Introductory Perl

Boston University
Information Services & Technology

Course Coordinator: Timothy Kohl

Last Modified: 5/12/15

What is Perl?

» General purpose scripting language
developed by Larry Wall in 1987.

* Has many of the characteristics of C, the
various Unix shells, as well as text
processing utilities like sed and awk

A very basic Perl script

Start up your favorite text editor and call thigllb’ and
enter in the following two lines.

#!/usr/bin/perl
print "Hello world\n";

After saving this file, exit the editor and do flelowing:
>chmod u+x hello

* Perl programs or ‘scripts’ are not compiled, iefpreted.
« In Unix, the u+x permission must be set to rungbept.

« In Windows, perl scripts have.pl as the file extension so you would call
this scripthello.pl and the chmod command would not be needed.

We run this script simply by typing:
>hello

If . (current directory) is not in your path, theyou must invoke the program as
follows:

> /hello
Assuming no mistakes you should get:

Hello world!

In Windows, one could also just double clicktwatlo.pl or issue the command

>hello.pl

from within a command shell.

So what's going on?

#/ustlbin/perl tells Unix that the script which follows is to b

processed with the program /usr/bin/perl

» Common mechanism used by Unix scripting languagg@gjes and shells
* It may be/usr/bin/perl or /usr/local/bin/perl depending on your systd
* script is run after its syntax is checked first

* In Windows, the# isn't needed, but the script is still checked forrectness first.

print "Hello world\n"; # produces output on scre en

* \n is the newline character which puts the cursohastart of next line
» A semi-colon is needed at the end of (almost)elire in a Perl script.

» Comments can be put on any line, and must sténta# character.

Let's modify our hello script top make it interati

#!/usr/bin/perl

print "What is your name? ";
$name=<STDIN>;
chomp($name);

print "Hello there $name.\n";

If we run this, we get
>hello (or ./hello if your shell is misconfigured)

What is your name? Tim

Hello there Tim.
>

m

So what’s happening here?

First we prompt the user for their name.
print "What is your name? ";
and then take input from the keyboard

$name=<STDIN>;

This takes a line aftandard input and assign it to the variakifmame

(We'll discuss variable nomenclature in the nextisa.)

Since the line of standard input includés aat the end (when we HENTER)
this gets removed ochomped’ by the command

chomp($name);

(This ‘chomping’ is something you should get usedéeing and using in any perl
script which takes input.)

Finally, we say hello

print "Hello there $name.\n";

Perl Variables and Operators
In Perl, there are three basic data types:
* Scalars

* Arrays
* Associative arrays (also called hashes)

Unlike C or Pascal, there is no need to specifyasaar types of variables
at the beginning of a program.

Scalars

Scalars consist of integer or floating point nunsbartext strings.

Scalar variables begin with$afollowed by a their name which can consist
of either letters (upper or lower case) oor numbers, with some exceptions

which we’ll discuss.

Ex:

$x = 3.5;
$name ="Tim";
$A_very_long_and_silly_looking_variable_name = 2;

All numbers in Perl are double precision floatirgint numbers (integers too!)

Ex:
$x=3;
$y=-5.5;
$2=6.0E23; # exponential notation for 6 x 30

One can also work in Octal (base 8) or Hexadec{bade 16) as well.

As for strings, the only two types are single andlie quoted.
Ex:

$x = "Hello\n"; # Hello followed by newline
$y = "Hello\n’; # literally Hello\n

Within double quotes, special characters like are interpreted properly.

Ex: \n newline
\t tab
\" literally "

\\ literally \

So if we have

print "Left\tMiddle\tRight\n";

we get

Left Middle Right

For single quoted strings, however, what's in gsigiets printed as is.

print
‘Left\tMiddle\tRight\n’;

yields

Left\tMiddle\tRight\n

Also, if you wish to embed variables inside striagsl have the value substituted i
properly, you must use double quotes.

EX:

$name="Tim";
print "Hello $name\n”;

will produce

Hello Tim

The typical operators for numerical values are gmes

There is also an exponentiation operator,

2**3: # 8 since 2 3=8

as well as a 'modulus' operator for taking remammde

5% 2; #1, since 5 divided by 2 leaves remainde

ri

Additionally, there are the autoincremenit and autodecremernt operators

asin C.

$a=2;
++$a; # $a now equals 3
--$a; # $a now equals 2 again

Note, these also can be applied to character valuesll.

Ex:

$X:“A”;
++$x; # $x now equals B

For strings, there is a concatenation operatocdonbining two (or more) strings
Itis given by . (a period)

Ex:

$x="Hello";
$y="There";

$z=$x.$y; # $z is now "HelloThere"

Note, if you want a space in between, you can @o th

$z=%x.” “.By; # $z is now "Hello There"

We saw earlier thehomp() function removes a trailing newline character
if one is present.

EX:

$a="Hello There\n";
chomp($a); # $a now equals "Hello There"

$b="Hi There",
chomp($b); # $b still equals "Hi There"

There is also the functioschop() ,which removes the last character in a string,
whether it is a newline or not, but this is depteda

Making Comparisons

If we wish to compare two scalars then mast choose the appropriate
comparison operator.

Comparison Number Strin)g
equal == eq
not equal I= neq
less than < It
greater than > gt
less than or equal <= le
greater than or equal >= ge
Ex: “023" < 23" is false, but
“023” It “23” is true

so be aware of the data you are working with whaking comparisons.

We’'ll use these later, in the section on contmictures.

Arrays

In Perl, arrays are lists of scalar values, eiffténgs, or numbers.

Array variables, as a whole, are prefixed with @eign followed by the array

name which can consist of either letters, numhbmrs,characters.

They can be created and modified in a variety ofsiwéhe simplest is to just list

the elements in the array.

Ex:

@Xx=(5,11,-6,12);
@People=("Tom","Dick","Harry");
@DaysOfWeek=("Mon","Tue","Wed","Thu","Fri","Sat","Sun");

@stuff=("Hi",3.1415,6,"Bye\n"); # mix and match!

10

Array elements are indexed starting frOrand are accessed as follows:

Ex:
@X=(5,11,-6,12);
print "$X[2]\n";
yields
-6

That is, if the array is name@Xhen the ' element is$X([i] ‘

Adding elements to an array can be done in severgs.
Ex:

@People=(" Tom', " Dick ");
@People=(@People, "Harry")

So now,

‘ @People=(" Tom", " Dick", "Harry"); ‘

Note, if one instead did

‘ @People=(" Harry", @People); ‘

then

‘ @People=("Harry ", "Tom', " Dick"); ‘

11

One can also add an element by means of the amlay.i

Ex:
@X=(3,8,-2);
$X[3]=5;
So now
|@x=(3,8-25); |

That is, we have addedaurth element to the array. (at array ind®x

One can also copy arrays in a very simple manner.

@Names=(Tom", " Dick", "Harry");
@CopyOfNames=@Names;

So now,

@CopyOfNames=(" Tom", " Dick", "Harry"); ‘

12

One can also take a 'slice' of an array.

Ex: @Planets=("Mercury", "Venus", "Earth", "Mars”,
"Jupiter ", "Saturn ", "Uranus ",
"Neptune ", "Pluto ");

@InnerPlanets=@Planets[0..3];

So now, @InnerPlanets=(" Mercury ", "Venus", "Earth ", "Mars");
Also, one may include other ranges, e.g.
@SomePlanets=@Planets[0..1,7..8];

thus @SomePlanets=("Mercury","Venus",”"Neptune”,”Pluto”);

‘ (Keep in mind, elemertiis the first element in the arra)\r.)

Combining two arrays is also very easy:

Ex:
@People=("Tom', "Dick ", "Harry ");
@MorePeople=(" John", "Jim");
@Combined=(@People,@MorePeople);
So now,

@Combined=("Tom', "Dick ", "Harry ", "John", "Jim"); ‘

13

There is a built-irsort() ~ function for sorting the elements of an array.

Ex:

@People=(" Tom", " Dick", "Harry");
@People=sort(@People);

@People now equalg " Dick", "Harry", "Tom");

* By default, the sorting is based on the ASCII. @@ietionary) value of the
strings.

» There is also a way to sort arrays in numericakord

Associative Arrays

An associative array is a structure consistingaifgof scalars, a key and
a value, such that each value is associated tg.a ke

Associative array variables, as a whole, are pedfixith %followed by the
name which can consist of either letters or numberscharacters.

14

As with regular arrays, individual elements areessed with &.

Typically, associative arrays are created and antgdeon the fly,
just by giving key and value pairs.

Ex:

$Grade{ " Tom"}="A";

$Grade{ "Dick"}="B";

note{} instead of]
for associative arrays

That is,%Grade is an associative array with (right now) two key

and value pairs, which were given by the two ase@mt statements.

We could have also done this with the followingestaent:

%Grade = ("Tom"=>"A", "Dick” =>"B"); ‘

15

A very useful function to apply to an associativeag iskeys()

As the name suggests, this returns all the kegsgiwven associative array
in ordinary array form.

Ex:

%Grade=("Tom"=>"A", "Dick'=>"B", "Harry"=>"C");

@Students=keys(%Grade);

@Students now equalg " Tom", " Dick", "Harry")

undefined values

If a scalar value is referenced but has not bedgreess a value, Perl gives it the
default value ofindef which literally means undefined.

So, for example, i$a has not been defined, then

print "$a";

will produce no output, but will not generate aroeeither.

16

Likewise

@X=(3,7,9,2);
print "$X[10]";

will produce no output.
The point being that any array element not yetrefihas the valugndef

And if

‘ %Grade=("Tom" =>"A", " Dick"=>"B"); ‘

then$Grade{ "Harry"} isundef since we have not given it a value.

Perl Control Structures

In Perl, there are a variety of familiar loop stures and conditionals.
Some of the syntax is similar to C.

All of these are built around what's known as gestent block which
is simply a sequence of statements, surroundgddnd}

Conditionals

Ex:

$entry=<STDIN>;
chomp($entry);
if($entry eq "Thank You")}{

print "You are Welcome\n";
}

17

The conditional itself

$entry eq "Thank You"

is within parentheses and the value returned ligettue or false.

If true, then the block withifi and} is executed.

Before going further, here is a basic guide ashatvis true or false in Perl:

«"0" and"™ (the empty string) andndef are false.

- all else is trué

What Perl does, is to first convert any scalartting, then apply the above rules.

* Note, "0.0" evaluates to true since, as a stridd)"is not "0"

18

Why should we care th&®” andundef are false?

Ex:

if($go){
print “Time to go\n”;
}

This print statement won't be invoked if the vat@abgo
has not been set. e.g the value of this variadbased
upon some input from the user.

This can be useful as we will see in subsequeatitls.

In addition toif, one also has aglse construction.

print "What\'s the password? “;
$entry=<STDIN>;
chomp($entry);
if($entry eq "FOOBAR")}{

print "Access Granted\n";
Yelse{

print "Incorrect Password!\n";

}

If the conditional is trugi$entry eq "FOOBAR") then the
print statement inside the first set{ofand } is executed,

otherwise thélncorrect Password!" message gets printed.

19

Also, one can combine conditionals using

‘ && logical and‘

‘ Il logical or‘

if($day eq "Monday") && ($time eq "7TAM™")){
print "Time to get up\n";
}

Logical not is given via!

if(!($password eq "FOOBAR")){
print "Access Denied\n";
}

loops
One has many of the familiar loop constructions.

Consider the following examples.

Ex:

$n=1,;

$sum=0;

while($n<=10){
$sum = $sum + $n;
$n++;

}

print "The sum of the numbers from 1 to 10 is $sum\

20

A useful example of a while loop is one which takedtiple lines of standard
input and process each line in some fashion. Famele:

#!/usr/bin/perl

while($line=<STDIN>){
chomp($line);
print “[$line]\n";

This keeps repeating as long a
there is input to be read in.

"2

If we call this script ‘bracket’ then we can takgut from a Unix pipe and surroun
each line witH] for example

> |s —al | bracket

There is a alsofor statement.

Ex:

$sum=0;
for($n=1;$n<=10;$n++){

$sum = $sum + $n;
}

print "The sum is $sum\n®;

The general syntax is:

for(initial_expression;test_expression;increment_expression){
statement block
}

21

There is a nice generalizationfof()

Ex:

used to loop over the elements of an arra

@People=("Tom", " Dick”,
foreach $person (@People){
print "$person\n";

}

" Harry");

yields (as you might expect)

Tom
Dick
Harry

Note, this works regardless of the
size of the array.

Also, one does not need to keep trac
the array index.

off

One can use thereach() function together with thkeys() function
to examine the contents of an associative array.

Ex:

%Grade=("Tom"=>"A",
"Dick"=>"B",
"Harry"=>"C"
);
@People=keys(%Grade);
foreach $person (@People){

}

print "$person received a $Grade{$person} \n";

keys(%Grade) is the array("Tom","Dick","Harry")
extracted from the associative areagrade;

22

Regular Expressions (a.k.a. 'regexps’)

« one of the most powerful features of Perl

* process text using what are known as regular szpmas

* regular expressions are a means of doing pattatahimg on strings.

The general syntax for a pattern is

/pattern/

wherepattern is the text pattern we are trying to describe.

The general syntax to see if a string matchestaingrattern is:

$x =~ /pattern/

[pattern matching operat+r

For example, to see $ix contains the wortiello we might write:

if($x =~ /hello/)y{
#do something

}

i.e. If the pattern matches, then the condititvaa value true.

23

By default, pattern matching is case sensitivahedollowing
strings would match:

$x="hello there"
$x="1 just called to say hello"
$x="Othello by William Shakespeare"

yes! this is a matc|

but something like

‘ $x="Hello to you!" ‘

would not (the capital H makes a difference)

Note, to ignore the distinction between upper anekl case
one can do the following:

if($x =~ /hello/i){
#do something\
}

The i after the/ meansgnore
case.

24

One way to make the pattern more flexible is toalsgrnation.

EX:

| $x =~ /th(is|at)/ |

is true if$x matches either

this or that

The(|) allows us to choose one or more possibilities.
For example, we could do:

| $x =~ fth(is|atlen)/

to look for this ’ ‘that ' or ‘then’

Regular expressions allow us to be quite geneitahe patterns we look for.

Ex: Match all strings which have the lettefollowed byat least onaext
character. (i.e. something other than \n)

la./

the lettera
any text character

So these would match

llapplell
"this and that"
but not
ng
na\n® } no text characters after the

25

For more variability, we can also match on multipté characters.

multipliers.

zero or more occurrences of thpreviousentity

+ at least one of thepreviousentity
? 0 or linstances of thpreviousentity
{n} n instances of thpreviousentity

{m,n} betweerm andn instances of thpreviousentity

Ex:

would match'bet" and"beet" or even'bt"

If we change* to + then

matchesbet” and"beet" but not"bt"
since thee+ means at least one instance of the |etter

If we change this to say

then this would matctboot", "belt”, "bet", "bat", "b t"
since .+ means match one or more of any character

etc.

Again, the pattern just has to exist somewheréérstring in order to match.

26

classes

Say we wish to see if there is a vowel somewhegegiven string.

We could do this as follows.

if($x=~/[aeiou]/}{
print "Found a vowel\n";
}

The[] indicates a specificlass of characters which we want to match.

In this case, one of the five vowels.

If we wish to match any lower case letter, thencae use

[a-z]/ #i.e. all the letter from a to z

to include upper case letters we use

[[a-zA-Z]/ # all letter fromatozand Ato Z

Likewise, we can also match digits.

f[0-9)/

27

There are also a number of pre-defined classesamese which have

abbreviations.
description class abbreviatioﬁu
digits [0-9] \d
words [a-zA-Z_] \w
space [\n\r\t\f] \s

literally a space

These classes are useful particularly when consigic
complicated patterns.

To negate a class, UEe]

ex. [~X]

\W
\S
\D

everything_but the letter x

non-word characters ["a-zA-Z_]
non-space characters [\r\n\t\f]
non-digit characters [~0-9]

One can combine pre-defined classes to make lalgeses.

Ex:

$x=~/[\w\d])/

matches wordand digits

28

anchoring patterns

Suppose we wish to specify where in a string a gpegitern is matched.

For example, say we wish to see if a given striagswith a capital letter.

$sentence =~ /NA-Z]/ |

The” is to test if the pattern is matched at the begimwif the string.

Note, due to an unfortunate reuse of symbols,ighistthe same as
class negation seen earlier.

i.e./[*A-Z]/ means match everythidgutA-Z !

Likewise, we could test if a certain pattern is chad at the end of a string.

i.e. Say we wish to check if a certain string endh the lettere

We could use the following:

$x =~ le$/;

So this would match if

$x = "the"
but not if

$x = "the rest"

29

One can also anchor a pattern ataad boundary using the directivéb

Such a boundary occurs at the beginning of a s(angnd) or at a transition from
a\w to a\W or vice versa.

Ex:
$x =~ /the\b/;
matches if
$x="the" or $x="the end"
but not

$x="then"

Matching somewhere thati®t a word boundary can be done Wi

parentheses as memory

To remember a component of a regular expressianmarst us¢)

ex: ‘ one or more word charactqrs

| $x = ~/(Ww\s\1/, |

the word in () agaiﬁ

which would match if, for example,

$x="yo yo"

30

In fact, one can save the memorized portions efalar expression match.

print "Enter Name: Last,First>";
$entry=<STDIN>;
chomp($entry);
if($entry=~/(\w+),(\w+)/){
$lastname=%$1;
$firstname=$2;

print "Your name is $firstname $lastname.\n";

}
Note: One can make
this more flexible by
here $entry=~/(w+),(\w+)/ allowing for spaces
before or after the comma.
$1 Ex:
[Qw+)\s* \s*(\w+)/
substitutions

When matching a pattern, we can also force a gubisti to take
place if the pattern matches, and therefore matiystring.

$x ="You say hello, | say goodbye";
$x =~ s/hello/goodbye/;

$x is now "You say goodbye, | say goodbye"

general syntax

$x =~ s/pattern/replacement/;

31

One can also use memorized portions of a regexpswibstitutions.

Ex: (neat trick)

$x = "James Bond";
$x =~ s/(\Ww+)\s(\w+)/$2, $1 $2/;
$x is now "Bond, James Bond";

‘ $x="James Bond"; ‘

‘ Bond, James Bond ‘

It is important to note that any kind of patterntaméng operation
takes place from left to right in a string.

This is particularly important when using memorizemnponents
via() since itis the first (leftmost) occurrence of dtgan that will
be assigned to $1, $2 etc.

Also, when matching a pattern with a multiplier:
e.g.
Nw+/

Perl will attempt to match as much (i.e. be ase'dye) as possible.

32

This is also important when doing substitutions.

Ex:
$x="three different words";
Sx=~s/(\w+)/<$1>/,
print "$x\n";
yields

<three> different words

The first occurrence dfv+ wasthree (remember greedy matching) and
so this is what was assigned$tb and modified irfsx by the substitution.

If we wanted to apply this operationéeery word in$x we need to use thg''
switch to make the substitution operation be regmbahevery match.

Ex:

$x="three different words";
$x=~s/(\w+)/<$1>/g;

print "$x\n"; '\

force substitution
onevery match in the

<three> <different> <words> string

33

Referencesfor further information on Perl

Books

 Learning Perl by Randal L. Schwartz & Tom ChristemgO'Reilly)

» Programming Perl by Larry Wall, Tom Christiansex don Orwant (O' Reilly)

« Perl in a Nutshell by Ellen Siever, Stephen Spaimhand Nathan Patwardhan (O' Rei

1Y)

Web

‘ http://Amww.perl.com

‘ http://math.bu.edu/people/tkohl/p%ar My Perl Page

Introductory Perl

Boston University
Information Services & Technology

Course Coordinator: Timothy Kohl

¢ 2015 TRUSTEES OF BOSTON UNIVERSITY
Permission is granted to make verbatim copies of this
document, provided copyright and attribution are
maintained.

Information Services & Technology
111 Cummington Mall
Boston, Massachusetts 02215

34

