
Introduction to C++: Part 1
tutorial version 0.1

Brian Gregor

Research Computing Services

Getting started with the room B27 terminals

 Log on with your BU username

 On the desktop is a Training Files folder. Open it and go to the subfolder:

RCS_Tutorials\Tutorial Files\Introduction to C++

 Copy the CodeBlocks Projects folder to your desktop.

Getting started on the SCC

 If you prefer to work on the SCC and have your own account, login using

your account to the host scc2.bu.edu
 On the room terminals there is a MobaXterm link on the desktop

 Load the codeblocks module:

 Make a folder in your home directory and copy in the files:

module load gcc/5.3.0

module load hunspell/1.4.1

module load wxwidgets/2.8.12

module load gdb/7.11.1

module load codeblocks

mkdir cpp_tutorial && cd !$

unzip /scratch/intro_to_cpp_tutorial_0.1.zip

Getting started with your own laptop

 Go to:

http://www.bu.edu/tech/support/research/training-consulting/live-tutorials/

and download the Powerpoint or PDF copy of the unified presentation.

 Easy way to get there: Google “bu rcs tutorials” and it’s the 1st or 2nd link.

 Also download the “Additional Materials” file and unzip it to a convenient folder on your laptop.

 Download the Code::Blocks development environment:

http://www.codeblocks.org/downloads/26

 Windows: get the codeblocks-16.01mingw-nosetup.zip file and unzip it to a convenient

folder.

 Linux: likely available from your Linux distro’s package management system

 Mac OSX: get the CodeBlocks-13.12-mac.zip file and unzip it to a convenient folder.

 Also you will need Apple’s Xcode software with the command line tools installed.

http://www.bu.edu/tech/support/research/training-consulting/live-tutorials/
http://www.codeblocks.org/downloads/26

Tutorial Outline: Part 1

 Very brief history of C++

 Definition object-oriented programming

 When C++ is a good choice

 The Code::Blocks IDE

 Object-oriented concepts

 First program!

 Some C++ syntax

 Polymorphism

Very brief history of C++

For details more check out A History of C++: 1979−1991

C

C++

http://www.stroustrup.com/hopl2.pdf

Object-oriented programming

 Programming has many paradigms, or styles,

which are used when writing programs.

 Wikipedia lists >40!:
https://en.wikipedia.org/wiki/Programming_paradigm

 Procedural (C, Fortran, Matlab)

 Dataflow (Simulink, VHDL, Labview)

 Functional (Excel, Lisp, F#)

 Object-oriented programming (OOP):

 Seeks to define a program in terms of the things

in the problem (files, molecules, buildings, cars,

people, etc.) and what they need and can do.

• Data:

• molecular weight, structure, common

names, etc.

• Methods:

• IR(wavenumStart, wavenumEnd) :

return IR emission spectrum in range

class GasMolecule

GasMolecule ch4

GasMolecule co2

spectrum = ch4.IR(1000,3500)

Name = co2.common_name

Objects (instances of a class)

“pseudo-code”

https://en.wikipedia.org/wiki/Programming_paradigm

Object-oriented programming

 OOP defines classes to represent these

things.

 Classes can contain data and methods

(internal functions).

 Classes control access to internal data and

methods. A public interface is used by

external code when using the class.

 This is a highly effective way of modeling real

world problems inside of a computer

program.

public interface

private data and methods

“Class Car”

C++ Compared to Some Other Languages
C++ Python Fortran

Language Type compiled interpreted compiled

Variable type style Strong Strong Strong

Variable Safety unsafe safe mostly safe

Type checking At compilation and

at run-time

Run-time Compilation

Paradigms OO, procedural,

functional, generic,

dataflow, and

others

OO, procedural,

functional

Procedural

C compatibility Nearly 100% Not directly Call C libraries, with

many pitfalls

Relative speed Fast Slow Fast

“Actually I made up the term ‘object-oriented’, and I can tell you I

did not have C++ in mind.”

– Alan Kay (helped invent OO programming, the Smalltalk language, and the GUI)

When to choose C++

 Despite its many competitors C++ has

remained popular for ~30 years and will

continue to be so in the foreseeable

future.

 Why?

 Complex problems and programs can be

effectively implemented

 OOP works in the real world!

 No other language quite matches C++’s

combination of performance,

expressiveness, and ability to handle

complex programs.

 Choose C++ when:

 Program performance matters

 Dealing with large amounts of data, multiple

CPUs, complex algorithms, etc.

 Programmer productivity is less important

 It is faster to produce working code in

Python, R, Matlab or other scripting

languages!

 The programming language itself can help

organize your code

 Not everything is a vector or matrix, right

Matlab?

 Access to libraries that will help with your

problem

 Ex. Nvidia’s CUDA Thrust library for GPUs

 Your group uses it already!

“If you’re not at all interested in performance,

shouldn’t you be in the Python room down the hall?”

― Scott Meyers (author of Effective Modern C++)

http://www.aristeia.com/books.html

Pros/Cons of C++

Pros

 Enormous number of available libraries

 Flexibility for programmers

 High (objects) and low (fiddling with

memory) level styles are supported

 No automatic memory management

 You are in control of memory usage

 Compiled

 Strong type system

 High performance

Cons

 A very large language - this tutorial won’t

even attempt to describe all of it.

 And your instructor makes no claim to

know the entire language!

 No automatic memory management

 You are in control of memory usage

 Includes all the subtleties of C and adds its

own

 Generally requires careful attention to

detail!

“C++: an octopus made by nailing extra legs onto a dog.”

– Steve Taylor

Code::Blocks

 In this tutorial we will use the Code::Blocks integrated development

environment (IDE) for writing and compiling C++
 Run it right on the terminal or on the SCC (module load codeblocks)

 About C::B
 cross-platform: supported on Mac OSX, Linux, and Windows

 Oriented towards C, C++, and Fortran, supports others such as Python

 Short learning curve compared with other IDEs such as Eclipse or Visual Studio

 Has its own automated code building system, so we can concentrate on

C++
 It can convert its build system files to make and Makefiles so you are not tied to C::B

 Project homepage: http://www.codeblocks.org

http://www.codeblocks.org/

IDE Advantages

 Handles build process for you

 Syntax highlighting and live error detection

 Code completion (fills in as you type)

 Creation of files via templates

 Built-in debugging

 Code refactoring (ex. Change a variable

name everywhere in your code)

 Higher productivity

IDEs available on the SCC

 Code::Blocks (used here)

 geany – a minimalist IDE, simple to use

 Eclipse – a highly configurable, adaptable

IDE. Very powerful but with a long

learning curve

 Spyder – Python only, part of Anaconda

Some Others

 Xcode for Mac OSX

 Visual Studio for Windows

 NetBeans (cross platform)

Opening C::B

 The 1st time it is opened C::B will search for compilers it can use.

 A dialog that looks like this will open. Select GCC if there are multiple

options:

 And click OK.

Opening C::B and creating a 1st C++ project…

 Step 1. Create a project from the File menu or the Start Here tab:

 Step 2. Choose the Console category and then the Console application

and click Go.

 Step 3: Click Next on the “Welcome to the new console application

wizard!” screen.

 Step 4: Choose C++!

 …then click Next.

 Step 5. Enter a project title. Let C::B fill in the other fields for you. If you

like you can change the default folder to hold the project. Click Next.

 Step 6: Choose the compiler. For this tutorial, choose GNU GCC as the

compiler. Click Next.

Enable C++11 standard

 Step 7.l Right-click on your

project name and choose

Build options

 Check off the C++11 option. Click Release on the left and do the

same there as well.

 Do this anytime we create a project in C::B

 Step 8: Your project is now created! Click on Sources in the left column,

then double-click main.cpp.

 Click the icon in the toolbar or press F9 to compile and run the

program.

Hello, World!

 Console window:

 Build and compile

messages

Behind the Scenes: The Compilation Process

Hello, World! explained

The main routine – the start of every C++ program! It

returns an integer value to the operating system and

takes no arguments ().

Statement that returns an integer

value to the operating system after

completion. 0 means “no error”

Hello, World! explained

loads a header file containing function and class

definitions

Loads a namespace called std. Namespaces are used to

separate sections of code for programmer convenience.

To save typing we’ll always use this line in this tutorial.

cout is the object that writes to the stdout device, i.e. the console window.

It is part of the C++ standard library. Without the “using namespace std;”

line this would have been called as std::cout. It is defined in the iostream

header file.

<< is the C++ insertion operator. It is used to pass characters from the

right to the object on the left. endl is the C++ newline character.

Slight change

 Let’s put the message into some variables

of type string and print some numbers.

 Things to note:

 Strings can be concatenated with a + operator.

 No messing with null terminators as in C

 Some string notes:

 Access a string character by brackets or

function:

 msg[0]  “H” or msg.at(0)  “H”

 C++ strings are mutable – they can be

changed in place.

 Press F9 to recompile & run.

#include <iostream>

using namespace std;

int main()

{

string hello = "Hello";

string world = "world!";

string msg = hello + " " + world ;

cout << msg << endl;

msg[0] = 'h';

cout << msg << endl;

return 0;

}

Basic Syntax

 C++ syntax is very similar to C, Java, or C#. Here’s a few things up front and we’ll cover

more as we go along.

 Curly braces are used to denote a code block:
{ … some code … }

 Statements end with a semicolon:

 Comments are marked for a single line with a // or for multilines with a pair of /* and */ :

 Variables can be declared at any time in a code block.

void my_function() {

int a ;

a=1 ;

int b;

}

int a ;

a = 1 + 3 ;

// this is a comment.

/* everything in here

is a comment */

 Functions are sections of code that are called from other code. Functions always have a

return argument type, a function name, and then a list of arguments:

 Variables are declared with a type and a name:

 A sampling of Operators:

 Arithmetic: + - * / % ++ --

 Logical: && (AND) ||(OR) !(NOT)

 Comparison: == > < >= <= !=

int my_function(int x) {

return x ;

}

// No arguments? Still need ()

void my_function() {

/* do something...

but a void value means the

return statement can be skipped.*/

}

// Usually enter the type

int x = 100;

float y;

vector<string> vec ;

// Sometimes it can be inferred

auto z = x;

Built-in (aka primitive or intrinsic) Types

 “primitive” or “intrinsic” means these types are not objects

 Here are the most commonly used types.

 Note: The exact bit ranges here are platform and compiler dependent!

 Typical usage with PCs, Macs, Linux, etc. use these values

 Variations from this table are found in specialized applications like embedded system processors.

Name Name Value

char unsigned char 8-bit integer

short unsigned short 16-bit integer

int unsigned int 32-bit integer

long unsigned long 64-bit integer

bool true or false

Name Value

float 32-bit floating point

double 64-bit floating point

long long 128-bit integer

long double 128-bit floating point

http://www.cplusplus.com/doc/tutorial/variables/

http://www.cplusplus.com/doc/tutorial/variables/

Need to be sure of integer sizes?

 In the same spirit as using integer(kind=8) type notation in Fortran, there are type definitions that

exactly specify exactly the bits used. These were added in C++11.

 These can be useful if you are planning to port code across CPU architectures (ex. Intel 64-bit

CPUs to a 32-bit ARM on an embedded board) or when doing particular types of integer math.

 For a full list and description see: http://www.cplusplus.com/reference/cstdint/

Name Name Value

int8_t uint8_t 8-bit integer

int16_t uint16_t 16-bit integer

int32_t uint32_t 32-bit integer

int64_t uint64_t 64-bit integer

#include <cstdint>

http://www.cplusplus.com/reference/cstdint/

Type Casting

 C++ is strongly typed. It will auto-convert a variable of one type to another in a limited fashion: if it

will not change the value.

 Conversions that don’t change value: increasing precision (float  double) or integer  floating

point of at least the same precision.

 C++ allows for C-style type casting with the syntax: (new type) expression

 In addition to this C++ offers 4 different variations in a C++ style.

short x = 1 ;

int y = x ; // OK

short z = y ; // NO!

double x = 1.0 ;

int y = (int) x ;

float z = (float) (x / y) ;

Type Casting
 static_cast<new type>(expression)

 This is exactly equivalent to the C style cast.

 This identifies a cast at compile time and the compiler inserts the CPU type

conversion instructions for primitive types.

 Can do casting that reduces precision (ex. double  float)

 dynamic_cast<new type>(expression)

 Special version where type casting is performed at runtime, only works on reference

or pointer type variables.

 const_cast<new type>(expression)

 Variables labeled as const can’t have their value changed.

 const_cast lets the programmer remove or add const to reference or pointer type

variables.

 reinterpret_cast<new type>(expression)

 Takes the bits in the expression and re-uses them unconverted as a new type. Also

only works on reference or pointer type variables.

“unsafe”: the

compiler will

not protect

you here.

Functions

 Open the project “FunctionExample” in

C::B files
 Compile and run it!

 Open main.cpp

 4 function calls are listed.

 The 1st and 2nd functions are identical in

their behavior.
 The values of L and W are sent to the function,

multiplied, and the product is returned.

 RectangleArea2 uses const arguments
 The compiler will not let you modify their values in the

function.

 Try it! Uncomment the line and see what happens

when you recompile.

 The 3rd and 4th versions pass the

arguments by reference with an added &

float RectangleArea1(float L, float W) {

return L*W ;

}

float RectangleArea2(const float L, const float W) {

// L=2.0 ;

return L*W ;

}

float RectangleArea3(const float& L, const float& W) {

return L*W ;

}

void RectangleArea4(const float& L, const float& W, float& area) {

area= L*W ;

}

The function arguments L and W

are sent as type float.

Product is computed

The return type is float.

Using the C::B Debugger

 To show how this works we will use the C::B interactive debugger to step through the program line-by-line to follow the function

calls.

 Make sure you are running in Debug mode. This turns off compiler optimizations and has the compiler include information in the

compiled code for effective debugging.

Add a Breakpoint

 Breakpoints tell the debugger to halt at a

particular line so that the state of the

program can be inspected.

 In main.cpp, double click to the left of the

lines in the functions to set a pair of

breakpoints. A red dot will appear.

 Click the red arrow to start the code in

the debugger.

 The debugger will pause in

the first function at the

breakpoint.

 Click the Debug menu, go to Debugging

Windows, and choose Call Stack. Drag it to

the right, then go back and choose Watches.

Drag it to the right. Do the same for the

Breakpoints option. Your screen will look

something like this now…

 Controls (hover mouse over for help):

Watches shows the

variables in use and

their values

Call Stack shows the

functions being called,

newest on top.

Breakpoints lists the

breakpoints you’ve

created.

Place the cursor in the function,

click to run to the cursor

Run the next line

Step into a function call

Step out of a function to

the calling function.

Step by CPU instruction.

Less useful, generally.

Pass by Value

 C++ defaults to pass by value behavior when calling a function.

 The function arguments are copied when used in the function.

 Changing the value of L or W in the RectangleArea1 function does not effect their original values in

the main() function

 When passing objects as function arguments it is important to be aware that potentially large data

structures are automatically copied!

main()

float L

float W

RectangleArea1(float L, float W)

float L

float W

copy

copy

Pass by Reference

 Pass by reference behavior is triggered when the & character is used to modify the type of the

argument.

 Pass by reference function arguments are NOT copied. Instead the compiler sends a pointer to the

function that references the memory location of the original variable. The syntax of using the

argument in the function does not change.

 Pass by reference arguments almost always act just like a pass by value argument when writing

code EXCEPT that changing their value changes the value of the original variable!!

 The const modifier can be used to prevent changes to the original variable in main().

main()

float L

float W

RectangleArea3(const float& L, const float& W)

float L

float W

reference

reference

 In RectangleArea4 the pass by reference behavior is used as a way to

return the result without the function returning a value.

 The value of the area argument is modified in the main() routine by the

function.

 This can be a useful way for a function to return multiple values in the

calling routine.

void RectangleArea4(const float& L, const float& W, float& area) {

area= L*W ;

}

void does not return a value.

 In C++ arguments to functions can be objects…which can contain any

quantity of data you’ve defined!
 Example: Consider a string variable containing 1 million characters (approx. 1 MB of RAM).

 Pass by value requires a copy – 1 MB.

 Pass by reference requires 8 bytes!

 Pass by value could potentially mean the accidental copying of large

amounts of memory which can greatly impact program memory usage and

performance.

 When passing by reference, use the const modifier whenever appropriate

to protect yourself from coding errors.
 Generally speaking – use const anytime you don’t want to modify function arguments in a

function.

“C makes it easy to shoot yourself in the foot; C++ makes it harder, but

when you do it blows your whole leg off.” – Bjarne Stroustrop

A first C++ class

 You can start a new project in

C::B or just modify the Hello

World! code.

 In the main.cpp, we’ll define a

class called BasicRectangle

 First, just the basics: length and

width

 Enter the code on the right

before the main() function in the

main.cpp file (copy & paste is

fine) and create a

BasicRectangle object in

main.cpp:

#include <iostream>

using namespace std;

class BasicRectangle

{

public:

// width ;

float W ;

// length

float L ;

};

int main()

{

cout << "Hello world!" << endl;

BasicRectangle rectangle ;

rectangle.W = 1.0 ;

rectangle.L = 2.0 ;

return 0;

}

Basic C++ Class Syntax

Curly braces at the

beginning and end

followed by a semi-colon

class BasicRectangle

{

public:

// width ;

float W ;

// length

float L ;

};

class keyword Name of class

Internal variables are called

members

public keyword indicates everything

following the keyword is accessible

by any other code outside of this

class.

BasicRectangle rectangle ;

rectangle.W = 1.0 ;

rectangle.L = 2.0 ;

The class can now be used to

declare an object named rectangle.

The width and length of the rectangle

can be set.

Accessing data in the class

 Public members in an object

can be accessed (for reading

or writing) with the syntax:

object.member

 Next let’s add a function

inside the object (called a

method) to calculate the

area.

int main()

{

cout << "Hello world!" << endl;

BasicRectangle rectangle ;

rectangle.W = 1.0 ;

rectangle.L = 2.0 ;

return 0;

}

Methods are accessed just like members:

object.method(arguments)

class BasicRectangle

{

public:

// width ;

float W ;

// length

float L ;

float Area() {

return W * L ;

}

};

int main()

{

cout << "Hello world!" << endl;

BasicRectangle rectangle ;

rectangle.W = 21.0 ;

rectangle.L = 2.0 ;

cout << rectangle.Area() << endl ;

return 0;

}

method Area does not take any

arguments, it just returns the

calculation based on the object

members.

Basic C++ Class Summary

 C++ classes are defined with the keyword class and must be enclosed in

a pair of curly braces plus a semi-colon:

class ClassName { …. } ;

 The public keyword is used to mark members (variables) and methods

(functions) as accessible to code outside the class.

 The combination of data and the functions that operate on it is the OOP

concept of encapsulation.

Encapsulation in Action

 In C – calculate the area of a few shapes…

 In C++ with Circle and Rectangle classes…not possible to miscalculate.

 Well, provided the respective Area() methods are implemented correctly!

/* assume radius and width_square are assigned

already ; */

float a1 = AreaOfCircle(radius) ; // ok

float a2 = AreaOfSquare(width_square) ; // ok

float a3 = AreaOfCircle(width_square) ; // !! OOPS

Circle c1 ;

Rectangle r1 ;

// ... assign radius and width ...

float a1 = c1.Area() ;

float a2 = r1.Area() ;

Now for a “real” class

 Defining a class in the main.cpp file is not typical.

 Two parts to a C++ class:
 Header file (my_class.h)

 Contains the interface (definition) of the class – members, methods, etc.

 The interface is used by the compiler for type checking, enforcing access to private or

protected data, and so on.

 Also useful for programmers when using a class – no need to read the source code, just

rely on the interface.

 Source file (my_class.cc)

 Compiled by the compiler.

 Contains implementation of methods, initialization of members.

 In some circumstances there is no source file to go with a header file.

Create a new class in C::B

 Using an IDE is especially convenient in C++ to

keep the details straight when defining a class

 Typically header and source files are needed

 Some default methods are created to save you some

typing

 Create another project in C::B, call it Shapes.

 Once open, go the File menu, click New, then click

Class.

 This opens a wizard GUI that helps get things

started.

 This will create the header and source files for you.

 Name the class Rectangle

 Uncheck the Documentation

option
 This will just confuse things for now

 Click Create!

 2 files are automatically generated: rectangle.h and rectangle.h.cpp

#ifndef RECTANGLE_H

#define RECTANGLE_H

class Rectangle

{

public:

Rectangle();

virtual ~Rectangle();

protected:

private:

};

#endif // RECTANGLE_H

#include “rectangle.h"

Rectangle::Rectangle()

{

//ctor

}

Rectangle::~Rectangle()

{

//dtor

}

rectangle.h rectangle.cpp

Modify rectangle.h

 As in the sample BasicRectangle,

add storage for the length and

width to the header file. Add a

declaration for the Area method.

 The protected keyword will be

discussed later.

 The private keyword declares

anything following it (members,

methods) to be visible only to

code in this class.

#ifndef RECTANGLE_H

#define RECTANGLE_H

class Rectangle

{

public:

Rectangle();

virtual ~Rectangle();

float m_length ;

float m_width ;

float Area() ;

protected:

private:

};

#endif // RECTANGLE_H

Modify rectangle.cpp

 The Area() method is automatically

found from the header file.

 Click OK.

 This will now contain the code for the Area()

method.

 Use the C::B environment to help out here!

 Open rectangle.cpp (under Sources/src)

 Right-click and choose Insert/All class

methods without implementation

rectangle.cpp

 The Area() method now has a

basic definition added.

 The syntax:

class::method

tells the compiler that this is the

code for the Area() method declared

in rectangle.h

 Now take a few minutes to fill in

the code for Area().

 Hint – look at the code used in

BasicRectangle...

#include "rectangle.h"

Rectangle::Rectangle()

{

//ctor

}

Rectangle::~Rectangle()

{

//dtor

}

float Rectangle::Area()

{

}

More C::B assistance

 You may have noticed C::B trying

to help when entering the code for

Area()

 Press the Tab key to accept the

suggestion

 It will offer up variable names,

member names, class names, etc.

that match what you’re typing

when appropriate to save you

effort.

 This can be a huge convenience

when dealing with large code bases.

Last Step

 Go to the main.cpp file

 Add an include statement for “rectangle.h”

 Create a Rectangle object in main()

 Add a length and width

 Print out the area using cout.

 Hint: just like the BasicRectangle example…

Solution

 You should have come up with

something like this:

#include <iostream>

using namespace std;

#include "rectangle.h"

int main()

{

Rectangle rT ;

rT.m_width = 1.0 ;

rT.m_length = 2.0 ;

cout << rT.Area() << endl ;

return 0;

}

