Advanced Perl

Boston University
Information Services & Technology

Course Coordinator: Timothy Kohl

Last Modified: 05/12/15

Outline

» more on functions

* more on regular expressions

« references and anonymous variables
* local vs. global variables

* packages

* modules

* objects

Functions

Functions are defined as follows:

sub f{

do something

and invoked within a script by
&f(parameter list)
or

f(parameter list)

parameters passed to a function arrive in the a@ray

sub print_sum{
my ($a,$b)=@_;
my $sum;
$sum=%$a+$b;
print "The sum is $sum\n";

And so, in the invocation ‘ $a=$ [0]=2 ‘

print_sum(2,3);

($b=% [1]=3 |

The directivamy indicates that the variable is lexically scoped.

That is, it is defineanly for the duration of the given code block between{ and}
which is usually the body of the function anyway. *

When this is done, one is assured that the vasadalefined are local to the
given function.

We'll discuss the difference between local and gllefariables later.

* with some exceptions which we'll discuss

To return a value from a function, you can eitheg an expliciteturn
statement or simply put the value to be returnetth@sast line of the function.

Typically though, it's better to use the returrntstaent.

EX:

sub sum{
my ($a,$b)=@_;
my $sum;
$sum=$a+$b;
return $sum;

}

$s=sum(2,3);

One can also return an array or associative arcay & function.

References and Anonymous Variables

In languages like C one has the notion of a poiater given data type,
which can be used later on to read and manipulatedntents of the variable
pointed to by the pointer.

In Perl, these are called (hard) references andatethe key to building all
manner of complex data structures, including

» multidimensional arrays
* hashes of arrays
* hashes of hashes

and more...

Ex:

$X:"5";
$rx=\3x; ‘\{ $rx is a reference to the scalar)$x

To manipulate $x using $rx we need to 'de-refereheeteference.

$$rx="6"; # now $x=6;

The extra leading $ gives us the value of what'stpdito by the reference.

One can copy references just as one would any stadar value
since a reference to anything is always a scalar.

So if we do
$x="5";
$rx=\$x;
$rx2=9%rx;
then

$$rx2 also equals "5"

One can also have references to other data typeardiays and associative array

Ex:

@Names=("Tom","Dick","Harry");
$n=\@Names;

How do we use this?

EX:

‘ push(@{$n},"John"); ‘

So now

‘ @Names=("Tom","Dick","Harry","John") ‘

12

That is, if $nis a reference to an array, ther$@{s the array itself.

Also, we could have done this

@Names=("Tom","Dick","Harry");
$n=\@Names;

$$n[3]="John";

and again

@Names=("Tom","Dick","Harry","John"); |

/

‘ i.e. $Names[3] = $$n[3] ‘

Similarly, if we have

%CourseGrade=("Tom"=>"A","Dick"=>"B","Harry"=>"C");

and if we set

$h=\%CourseGrade ; ‘

then we can access and modify %CourseGrade viatbence, $h

Ex:

| $3h{"John"}="D"; “

yields

%CourseGrade=("Tom"=>"A",
"Dick"=>"B",
"Harry"=>"C",
"John"=>"D"); —

Creating complex data structures implicitly usesrbtion of 'anonymous'
variables.

EXx:

$a=[1,6,5,-11];
print $$a[2];

yields

The assignment
$a=[1,6,5,-11];

makes$a into a reference to aanonymous array, that is, an array where the
only means of access is through the reference.

Likewise, there are also anonymous hashes.

$book2author={"Hamlet"=>"Shakespeare",

print $$book2author{"Hamlet"};

yields

Shakespeare

Anonymous arrays are how multidimensional arragscaeated.

Ex: The following are equivalent:

@A=([3,5],
[-7.2]);

$rowl1=[3,5];
$row2=[-7,2];
@A=($rowl,$row2);

$A[0][0]=3;
$A[O][1]=5;
$A[1][0]=-7;
$AL][1]=2;

™

All these create the sa
2X2 'matrix’.

rTe

Most complex structures are created with refereaoelsanonymous variables.

hash of arrays
(an associative array with arrays as values)

%Food=(
"fruits" => ["apples","oranges","pears"],
"vegetables” => ["carrots","lettuce"],
"grains" =>["rye","oats","barley"]
);
e.g.

['carrots","lettuce"]

/

‘ anonymous arraL/

and $Food{"vegetables"}[0] eq "carrots"

hash of hashes
(a hash where the values are anonymous hashes)

%Statelnfo=(
"Massachusetts" => { "Postal Code" => "MA",
"Capital" =>"Boston"

}1
"New York" => {"Postal Code" => "NY",
"Capital" => "Albany"
}
)i
e.g.
{
v "Postal Code" => "NY",
"Capital" => "Albany"
I3

anonymous hasb

and so $Statelnfo{"New York"}{"Capital"} eq "Albany"

One can also create referencefutactions as well.

Ex:
sub add_array{
my $n,$sum;
$sum=0;
foreach $n (@_){ $code isa
$sum += $n; reference to
&add_array
return($sum);
} (note, you need
] the&in order to
$code=\&add_array; de-reference the refereng
$s=&$code(5,-2,3,7);

And, as with arrays and hashes, we can createerefes to anonymous
functions.

Ex:

$hi = sub { print "Hi There\n"};

&$hi;

anonymous subroutide

yields

Hi There!

Note, the& de-references
the anonymous code reference.

These 'coderefs' are used frequently, especiatipject design.

arrow notation

One bit of alternate syntax that is available wheimg references
is ‘arrow notation' for picking out elements from a hash or array via
a reference

Ex:
$book={"Hamlet"=>"Shakespeare",
"The Stranger"=>"Camus"
h
print $$book{"Hamlet"}; # prints Shakespeare
print $book->{"Hamlet"}; # likewise
i.e.
$$book{"Hamlet"}=$book->{"Hamlet"}
Likewise,
$a=[2,3,5,7];
print $$a[2];
yields
but so does
$a=[2,3,5,7];
print $a->[2];
ie.

| $%a[2] = $a->[2]; |

11

This is especially useful when dealing with compméxictures.

Ex: Suppose
$Food={
fruits => [apples,oranges,pears],
vegetables => [carrots,lettuce],
grains => [rye,0ats,barley]
h
then we can retrieveats ' as follows: Note: We didnot put ™ around

the keys and values in the Fo
structure here.
Food->{grains}->[1]; . .
$ & > This is ok provided your key
strings don't contain spaces, ¢
other special characters.

0d

DI

Note: $Food is an anonymous hash, hence the Iea&ir{g

To get information about references, one can uséuthctionref()
which will return the underlying type of a giverfegence.

Ex:
@X=(2,3,4);
$r=\@X;
print ref($r);
returns
ARRAY

The other possibilities are SCALAR, HASH, or CODE.

Also,ref() implicitly returns a Boolean value depending on thiee
or not the thing we're takingf of is actually a reference.

12

Global vs. Non-Global Variables

When we discuss packages in the next section wejumaintify
what it means to have a 'global’ variable in Perl.

There are however, two ways of creating and usoggiobal
variables.

We can tag a variable in a Perl script, whethbeiin asub() or
just within{} with the directives

my or local

which will make the variables 'local’ but in slightlifferent,
yet important, ways.

Initially (i.e. before Perl 5) there was only tiieectivelocal .

This would save the value of the given variablet (ifas already defined
outside the block of code) and then restore it difte block ended.

Ex:
$a=10;
local $a;
$a=20;
print "In here, the value is $a,\n";
}
print "but out here it is $a.\n";
yields

In here, the value is 20,
but out here it is 10.

13

With the advent of Perl 5, the usagdasfal is deprecated.

The directivemy (in Perl 5+) vyields variables that are truly lotathe way one
usually thinks of when programming.

As mentioned earlier, variables tagged with are 'lexically scoped'.

That is, they come into existence within the blo€kode they are defined and arg
accessible from only that block, unless you passama parametés a sub,
or return ondroma sub.

EXx:

sub first{
my $a=10;
second();

}

sub second{
print "$a";
}

first();

Assuming$a was not defined elsewhere, this produces no osipoe the
variable$a defined infirst() is local to that sub, in fact to the enclos{hg
and scsecond() has no knowledge of it.

However, variables tagged withy can bepassed or returned from and to
functions and the main program.

14

Ex:

sub new_hash{
my $a={};
return $a;

}

$Book=new_hash();
$Book->{"Ringworld"}="Larry Niven";

$CD=new_hash();
$CD->{"In a Silent Way"}="Miles Davis";

Here, the two anonymous hash references creatadwyhash() are separate
entities even though they came from thg $a={} line in the sub.
(ordinarily,$a would go away after the sub terminates)

This is a common technique in object oriented desig

Packages

A packageconsists of all the variable names, subroutine sa@e well
as any other declarations currently in use.

That is, a package providesiamespacegalso called aymbol table) and each
namespace is separate from any other and thise ahall see, is part of how
one builds reusable code in Perl.

One can switch to another package and therebytstdgta different
namespace (symbol table) at will.

15

There is a default package that one works in, &weme is simply writing a
basic script and it is calledain.

Now we'll show how to create your own package(s) strow how they
can interact.

EX:

#l/usr/bin/perl
package Foo;
$x=10;

print "$x";

Running this yields

10

So what? Well, let's switch namespaces and seehalpgiens.

Here we'll see how different packages provide diffe symbol tables.

#l/usr/bin/perl
package Foo;
$x=10;

package Bar;
print "$x";

Running this yields no output.
Why?

Well, we defined a variable call&x in the package Foo but in the
package Bar there is no such variable defined.

16

However, one can access the value of a variableatkin one package
while in another.

Ex:

#l/usr/bin/perl
package Foo;
$x=10;

package Bar;
print "$Fo0::x";

yields
10

Here, we have defined a varial$te in the package Foo but
after switching to the package Bar we can stileasche value

of this variable byully qualifying the variable with the package
that it was defined in.

That is,

$Foo0::x = 10;

the variable >{ ‘ in the package (namespace) Ffoo

is how one can reference this variable even ateiny switched into
the package Bar .

17

Besides scalars, any other type of entity thatumumlly uses, such as arrays,
hashes, subroutines, and file handles are alsapadpecific.

Ex: Given package Foo;

@x=("a","b","c");

sub say_hello{
print "Hello\n";

}

one could refer to these from within another paekiag

@Foo0::X;

print "$Foo::X[1]";

&Foo::say hello();

Some things to note:

» Some variables such &s and$0 (special variables) as well as identifiers
such asSTDIN are kept in package main so one cannot have priogies
of these variables.

« Variables defined using my are not kept in anyipaldr symbol table but
rather in a separate 'scratch’ area (for evenkldbcode).

18

Modules

A module is essentially a package which you can use as yuldva library
in a C program, namely a s set of pre-written ragiyou can import into your
program.

These modules are usually given the suffim (perl module)

What makes this really useful is that the module e&eort it's variables and
functions into your main script. As such, it reabylike a library that you might
use in C, for example.

A Perl module usually (but not always) coincidethwva package and the
name of the module is usually matched with the nafribe package.

By convention, a Perl module name usually begink wicapital letter.

Our example will be called Stuff.pm

19

#!/usr/bin/perl /
package Stuff;
use Exporter;

@ISA=qw(Exporter);
@EXPORT=qw($MyStuff hi_there);

$MyStuff="Check this module out!";
sub hi_there{

print "Hi there!\n";

}

1

The package we're defining

] is called Stuff

This allows us to export
particular variables and

subroutines in the package
to any program that imports
this module (this is not alwayr;

done, however)

Here is a variable and a
subroutine which will get
exported.

Thel is here so that when the
module is imported, the 'use'
command (in any script which
imports this module) succeeds)|

Let's do a simple test to see how this moduleésius

#!/usr/bin/perl
use Stuff; —
print "$MyStuffin”;

hi_there();

Check this module out!
Hi there!!

module Stuff.pm into
the script.

This is also why the
1; atthe end of
Stuff.pm is needed.
since ‘use’ returns the
value 1 (true) which
tells the script that
the module was
successfully imported

This imports (or uses) th

D

Note, we are directly using tlseib in Stuff.pm as well as the variable

$MyStuff

20

Note again that only variables explicitly exporfemn the module
get imported into a program which uses them.

If Stuff.pm were as follows

#!/usr/bin/perl

package Stuff;

use Exporter;

@ISA=qw(Exporter);
@EXPORT=qw($MyStuff hi_there);

$Special=“Cool”;
$MyStuff="Check this module out!";
sub hi_there{

print "Hi there!"\n";
}

1

Then the variabl&Special would not automatically be visible
within a program which used Stuff.pm

e.g.

#!/usr/bin/perl
use Stuff;

print "$Special\n”;

would not yield any output since this variable waerplictly
exported out of Stuff.pm into the namespace ofpttogram.

However, this would work:

#!/usr/bin/perl
use Stuff;

print "$Stuff::Special\n”;

21

To include a module installed on the system cdfled.pm, say, the basic syntax
is as follows:

use Foo;

or to include only a portion of Foo (some modules\gery large and indeed
one can have modules within modules so you maywaht one particular
functionality a given module provides)

use Foo gw(one_piece);

which allows us to use a small portion of the cmdEoo.pm

(Not all modules contain other portions to impaistway, but many do.)

N.B. gw() meangyuote word which is a means of quoting a literal list
without needing to quote every itémthe list

Sometimes one may have a module Foo.pm as welsaldirectory containing
different components which are referenced in Fodpbwhich can be used
separately. In this case, we can import one cfettas follows:

use Foo::whatever;

That is, in the directory where the Perl modulessiored, one would likely have
Foo.pm
and/or
a subdirectoryoo
beneath which is contained different components, e.

Foo/whatever.pm

22

Ex: The following small script will retrieve a URL

#!/usr/bin/perl
use LWP::Simple; call this 'geturl’
print get(SARGV[OQ]);

>geturl http://www.bu.edu

However, we can also create our own module(s) anthem in the same
directory as the script(s) into which we wish tgort the module(s).

There are many modules that one can incorporaieoim's Perl
scripts. Some are installed by default, others hasdownloaded.

The primary location of these downloadable matei®ICPAN which
stands for Comprehensive Perl Archive Network.

See http://mww.cpan.org

Some of the other modules available include thosenithematics, Web
programming, database manipulation, and much more.

23

Objects

We will not delve into all the fine points of objeariented programming.
Rather we shall focus on examples and mentionelegant OOP terminology
where appropriate.

There are two basic features of objects that onsiders
when building a program based on them.

- attributes - the properties of the object

« methods - actions that the object performs or
are performed on the object

We will show how packages and modules are usethptement these ideas.

Ex: a car

attributes - manufacturer
model
year
color
number of doors

methods - enter the car
drive the car
lock the car

Admittedly, this is a bit of an abstraction butstsort of view allows
us to treat an entity in a program as if it wepghgsical object,

with attributes and actions (methods) that it carfqgem or can be
performed on it.

24

To be even more formal, we note that before ore t@bout objects
per se, one starts with a class, and in the clas®oumerates the various
attributes and methods that are available to aeovinj the class.
(i.e. think of a class as a kind of template wtdattates how all objects
of that type are to be created)
As OOP experts will tell you:

* an object is an instance of a class

« the attributes of the object are then instanceabdes that any object belonging
to that class possesses

« the methods of the object are instance methodsighare associated to any objed

in that class

That is, an object is an instantiation of a class.

—

To create objects in Perl one could use many eiffer

approaches but the usual method is as follows:

« create a class which means creating a moduleeivhthre class is defined
« using a (anonymous) hash to keep track of thiatés of a given object

* using subs to implement the various methods avail the object

We'll construct avery simple class, a class of Rectangles with a few
attributes and methods.

25

#!/usr/bin/perl
package Rectangle;

sub new {
my $class=shift;
my $self={};
bless $self,$class;
$self->{height} = shift;
$self->{width} = shift;
return $self;

}

sub draw {
my $self = shift;
my $i,$j;
for ($i=1;$i<=$self->{height};$i++){
for ($j=1;$j<=%self->{width};$j++)}{
print "#";
}

print "\n";

}

print "\n";
return $self;

Call this, Rectangle.pm

Rectangle.pm

(continued)

sub area {
my $self=shift;
my $a = ($self->{width})*($self->height});
print "$a\n";
return $self;
}
1

Let's analyze this a bit.

26

#!/usr/local/bin/perl5
package lfiectangle;

A\

‘ the class name = the package name = the module jname

In a script that utilizes the Rectangle class, Weimclude the line:

use Rectangle;

Note, there are no lines (as we saw in Stuff.pnthefform

use Exporter,
@ISA=qw(Exporter);
@EXPORT=qw($VAR1 $VAR2 ... SUB1 SUB2 etc..);

since we will not be explicitly exporting any vablas or subs to a script
that uses this module. (This is considered goowh fimr OOP.)

This ‘encapsulation’ is such that no variables @acangle.pm such as
$special="COOL";
are passed along to any program calling Rectangle.p
So if we were to try to use suclvariable within our program it won't reveal its ual
However,$special isvisible to the subroutines within Rectangle.pm.

Moreover, if we create a variable callgspecial within our program
(which uses Rectangle.pm) it won't conflict wittethialue offspecial
within Rectangle.pm. This highlights two complenagtbenefits of this
methodology:

» One cannot modify any internal variables in Regkaypm by any
variable declarations within a program whicdls it.

« Variable declarations within Rectangle.pm canrasgibly conflict with
any in a program which uses it.

27

As mentioned before, the attributes of the objeet@pt inside a hash.
In fact, the objects we create using the claesanonymous hashes.

The syntax is usually

$x = ClassName->new();

which will make$x a reference to an anonymous hash returned by
a subnew() in the package.

new() would be an example ofa@nstructor since it creates objects
from the class (note, it need not be called newtltigtis conventional)

The hash will contain the attributes as keys.
Moreover,$x will "know' that it belongs to the class in question.

We'll make this precise in a moment.

In our script we will invokenew() as follows:

$r = Rectangle->new(3,5);

The parameters 3 and 5 will be the height and widtspectively, of the rectangle.

Note, onecould use indirect notation for this and other methods.: e.

$r = new Rectangle(3,5);

but we'll stick with arrow notation.

28

the Class name
'Rectangle’ is passed
(silently) as the first
argument to new when
invoked this way, hence we
shift it off @_the other two
elements of@_are 3 and 5.

sub newé lass=shift i.e. @_=(Rectangle,3,5)
$self s the anonymou;/ m){ $g§fs:{_}s I, so$class = Rectangle;
Cv?‘nsgéifheéeonb?g;that bless $self $class; ie.
$self->{height} = shift;
$self->{width} = shift; $r:RectangIe—>neW(3,5)’
return $self; /‘

$_[0]$ (1] $[2]

Theblessfunction blesses, that is
associates the referencéself)
into a class, specifically
$class="Rectangle'

The next two values i@_will be
the height and width of the rectangle

return the reference (i.e. obje@®self

Now, there are also two methods which we can ilnvmkéhe object.
«'area’ which returns the area of the rectaolject

« 'draw’ which draws the rectangle object (albaidely)

sub area {
my $self=shift;
my $a = ($self->{width})*($self->{height});
print "$a\n";
return $self; Here$r is$_[0] which is shifted ofi@_
} and into the valu&self
Ex: Usage in a script So thereforeself->{width}
and$self->{height} are, of course,
$r->area(); $r->{width} and$r->{height}

Observe that the object passed to the method
call is (silently) returned. More on this in a memh...

sub draw {
my $self = shift;
my $i,$j;
for ($i=1;$i<=$self->{height};$i++){
for ($j=1;$j<=$self->{width};$j++)}{

print "#";
} .
print "\n’ here too
}) $self->{height} =$r->{height}
print "\n"; and
return $self, $self->{width} =$r->{width}

Ex: Usage in a script

$r->draw();

Again, observe that the object passed is alsorretur

Sample usage of Rectangle.pm

#l/usr/local/bin/perl5

use Rectangle;
$r=Rectangle->new(3,5);
$r->draw();

$r->area();

which yields
HHHH
HHHH
HHHH

15

The constructonew() can create as many objects as we want,
moreover, since the element to the left of thevarisothe first
parameter of the method on the right, we can dwthiike this.

Ex:

(/ lastly the object
$r=Rectangle->new(3,5)->draw(); returned bydraw()

N / is then assigned to $

=

‘ first create a 3x5 rectang'e

then this rectangle becomes the first paramettretdraw()
method whichreturnsthe object back

This would not only create the rectangle, but alsmediately draw it.

The reason for this is that the argument tol¢fteof the arrow isp_[0]
with respect to the method (sub) to the right asitha return value of
each method is the object, then each method cammabie object in
sequence from left to right.

We can even chain several method calls together.

$r=Rectangle->new(3,5);
$r->draw()->area();

because again, the entity to the left of each arsaive first
parameter of the method call to ttight.

31

Note, if we takeef() of an object created in this fashion, it
returns the name of tlebassto which the object belongs.

Ex: #!/usr/bin/perl

use Rectangle;
$r=Rectangle->new(3,5);
print ref($r);

yields

Rectangle

This is due to thbéless() function we saw which makes an
object (in this case a hash reference) know tHaldngs
to the Rectangle class.

Otherwiseref($r) would simply returrHASH

As a fitting final note, let us talk of destructptisat is methods that
destroy or are called when objects are destroyed.

Generally, Perl's garbage collecting will cleanthipgs once all references
to a given entity are gone ('the reference couatdo zero') but you may
wish to explicitly perform some action for everyjett that is destroyed.

To do so, we add this to our module, for example:

sub DESTROY {
my $rectangle=shift;
print "destroying the $rectangle->{height} x
$rectangle->{width} rectangle\n";

This method will be invoked oevery object destroyed.

This method must be call@ESTROYo0 Perl's garbage collector
will know it is a destructor.

32

So if we create some rectangles, we can see thstroged before
the program exits.

$r1=Rectangle->new(3,4);
$r2=Rectangle->new(4,5);

... program exits

destroying the 3 x 4 rectangle
destroying the 4 x 5 rectangle

References for further information on Perl
Books

* Advanced Perl Programming by Sriram Srinivasan (€¥y3

e Learning Perl by Randal L. Schwartz & Tom ChristemgO' Reilly)

* Object Oriented Perl by Damian Conway (Manning)

« Programming Perl by Larry Wall, Tom Christiansed don Orwant (O' Reilly)

« Perl in a Nutshell by Ellen Siever, Stephen Spaimhand Nathan Patwardhan (O' Reil

web http://Amww.perl.com

http://mww.cpan.org
‘http://vwvw.perl.com/doc/FMTEYEWTK/perItoot.html ‘

| http://math.bu.edu/people/tkohl/per

Y)

33

Advanced Perl

Boston University
Information Services & Technology

Course Coordinator: Timothy Kohl

¢ 2015 TRUSTEES OF BOSTON UNIVERSITY
Permission is granted to make verbatim copies of this]
document, provided copyright and attribution are
maintained.

Information Services &Technology
111 Cummington Mall
Boston, Massachusetts 02215

34

