control access to internal data and
methods. A public interface is used by
external code when using the class.

= This is a highly effective way of modeling real
world problems inside of a computer
program.

public interface

BOSTON
UNIVERSITY

private data and methods

C++ Compared to Some Other Languages
o+ Pyhon JFotran

Language Type compiled interpreted compiled

Variable type style Strong Strong Strong

Variable Safety unsafe safe mostly safe

Type checking At compilation and Run-time Compilation
at run-time

Paradigms OO, procedural, OO, procedural, Procedural

functional, generic, functional
dataflow, and

others
C compatibility Nearly 100% Not directly Call C libraries, with
many pitfalls
Relative speed Fast Slow Fast

“Actually I made up the term ‘object-oriented’, and I can tell you I
did not have C++ in mind.”

BOSTON ,
UNIVERSITY —Alan Kay (helped invent OO programming, the Smalltalk language, and the GUI)

When to choose C++

= Despite its many competitors C++ has
remained popular for ~30 years and will
continue to be so in the foreseeable
future.

= Why?
= Complex problems and programs can be
effectively implemented
= OOP works in the real world!

= No other language quite matches C++’s
combination of performance,
expressiveness, and ability to handle
complex programs.

BOSTON
UNIVERSITY

“If you’re not at all interested in performance,
shouldn’t you be in the Python room down the hall?”
— Scott Meyers (author of Effective Modern C++)

= Choose C++ when:

= Program performance matters

= Dealing with large amounts of data, multiple
CPUs, complex algorithms, etc.

= Programmer productivity is less important

= |t is faster to produce working code in
Python, R, Matlab or other scripting
languages!
= The programming language itself can help
organize your code
= Not everything is a vector or matrix, right
Matlab?
= Access to libraries that will help with your
problem

= EX. Nvidia’s CUDA Thrust library for GPUs
= Your group uses it already!

http://www.aristeia.com/books.html

Pros/Cons of C++

Pros

= Enormous number of available libraries

Flexibility for programmers
= High (objects) and low (fiddling with
memory) level styles are supported

= No automatic memory management

= You are in control of memory usage

= Compiled
= Strong type system
= High performance

cons

A very large language - this tutorial won't
even attempt to describe all of it.

= And your instructor makes no claim to
know the entire language!

No automatic memory management

= You are in control of memory usage
Includes all the subtleties of C and adds its
own

Generally requires careful attention to
detail!

“C++: an octopus made by nailing extra legs onto a dog.”

— Steve Taylor

BOSTON
UNIVERSITY

Code::Blocks

= |n this tutorial we will use the Code::Blocks integrated development

environment (IDE) for writing and compiling C++
= Run it right on the terminal or on the SCC (module load codeblocks)

= About C::B

= cross-platform: supported on Mac OSX, Linux, and Windows
= Qriented towards C, C++, and Fortran, supports others such as Python
= Short learning curve compared with other IDEs such as Eclipse or Visual Studio

= Has its own automated code building system, so we can concentrate on
C++
= |t can convert its build system files to make and Makefiles so you are not tied to C::B

* Project homepage: http://www.codeblocks.org

BOSTON
UNIVERSITY

http://www.codeblocks.org/

I D E AdVantag €S |IDEs available on the SCC

= Code::Blocks (used here)

o : : = geany —a minimalist IDE, simple to use
= Syntax highlighting and live error detection _ : .
= Eclipse — a highly configurable, adaptable

= Code completion (fills in as you type) IDE. Very powerful but with a long
= Creation of files via templates learning curve

= Built-in debugging = Spyder — Python only, part of Anaconda
= Code refactoring (ex. Change a variable
name everywhere in your code)

= Higher productivity

= Handles build process for you

Some Others
= Xcode for Mac OSX
= Visual Studio for Windows
= NetBeans (cross platform)

BOSTON
UNIVERSITY

.
Opening C::B

= The 1sttime it is opened C::B will search for compilers it can use.

= A dialog that looks like this will open. Select GCC if there are multiple
options: Complrs uto-dtectin e

Mote: After auto-detection, at least one compiler's master path is still empty and therefore invalid.
Inspect the list below and change the compiler's master path later in the compiler options.
Select you favourite default compiler here:

Compiler Status - Set as default

GMU GCC Compiler Detected

= And click OK. &l

Current default compiler: GMNU GCC Compiler
BOSTOIN
UNIVERSITY

Opening C::B and creating a 15t C++ project...
= Step 1. Create a project from the File menu or the Start Here tab:

H Start here - CodenBlocks 16.01
File Edit WView Search Project Build Debug Fortran wxSmith Tools Tools+ Plugins DoxyBlock

B emptyfite Ctrl-Shift-N
=t Open... Ctrl-0 Class...
Open with hex editor Project... /
Build target...
Recent projects 4 o
Recent files L4 e
Custom...
(TP g ' From termplate...
(=] Massi Shneiderman diagram d ekl Bl k
= Code::Blocks
-
‘ The open source, cross-platform IDE
lease 16.01 rev 10702 (2016-01-25 19:50:14) gcc 4.9.2 Windows/unicode - 32 bit
@

m Create a new project \!t Open an existing project J Tip of the Day

) Visit the Code::Blocks forums Report a bug or request a new feature

= o

Export 4

) Recent proiects
Properties...

Ctrl-Q

= Step 2. Choose the Console category and then the Console application
and click Go.
|7pr.:._-iect5 Categoryy | Console

Build targets

e B B [4 & Lo

Console Dynamic Link Empty project Matlab project OpenCV
application Library project

! L

STLport Shared library Static library
application

‘v’| Go

User templates

View as

@ Large icons

() List

i TIP: Try right-clicking an item
I
| 1. Selecta wizard type first on the left

| 2. Select a spedific wizard fram the main window (filter by categories if needed)
3. Press Go

BOSTON
UNIVERSITY

= Step 3: Click Next on the “Welcome to the new console application
wizard!” screen.

= Step 4: Choose C++!
= ...then click Next.

Flease select the [anguage you want to use,
& Console

Please make a selection

C

BOSTON < Back Cancel
UNIVERSITY _

= Step 5. Enter a project title. Let C::B fill in the other fields for you. If you
like you can change the default folder to hold the project. Click Next.

Conzole application >

Please select te folder where you want the new project
m CO“SOIE to be createdgs well as its title,

Project title:
|HEII|:|'p."u'|:|rI|:I |

Folder to create project in:
|C:'Frujects'ﬁandbux'n,cndebludis'n, |

Project filename:
|HEII|:|'|.f'.n'|:|rI|:I.|:|:||:| |

Resulting filename:
|C: ‘Projectsi\Sandbox\codeblocks\HellowWorld\HelloWaorld |

< Back Cancel

BOSTON
UNIVERSITY

= Step 6: Choose the compiler. For this tutorial, choose GNU GCC as the
compiler. Click Next.

Console application

which configurations

Please select the compiler to use
m CD II 50 Ie you want enabled in your projgef.
Compiler:
GMU GCC Compiler w

Create "Debug” configuration: |DE|:-ug |

"Debug” options
Output dir.: |bin\Pebug| |

Objects output dir.: |obj\Debug) |

Create "Release” configuration: |Release |

"Release” options

Qutput dir.: ||:|in ‘Release!, |

Ohjects output dir.: |D|:|j'|,Release'|, |

< Back Cancel

BOSTON
UNIVERSITY

Enable C++11 standard

Project build options O ot
. . ST
Step 7.1 Right-click on your R E—
project name and choose |~ Debug GNU GCC Compler v
- Release
B u I Id O ptl O nS ’ Compiler settings Linker settings Search directories Pre/post build steps Custom variables "Make™ commands
Management XN *maincpp Policy: | Append target options to project options e
4 | Projects | Symbols Files ¥ 1 2incfude <
O Workspace 2 .
- 8g HelloWorld 3 nsiff name Compiler Flags Other compiler options ~ Other resource compiler options ~ #defines
—B Sourc Save project
L m Close project) B General &
Add files... ig Have g++ follow the 1995 ISO C++ language standard [-std=c++38]]
Add files recursively... ig Have g++ follow the C++11 IS0 C++ language standard [-std=c++11]
R (= < Have g++ follow the C++14 150 C++ language standard [-std=c++14] |
Find file... ; Have g++ follow the coming C++0x IS0 C++ languaae standard [-std=c++0x] O w
Project tree > e MOTE: Right-cl-ic.l-{ to sEtup or edit cuhpiler flags. R i
Add new virtual folder...
Format this project (AStyle) n
Reparse this project
Build Ok, Cancel
Rebuild
Clean
Build options...
Open PrlectFlder i il Brovse = Check off the C++11 option. Click Release on the left and do the
FOpErtIES.. .,
| same there as well.

BOSTON = Do this anytime we create a project in C::B
UNIVERSITY

= Step 8: Your project is now created! Click on Sources in the left column,
then double-click main.cpp.

= Click the ﬁ icon in the toolbar or press F9 to compile and run the
program.

_Pd main.cpp [HelleWarld] - CodenBlocks

File Edit Wiew Search Project Build Debug ran wxSmith Toels Tools+ Pluging DoxyBlecks Settings Help

FaHE@ 3 8 | Q&G P G © O [pebu LA
e | [MREBRIS S| | @ Q) v @ = Z d fa
Management x main.cpp X
1| Projects | Symboals Files ¥ 1 #finclude <iostream’
OWDrkspace
—'d HelloWorld 3 using namespace =std;
5B Sources 4
. main.cpp 5 int maini)
6 {
) cont << "Hello world!"™ << endl;
8 return O:
9 }
10 |

BOSTON
UNIVERSITY

Hello, World!

= Console window; =—>

= Build and compile
messages ~

BOSTON

UNIVERSITY

B Ch\Projects\Sandbox\codeblocks\HelloWorld\bin' DebughHelloWerld, exe — O >

ition time : @.367

>
Logs & others »
4| /| CodeiiBlocks | ' Search results ¥| NCee x| $buidlog ¥ Build messages # | J) CppChedk x| /| CppChedkme: b

—————————————— Build: Debug in HelloWorld (compiler: CGHNU GCC Conpiler)-———-————-———-—————

xE86_84-wed-mingw3IZi-gtt+.exe -Wall -fexceptions —-g

—-c C:Z\Projecta\Sandbox’ codeblockahHelloWorldvmain_ cpp —o obj
“\Debughmain.o

l x8&_f4-wid-mingwi3Z-gt+.exe -—o bin'\Debug'\HelloWorld.exe cbj‘\Debug'main.c

Cutput £file is bin\Debug'\HelloWorld_exe with size Z.55% MB
rogoss bterminsted with status 0 (0 minute(s),. 2 second(s))
=

rroris), 0 warningis) (0 minute(s), 2 second(s))

—————————————— Bun: Debug in HelloWorld (compiler: GHU GCC Compiler)----—---——————-———

Checking for existence: C:h\Projects\Sandbox’codeblocks\HelloWorldi\bkinyDebug'\HelloWorld. exe

Executing: "C:WProgram Files (x8&)‘\CodeBlocks/ck conscle runner.exe”™ "C:\Projects\Sandbox‘codeblocks'\HelloWorldibin
“DebughHelloWorld_ exe™ (in C:%Projects\Sandbox’codeblocks'\HelloWorldy)

Behind the Scenes: The Compilation Process

L

il

header files
iastream.h
my_headerh

* BExpanded source code file

C++ preprocessor —— 3 * not normally visible L C++ compiler
* g++-Eto see output

—»

main.cpp — J’

* Assembler code file

assembler P * not normally visible
* g++ -5 10 see output

---...._,_,_...-n-""""——__""“'

C++ library files
system library files

L¢

‘ Ohject code file
main.o

Executable

linker _ g++ -0 main main.cpp
main

BOSTON
UNIVERSITY

Hello, World! explained

maincpp X
1 Finclude <iostream>
P
3 n=Eing namespace =td;
4
5 int main() <=
: .
T

cont << "Hello world!"™ << endl;

retorn 0
10 / \

Statement that returns an integer
value to the operating system after
completion. 0 means “no error”

BOSTON
UNIVERSITY

Mo Q]

The main routine — the start of every C++ program! |t
returns an integer value to the operating system and
takes no arguments ().

loads a header file containing function and class

_ definitions
Hello, World! explained

Loads a namespace called std. Namespaces are used to
separate sections of code for programmer convenience.
To save typing we’ll always use this line in this tutorial.

maincpp X
1 Finclude <iostream>
2
3 n=Eing namespace =td;
4
= int maini)
: .
7 cont << "Hello world!"™ << endl;
8 retuorn O:
g
10
cout is the object that writes to the stdout device, i.e. the console window.

It is part of the C++ standard library. Without the “using namespace std;”
line this would have been called as std::cout. It is defined in the iostream
header file.

<< is the C++ insertion operator. Itis used to pass characters from the
right to the object on the left. endl is the C++ newline character.

BOSTON
UNIVERSITY

Slight change

= Let's put the message into some variables
of type string and print some numbers.

= Things to note:
= Strings can be concatenated with a + operator.
= No messing with null terminators as in C

= Some string notes:

= Access a string character by brackets or
function:

= msg[0] = “H” or msg.at(0) > “H”
= C++ strings are mutable — they can be
changed in place.

= Press F9 to recompile & run.

BOSTON
UNIVERSITY

#include <iostream>
using namespace std;

int main ()
\{

"Hello";
"world!";

hello + " " 4+ world
<< endl;

string hello
string world
string msg
cout << msg
msg [0] 'h';
cout << msg << endl;
return O;

4

Basic Syntax

= (C++ syntax is very similar to C, Java, or C#. Here's a few things up front and we’ll cover
more as we go along.
= Curly braces are used to denote a code block:

{ .. some code .. }

= Statements end with a semicolon:

int a ;
a=1+ 3 ;

= Comments are marked for a single line with a // or for multilines with a pair of /* and */ :

// this is a comment.
/* everything in here
is a comment */

= Variables can be declared at any time in a code block.

void my function() {
int a ;
a=1 ;

BOSTON int b;
UNIVERSITY }

= Functions are sections of code that are called from other code. Functions always have a
return argument type, a function name, and then a list of arguments:

int my function(int x) { // No arguments? Still need ()
return x ; void my function() {
} /* do something...

but a void value means the
return statement can be skipped.*/

. ; // U 11 t the t
= Variables are declared with a type and a name: | ine » - 100,

float y;

vector<string> vec ;

// Sometimes it can be inferred
auto z = x;

= A sampling of Operators:

= Arithmetic: + = * / % ++ ==
- Logical: && (AND) ||(OR) (NOT)
= Comparison: == > < >= <= I=

BOSTON
UNIVERSITY

.
Built-in (aka primitive or intrinsic) Types

= “primitive” or “intrinsic” means these types are not objects
= Here are the most commonly used types.

= Note: The exact bit ranges here are platform and compiler dependent!
= Typical usage with PCs, Macs, Linux, etc. use these values
= Variations from this table are found in specialized applications like embedded system processors.

Name Name Value Name Value

char unsigned char 8-bit integer float 32-bit floating point
short unsigned short 16-bit integer double 64-bit floating point
int unsigned int 32-bit integer long long 128-bit integer

long unsigned long 64-Dbit integer long double 128-Dbit floating point
bool true or false

BOSTON http://www.cplusplus.com/doc/tutorial/variables/
UNIVERSITY

http://www.cplusplus.com/doc/tutorial/variables/

Need to be sure of integer sizes?

= In the same spirit as using integer(kind=8) type notation in Fortran, there are type definitions that
exactly specify exactly the bits used. These were added in C++11.

= These can be useful if you are planning to port code across CPU architectures (ex. Intel 64-bit
CPUs to a 32-bit ARM on an embedded board) or when doing particular types of integer math.

= For a full list and description see: http://www.cplusplus.com/reference/cstdint/

#include <cstdint>

Name Name Value

int8_t uint8 t 8-bit integer
int1l6 t uintl6 t 16-bit integer
INt32_t uint32_t 32-bit integer
int64 t uinté4 _t 64-bit integer

BOSTON
UNIVERSITY

http://www.cplusplus.com/reference/cstdint/

Type Casting

= C++is strongly typed. It will auto-convert a variable of one type to another in a limited fashion: if it

will not change the value. short x = 1
int vy = x // OK
short z =y ; // NO!

= Conversions that don’t change value: increasing precision (float = double) or integer - floating
point of at least the same precision.

= C++ allows for C-style type casting with the syntax: (new type) expression

double x = 1.0 ;
int v = (int) x ;
float z = (float) (x / y) ;

In addition to this C++ offers 4 different variations in a C++ style.

BOSTON
UNIVERSITY

.
Type Casting

" static cast<new type>(expression)

= This is exactly equivalent to the C style cast.

= This identifies a cast at compile time and the compiler inserts the CPU type
conversion instructions for primitive types.

= Can do casting that reduces precision (ex. double - float)
dynamic cast<new type>(expression)

= Special version where type casting is performed at runtime, only works on reference
or pointer type variables.

" const cast<new type>(expression) R
= Variables labeled as const can’t have their value changed.
= const_cast lets the programmer remove or add const to reference or pointer type “unsafe”: the
e | — notprotect
pret cast<new type>(expression) you here.

= Takes the bits in the expression and re-uses them unconverted as a new type. Also
only works on reference or pointer type variables.

BOSTON
UNIVERSITY

Functions

= Open the project “FunctionExample” in
C::Bfiles
= Compile and run it!

= Open main.cpp
= 4 function calls are listed.

= The 1st and 2" functions are identical in
their behavior.

= The values of L and W are sent to the function,
multiplied, and the product is returned.

= RectangleArea2 uses const arguments

= The compiler will not let you modify their values in the
function.

= Tryit! Uncomment the line and see what happens
when you recompile.

= The 3" and 4t versions pass the
arguments by reference with an added &

BOSTON
UNIVERSITY

The function arguments L and W

The return type is float.

pd

/ are sent as type float.
7

float RectangleAreal (float L, float W) {
return L*W ;

}
— Product is computed
float RectangleArea? (const float 1L, const float W) {

return L*W ;

float RectangleArea3 (const floaté& L, const float& W) {
return L*W ;

}

void RectangleAread (const float& 1L, const float& W, float& area)
area= L*W ;

}

{

&

Using the C::B Debugger

To show how this works we will use the C::B interactive debugger to step through the program line-by-line to follow the function
calls.

Make sure you are running in Debug mode. This turns off compiler optimizations and has the compiler include information in the
compiled code for effective debugging.

Fortran wx5Smith Teools Yloecls+ Plugins DoxyBlocks Settings Help

o b G O Debug VEF"%E':%:%:{?:@: |£
21| &

le.h ¥ | main.cpp » srcirectangle.cpp o4

: | <global>

v e = Ldsa x|l | O] |

Finclude <iostreams>

mimna namesnans stods

BOSTON
UNIVERSITY

finclude <iostream

nsing namespace =td;

Add a Breakpoint

float ERectanglefreal (float L, float W)

1
2
3
4
a2
6
T
=

= Breakpoints tell the debugger to halt at a ¢ T retarn LI

particular line so that the state of the
program can be inspected.

= In main.cpp, double click to the left of the T
lines in the functions to set a pair of nd |
breakpoints. A red dot will appear. |

= Click the red arrow to start the code In
the debugger.

float Eectangleifreald (const fleoat L, const float W)

float Eectanglefreal(const fleoat: L, const floatz W)

@ T return L*W :

2
24
Fortran wxSmith Tools Teols+ Plugins DoggBlocks Settings Help 26
g G 9 Debug i b b= G2 s &= G- | E : <global> 27
I8 . . ¥ . - 28 vold RectanglelAread (const fleoat:z L, const floatz W, float:z a:
i”@% : v|<:"::>n=“-"-ﬂ'*%'-': | | | 29 i ' '
le.h » | main.cpp | srcrectangle.cpp b4 3':'.T area= L*W ;
B T am s 5 o o 31 }
$include <iostream> -
33

nzine namnesenanas et

BOSTON
UNIVERSITY

.) ;0 | return ;'_sw; | |
= The debugger will pause in [
the first function at the

3 float BectanglefirealZ (con=t float L, con=t float W)

breakpoint. e

16 . retorn L*W ;

1 float Bectanglelfreals (con=2t fleoatz L, con=t floatz W)

@ T retorn L*W ;

vold Rectanglefiread (con=t floatz L, cons=t floatz W, floatz area)

@ T area= L*W :

L R RY ORI ORI R) ORY ORI ORI R
[Ve = S N T 3 IRY N R I 8

L L
L% I

o
[t}

BOSTON
UNIVERSITY

Watches (new) b4

= Click the Debug menu, go to Debugging 5 Frcton gt .
Windows, and choose Call Stack. Drag it to Wa_tches _ShOWS the " ot
the right, then go back and choose Watches. variables in use and
their values

Drag it to the right. Do the same for the
Breakpoints option. Your screen will look
something like this now...

= Controls (hover mouse over for help):

- - = . Call stack »
o= iﬁr @ Debug : P‘ll‘l-."}E (‘32 %’: {;—“: @,: l:51'}: D | E E ;‘Ji Address Function File
= =— - Chternp\Cpp tutoriah TUTORIAL
I T _Y_) Call _StaCk ShOWS the > | 001396 maing Ci\temp\Cpp tutoriah TUTORIAL!
Place the cursor in the function, functions being called,
click to run to the cursor t newest on top.
Run the next line
Step into a function call «
Breakpoints lists the \ Breskpoint x
i . f Type Filename/Address
Step OUt Of a funCtlon to breaprIntS you Ve @ Code Chtemp\Cpp tutonal TUTORIAL\CodeBlocks Projects\Part 2\5hapesisrchrectar
the Ca"lng funCtion_ Created @ Code CAtemp\Cpp tutoriah TUTORIAL\CodeBlocks Projects\Part 2\Shapes\src\rectar
b
X
DoxyBlocks x|
BOSTON Step by CPU instruction.
UNIVERSITY Less useful, generally. -
i b] @\Z/ 4 s

Pass by Value

main () RectangleAreal (float L, float W)

copy

float L P | float L
copy

float W P | float W

= C++ defaults to pass by value behavior when calling a function.
= The function arguments are copied when used in the function.

= Changing the value of L or W in the RectangleAreal function does not effect their original values in
the main() function

= When passing objects as function arguments it is important to be aware that potentially large data
structures are automatically copied!

BOSTON
UNIVERSITY

Pass by Reference

main () RectangleArea3 (const float& L, const float& W)

reference

float L float L
reference

float W float W

= Pass by reference behavior is triggered when the & character is used to modify the type of the
argument.

= Pass by reference function arguments are NOT copied. Instead the compiler sends a pointer to the
function that references the memory location of the original variable. The syntax of using the
argument in the function does not change.

= Pass by reference arguments almost always act just like a pass by value argument when writing
code EXCEPT that changing their value changes the value of the original variable!!

= The const modifier can be used to prevent changes to the original variable in main().

BOSTON
UNIVERSITY

void does not return a value.

|

void RectangleAread (const floaté& 1., const float& W, float& area) {
area= L*W ;

}

= |n RectangleArea4 the pass by reference behavior is used as a way to
return the result without the function returning a value.

= The value of the area argument is modified in the main() routine by the

function.
= This can be a useful way for a function to return multiple values in the

calling routine.

BOSTON
UNIVERSITY

= |n C++ arguments to functions can be objects...which can contain any

guantity of data you've defined!
= Example: Consider a string variable containing 1 million characters (approx. 1 MB of RAM).

= Pass by value requires a copy — 1 MB.
= Pass by reference requires 8 bytes!

= Pass by value could potentially mean the accidental copying of large
amounts of memory which can greatly impact program memory usage and
performance.

= When passing by reference, use the const modifier whenever appropriate

to protect yourself from coding errors.

= Generally speaking — use const anytime you don’t want to modify function arguments in a
function.

“C makes 1t easy to shoot yourself in the foot; C++ makes it harder, but
when you do it blows your whole leg off.” — Bjarne Stroustrop

BOSTON
UNIVERSITY

A first C++ class

= You can start a new project in
C::B or just modify the Hello
World! code.

= In the main.cpp, we'll define a
class called BasicRectangle

= First, just the basics: length and
width

= Enter the code on the right
before the main() function in the
main.cpp file (copy & paste is
fine) and create a
BasicRectangle object in
main.cpp:

BOSTON
UNIVERSITY

#include <iostream>
using namespace std;

class BasicRectangle
{
public:

// width ;

float W ;

// length

float L ;

};

int main ()

{
cout << "Hello world!" << endl;

BasicRectangle rectangle ;
rectangle.W = 1.0 ;
rectangle.L = 2.0 ;

return O;

Basic C++ Class Syntax

Curly braces at the

class keyword

/

Name of class

class BasicRectangle

beginning and end
followed by a semi-colon

public keyword indicates everything
following the keyword is accessible
by any other code outside of this
class.

The class can now be used to
declare an object named rectangle.
The width and length of the rectangle
can be set.

BOSTON
UNIVERSITY

=
public:
// width ;
float W ; 4
// length
float L ;

};

Internal variables are called
members

— rectangle.W = 1.0 ;
rectangle.L = 2.0 ;

BasicRectangle rectangle ;

Accessing data Iin the class

= Public members in an object ?nt main ()
can be accessed (for reading cout << "Hello world!" << endl;
or writing) with the syntax: BasicRectangle rectangle
Object_member -» rectangle.W = 1.0 ;
rectangle.L = 2.0 ;

return 0O;

= Next let's add a function }
Inside the object (called a
method) to calculate the
area.

BOSTON
UNIVERSITY

class BasicRectangle

{

public:
// width ;
float W ;
method Area does not take any // length
arguments, it just returns the float L :
calculation based on the object » float Area() {
members. return W * L ;

};

int main ()

{
cout << "Hello world!" << endl;

BasicRectangle rectangle ;
rectangle.W = 21.0 ;
rectangle.L = 2.0 ;

Methods are accessed just like members:
object.method(arguments)

BOSTON return 0O;
UNIVERSITY }

—p COUL << rectangle.Area () << endl ;

Basic C++ Class Summary

= C++ classes are defined with the keyword class and must be enclosed in
a pair of curly braces plus a semi-colon:

class ClassName { };

= The public keyword is used to mark members (variables) and methods
(functions) as accessible to code outside the class.

= The combination of data and the functions that operate on it is the OOP
concept of encapsulation.

BOSTON
UNIVERSITY

Encapsulation in Action

= |In C — calculate the area of a few shapes...

/* assume radius and width square are assigned
already ; */

float al = AreaOfCircle(radius) ; // ok

float a2 = AreaOfSquare (width square) ; // ok

float a3 = AreaOfCircle (width square) ; // !! OOPS

= |n C++ with Circle and Rectangle classes...not possible to miscalculate.
= Well, provided the respective Area() methods are implemented correctly!

Circle cl ;

Rectangle rl ;

// ... assign radius and width
float al = cl.Area() ;

float a2 = rl.Area() ;

BOSTON
UNIVERSITY

Now for a “real” class

= Defining a class in the main.cpp file is not typical.

= Two parts to a C++ class:
= Header file (my_class.h)
= Contains the interface (definition) of the class — members, methods, etc.

= The interface is used by the compiler for type checking, enforcing access to private or
protected data, and so on.

= Also useful for programmers when using a class — no need to read the source code, just
rely on the interface.

= Source file (my_class.cc)
= Compiled by the compiler.
= Contains implementation of methods, initialization of members.
= In some circumstances there is no source file to go with a header file.

BOSTON
UNIVERSITY

P‘ [FirstClass] - CodenBlocks 16.01

|
Create a neW CIaSS In . B File Edit View 5Search Project Build Debug Fortran wxSmith Tools Tools+ Plugins

Iv]:
[z Open.. Ctrl-0 Class... |
Open with hex editor Project... B
= Using an IDE is especially convenient in C++ to e , e
. File...
keep the details straight when defining a class Recentfles 1 Custorn.
Import project b
= Typically header and source files are needed = e o ;hmp'dtmdgm
= Some default methods are created to save you some
typing
= Create another project in C::B, call it Shapes. e

Save project as template...

= Once open, go the File menu, click New, then click sove sl projet

Class. S —
= This opens a wizard GUI that helps get things
started.

Close project

= This will create the header and source files for you. Close allprojects

Close workspace

=

Export]
Properties...

@ Quit Ctrl-0

BOSTON
UNIVERSITY

Create new class oy

= Name the class Rectangle

Class definition

Class name: |Rectangle| | Member variables

Add new:

Arguments: | |

|unsigned int m_Counter

- Has destructor |:| Has copy ctor
- U NC h ecC k th e D ocume ntatl on Virtual destructor []Has assigment op. Scope: |private
. Inheritance Add "Getter” method
O ptl O n []inheritz another dass Add "Setter” method
= This will just confuse things for now

Remove prefix:

Ancestor:
Im

Add

Documentation
[] Add documentation where appropriate

= Click Create!

File paolicy

Add paths to project Use relative path
[]Header and implementation file shall be in same folder

Folder: |C:'\Users'baregor\Desktop \TUTORIALCodeBlocks Projects\Rectangle!,
Header and implementation file shall always be lower case

Header file Implementation file

Falder: |C: HJJsers'l,hgrEgDr'l,Deskb:lp'l,'l'l_l'l'C| Generate implementation file

|rectang|e.h | Folder: | C:'l,l_lsers'n,bgregu:ur'n,Deskb:up'n,T|

Add guard blodk in header file Filename: |rectang|e.cpp |
Guard block: NGLE—H | Header indude:

~

“rectangle.h™ |

Create Cancel

BOSTON
UNIVERSITY

rectangle.h rectangle.cpp

#ifndef RECTANGLE H #include “rectangle.h"
#define RECTANGLE H
Rectangle: :Rectangle ()
{
class Rectangle //ctor
{ }
public:
Rectangle() ; Rectangle: :~Rectangle()
virtual ~Rectangle() ; {
//dtor
protected: }
private:

};

#endif // RECTANGLE H

= 2 files are automatically generated: rectangle.h and rectangle.h.cpp

BOSTON
UNIVERSITY

Modify rectangle.h

= As in the sample BasicRectangle,
add storage for the length and
width to the header file. Add a

declaration for the Area method. ~—~—__

= The protected keyword will be \

discussed later.

= The private keyword declares
anything following it (members,
methods) to be visible only to
code in this class.

BOSTON
UNIVERSITY

#ifndef RECTANGLE H
#define RECTANGLE H

class Rectangle

{
public:
Rectangle () ;
virtual ~Rectangle() ;

--~\, float m length ;

float m width ;

\\\‘» float Area () ;

protected:

> private:
}i
#endif // RECTANGLE H

Modify rectangle.cpp

. . . Multiple selection O >
= This will now contain the code for the Area()
Select items:
methOd' . i ¥ float Rectangle::Area() ! | wildcard select
= Use the C::B environment to help out here! % Toggle selection
= Open rectangle.cpp (under Sources/src) Select Al
= Right-click and choose Insert/All class sz i
methods without implementation Selected: 1
Run to cursor
Toggle breakpoint

W

Insert Class method declaration/implementation...

All class methods without implementation... K

Swap header/source Cancel

Open containing folder

Edit >

Bookmarks >

= The Area() method is automatically
found from the header file.

= Click OK.

Format use AStyle

Browse Tracker ¥

= b st BlarkMiork
BOSTON
UNIVERSITY

rectangle.cpp

= The Area() method now has a #include "rectangle.h”
basic definition added. Rectangle: :Rectangle ()
= The syntax: { /Jetor
class::method }
tells the compiler that this is the Tectangla :~Rectangle ()
code for the Area() method declared / /dtor
In rectangle.h)
= Now take a few minutes to fill in float Rectangle::Area()
the code for Area(). _ Y
= Hint — look at the code used in }

BasicRectangle...

BOSTON
UNIVERSITY

More C::B assistance

= You may have noticed C::B trying
to help when entering the code for

/\rEEEi() return m width * m
by m_l&ng'r.h: float Rectanale

= Press the Tab key to accept the

float Eectangle::Areal)

public float m_length

suggestion (variable)
- It W|” Offer up Variable nameS, Open declaration
member names, class names, etc. Close Top

that match what you're typing
when appropriate to save you
effort.

= This can be a huge convenience

when dealing with large code bases.
UNIVERSITY

Last Step

= (o to the main.cpp file

= Add an include statement for “rectangle.h’
= Create a Rectangle object in main()

= Add a length and width

= Print out the area using cout.

= Hint: just like the BasicRectangle example...

BOSTON
UNIVERSITY

Solution

= You should have come up with
something like this:

BOSTON
UNIVERSITY

#include <iostream>
using namespace std;
#include "rectangle.h"
int main()

{
Rectangle rT ;

rT.m width = 1.0 ;
rT.m length = 2.0 ;
cout << rT.Area() << endl

return 0O;

.
14

