
1

Advanced Perl

Boston University

Information Services & Technology

Course Coordinator: Timothy Kohl

Last Modified: 05/12/15

Outline

• more on functions

• more on regular expressions

• references and anonymous variables

• local vs. global variables

• packages

• modules

• objects

2

Functions

Functions are defined as follows:

sub f{

do something

}

and invoked within a script by

&f(parameter list)

or

f(parameter list)

parameters passed to a function arrive in the array @_

sub print_sum{
my ($a,$b)=@_;
my $sum;
$sum=$a+$b;
print "The sum is $sum\n";

}

print_sum(2,3);

And so, in the invocation $a = $_[0] = 2

$b = $_[1] = 3

3

The directive my indicates that the variable is lexically scoped.

That is, it is defined only for the duration of the given code block between { and }
which is usually the body of the function anyway. *

When this is done, one is assured that the variables so defined are local to the
given function.

We'll discuss the difference between local and global variables later.

* with some exceptions which we'll discuss

To return a value from a function, you can either use an explicit return
statement or simply put the value to be returned as the last line of the function.

Typically though, it’s better to use the return statement.

Ex:
sub sum{

my ($a,$b)=@_;
my $sum;
$sum=$a+$b;
return $sum;

}

$s=sum(2,3);

One can also return an array or associative array from a function.

4

In languages like C one has the notion of a pointer to a given data type,
which can be used later on to read and manipulate the contents of the variable
pointed to by the pointer.

In Perl, these are called (hard) references and they are the key to building all
manner of complex data structures, including

• multidimensional arrays
• hashes of arrays
• hashes of hashes

and more...

References and Anonymous Variables

Ex:
$x="5";
$rx=\$x; $rx is a reference to the scalar $x

To manipulate $x using $rx we need to 'de-reference' the reference.

$$rx="6"; # now $x=6;

The extra leading $ gives us the value of what's pointed to by the reference.

5

One can copy references just as one would any other scalar value
since a reference to anything is always a scalar.

So if we do

$x="5";
$rx=\$x;
$rx2=$rx;

then

$$rx2 also equals "5"

One can also have references to other data types like arrays and associative arrays.

Ex:

@Names=("Tom","Dick","Harry");
$n=\@Names;

How do we use this?

Ex:

push(@{$n},"John");

@Names=("Tom","Dick","Harry","John")

So now

6

That is, if $n is a reference to an array, then @{$n} is the array itself.

Also, we could have done this

@Names=("Tom","Dick","Harry");
$n=\@Names;

$$n[3]="John";

@Names=("Tom","Dick","Harry","John");

i.e. $Names[3] = $$n[3]

and again

Similarly, if we have

%CourseGrade=("Tom"=>"A",”Dick"=>"B","Harry"=>"C");

and if we set

$h=\%CourseGrade ;

then we can access and modify %CourseGrade via the reference, $h

7

Ex:

$$h{"John"}="D";

yields

%CourseGrade=("Tom"=>"A",
"Dick"=>"B",
"Harry"=>"C",
"John"=>"D");

Creating complex data structures implicitly uses the notion of 'anonymous'
variables.

Ex:

$a=[1,6,5,-11];
print $$a[2];

yields

5

The assignment
$a=[1,6,5,-11];

makes $a into a reference to an anonymous array, that is, an array where the
only means of access is through the reference.

8

Likewise, there are also anonymous hashes.

$book2author={"Hamlet"=>"Shakespeare",
"The Stranger"=>"Camus” };

print $$book2author{"Hamlet"};

yields

Shakespeare

Anonymous arrays are how multidimensional arrays are created.

Ex: The following are equivalent:

@A=([3,5],
[-7,2]);

$row1=[3,5];
$row2=[-7,2];
@A=($row1,$row2);

$A[0][0]=3;
$A[0][1]=5;
$A[1][0]=-7;
$A[1][1]=2;

All these create the same
2x2 'matrix'.

9

Most complex structures are created with references and anonymous variables.

%Food=(
"fruits" => ["apples","oranges","pears"],
"vegetables" => ["carrots","lettuce"],
"grains" => ["rye","oats","barley"]

);

hash of arrays
(an associative array with arrays as values)

e.g.

["carrots","lettuce"]

anonymous array

and $Food{"vegetables"}[0] eq "carrots"

%StateInfo=(
"Massachusetts" => { "Postal Code" => "MA",

"Capital" =>"Boston"
},

"New York" => { "Postal Code" => "NY",
"Capital" => "Albany"

}
);

hash of hashes
(a hash where the values are anonymous hashes)

e.g.
{

"Postal Code" => "NY",
"Capital" => "Albany"

};

anonymous hash

and so $StateInfo{"New York"}{"Capital"} eq "Albany"

10

One can also create references to functions as well.

Ex:
sub add_array{

my $n,$sum;
$sum=0;
foreach $n (@_){

$sum += $n;
}
return($sum);

}

$code=\&add_array;

$s=&$code(5,-2,3,7);

$code is a
reference to
&add_array

(note, you need
the & in order to
de-reference the reference)

And, as with arrays and hashes, we can create references to anonymous
functions.

Ex:

$hi = sub { print "Hi There!\n"};

&$hi;

yields

Hi There!

anonymous subroutine

These 'coderefs' are used frequently, especially in object design.

Note, the & de-references
the anonymous code reference.

11

arrow notation

One bit of alternate syntax that is available when using references
is 'arrow notation' for picking out elements from a hash or array via
a reference

Ex:
$book={"Hamlet"=>"Shakespeare",

"The Stranger"=>"Camus"
};

print $$book{"Hamlet"}; # prints Shakespeare

print $book->{"Hamlet"}; # likewise

i.e.

$$book{"Hamlet"}=$book->{"Hamlet"}

Likewise,

$a=[2,3,5,7];
print $$a[2];

$a=[2,3,5,7];
print $a->[2];

yields

5

but so does

i.e.

$$a[2] = $a->[2];

12

This is especially useful when dealing with complex structures.

Ex: Suppose

$Food={
fruits => [apples,oranges,pears],
vegetables => [carrots,lettuce],
grains => [rye,oats,barley]

};

then we can retrieve 'oats ' as follows:

$Food->{grains}->[1];

Note: We did not put "" around
the keys and values in the Food
structure here.

This is ok provided your key
strings don't contain spaces, or
other special characters.

Note: $Food is an anonymous hash, hence the leading $.

To get information about references, one can use the function ref()
which will return the underlying type of a given reference.

Ex:
@X=(2,3,4);
$r=\@X;
print ref($r);

returns

ARRAY

The other possibilities are SCALAR, HASH, or CODE.

Also, ref() implicitly returns a Boolean value depending on whether
or not the thing we're taking ref of is actually a reference.

13

Global vs. Non-Global Variables

When we discuss packages in the next section we will quantify
what it means to have a 'global' variable in Perl.

There are however, two ways of creating and using non-global
variables.

We can tag a variable in a Perl script, whether it be in a sub() or
just within {} with the directives

my or local

which will make the variables 'local' but in slightly different,
yet important, ways.

Initially (i.e. before Perl 5) there was only the directive local .

This would save the value of the given variable (if it was already defined
outside the block of code) and then restore it after the block ended.

Ex:

$a=10;
{

local $a;
$a=20;
print "In here, the value is $a,\n";

}
print "but out here it is $a.\n";

yields

In here, the value is 20,
but out here it is 10.

14

The directive my (in Perl 5+) yields variables that are truly local in the way one
usually thinks of when programming.

As mentioned earlier, variables tagged with my are 'lexically scoped'.

That is, they come into existence within the block of code they are defined and are
accessible from only that block, unless you pass one as a parameter to a sub,
or return one from a sub.

With the advent of Perl 5, the usage of local is deprecated.

sub first{
my $a=10;
second();

}

sub second{
print "$a";

}

first();

Ex:

Assuming $a was not defined elsewhere, this produces no output since the
variable $a defined in first() is local to that sub, in fact to the enclosing {}
and so second() has no knowledge of it.

However, variables tagged with my can be passed or returned from and to
functions and the main program.

15

sub new_hash{
my $a={};
return $a;

}

$Book=new_hash();
$Book->{"Ringworld"}="Larry Niven";

$CD=new_hash();
$CD->{"In a Silent Way"}="Miles Davis";

Ex:

Here, the two anonymous hash references created by new_hash() are separate
entities even though they came from the my $a={} line in the sub.
(ordinarily, $a would go away after the sub terminates)

This is a common technique in object oriented design.

Packages

A packageconsists of all the variable names, subroutine names, as well
as any other declarations currently in use.

That is, a package provides a namespace(also called a symbol table) and each
namespace is separate from any other and this, as we shall see, is part of how
one builds reusable code in Perl.

One can switch to another package and thereby switch to a different
namespace (symbol table) at will.

16

There is a default package that one works in, even if one is simply writing a
basic script and it is called main.

Now we'll show how to create your own package(s) and show how they
can interact.

Ex:
#!/usr/bin/perl
package Foo;
$x=10;
print "$x";

Running this yields

10

So what? Well, let's switch namespaces and see what happens.

#!/usr/bin/perl
package Foo;
$x=10;

package Bar;
print "$x";

Here we'll see how different packages provide different symbol tables.

Running this yields no output.

Why?

Well, we defined a variable called $x in the package Foo but in the
package Bar there is no such variable defined.

17

#!/usr/bin/perl
package Foo;
$x=10;

package Bar;
print "$Foo::x";

However, one can access the value of a variable defined in one package
while in another.

Ex:

Here, we have defined a variable $x in the package Foo but
after switching to the package Bar we can still access the value
of this variable by fully qualifying the variable with the package
that it was defined in.

yields

10

That is,

$Foo::x = 10;

the variable x in the package (namespace) Foo

is how one can reference this variable even after having switched into
the package Bar .

18

Besides scalars, any other type of entity that one usually uses, such as arrays,
hashes, subroutines, and file handles are also package specific.

Ex: Given
package Foo;
@X=("a","b","c");

sub say_hello{
print "Hello\n";

}

one could refer to these from within another package by

@Foo::X;

print "$Foo::X[1]";

&Foo::say_hello();

Some things to note:

• Some variables such as $_ and $0 (special variables) as well as identifiers
such as STDIN are kept in package main so one cannot have private copies
of these variables.

• Variables defined using my are not kept in any particular symbol table but
rather in a separate 'scratch' area (for every block of code).

19

A module is essentially a package which you can use as you would a library
in a C program, namely a s set of pre-written routines you can import into your
program.

These modules are usually given the suffix .pm (perl module)

What makes this really useful is that the module can export it's variables and
functions into your main script. As such, it really is like a library that you might
use in C, for example.

Modules

A Perl module usually (but not always) coincides with a package and the
name of the module is usually matched with the name of the package.

By convention, a Perl module name usually begins with a capital letter.

Our example will be called Stuff.pm

20

#!/usr/bin/perl
package Stuff;
use Exporter;
@ISA=qw(Exporter);
@EXPORT=qw($MyStuff hi_there);

$MyStuff="Check this module out!";

sub hi_there{
print "Hi there!!\n";

}

1;

The package we're defining
is called Stuff

This allows us to export
particular variables and
subroutines in the package
to any program that imports
this module (this is not always
done, however)

Here is a variable and a
subroutine which will get
exported.

The 1 is here so that when the
module is imported, the 'use'
command (in any script which
imports this module) succeeds.

Let's do a simple test to see how this module is used.

#!/usr/bin/perl
use Stuff;

print "$MyStuff\n";
hi_there();

Check this module out!
Hi there!!

Note, we are directly using the sub in Stuff.pm as well as the variable
$MyStuff

This imports (or uses) the
module Stuff.pm into
the script.

This is also why the
1; at the end of
Stuff.pm is needed.
since ‘use’ returns the
value 1 (true) which
tells the script that
the module was
successfully imported.

21

Note again that only variables explicitly exported from the module
get imported into a program which uses them.

If Stuff.pm were as follows

#!/usr/bin/perl
package Stuff;
use Exporter;
@ISA=qw(Exporter);
@EXPORT=qw($MyStuff hi_there);

$Special=“Cool”;

$MyStuff="Check this module out!";

sub hi_there{
print "Hi there!!\n";

}

1;

Then the variable $Special would not automatically be visible
within a program which used Stuff.pm

e.g.

#!/usr/bin/perl
use Stuff;

print "$Special\n";

would not yield any output since this variable wasn’t explictly
exported out of Stuff.pm into the namespace of the program.

However, this would work:

#!/usr/bin/perl
use Stuff;

print "$Stuff::Special\n";

22

To include a module installed on the system called Foo.pm, say, the basic syntax
is as follows:

use Foo;

or to include only a portion of Foo (some modules are very large and indeed
one can have modules within modules so you may only want one particular
functionality a given module provides)

use Foo qw(one_piece);

which allows us to use a small portion of the code in Foo.pm

(Not all modules contain other portions to import this way, but many do.)

N.B. qw() means quote word which is a means of quoting a literal list
without needing to quote every item in the list

use Foo::whatever;

Sometimes one may have a module Foo.pm as well as a subdirectory containing
different components which are referenced in Foo.pmbut which can be used
separately. In this case, we can import one of these as follows:

That is, in the directory where the Perl modules are stored, one would likely have

Foo.pm

and/or

a subdirectory Foo

beneath which is contained different components, e.g.,

Foo/whatever.pm

23

Ex: The following small script will retrieve a URL.

#!/usr/bin/perl
use LWP::Simple;
print get($ARGV[0]);

>geturl http://www.bu.edu

call this 'geturl'

However, we can also create our own module(s) and put them in the same
directory as the script(s) into which we wish to import the module(s).

There are many modules that one can incorporate into one's Perl
scripts. Some are installed by default, others must be downloaded.

The primary location of these downloadable materials is CPAN which
stands for Comprehensive Perl Archive Network.

See http://www.cpan.org

Some of the other modules available include those for mathematics, Web
programming, database manipulation, and much more.

24

Objects

We will not delve into all the fine points of object oriented programming.
Rather we shall focus on examples and mention the relevant OOP terminology
where appropriate.

We will show how packages and modules are used to implement these ideas.

There are two basic features of objects that one considers
when building a program based on them.

• attributes - the properties of the object

• methods - actions that the object performs or
are performed on the object

Ex: a car

attributes - manufacturer
model
year
color
number of doors

methods - enter the car
drive the car
lock the car

Admittedly, this is a bit of an abstraction but this sort of view allows
us to treat an entity in a program as if it were a physical object,
with attributes and actions (methods) that it can perform or can be
performed on it.

25

To be even more formal, we note that before one talks about objects
per se, one starts with a class, and in the class one enumerates the various
attributes and methods that are available to an object in the class.

(i.e. think of a class as a kind of template which dictates how all objects
of that type are to be created)

As OOP experts will tell you:

• an object is an instance of a class

• the attributes of the object are then instance variables that any object belonging
to that class possesses

• the methods of the object are instance methods, that is, are associated to any object
in that class

That is, an object is an instantiation of a class.

To create objects in Perl one could use many different
approaches but the usual method is as follows:

• create a class which means creating a module wherein the class is defined

• using a (anonymous) hash to keep track of the attributes of a given object

• using subs to implement the various methods available to the object

We'll construct a very simple class, a class of Rectangles with a few
attributes and methods.

26

Call this, Rectangle.pm

#!/usr/bin/perl
package Rectangle;

sub new {
my $class=shift;
my $self={};
bless $self,$class;
$self->{height} = shift;
$self->{width} = shift;
return $self;

}

sub draw {
my $self = shift;
my $i,$j;
for ($i=1;$i<=$self->{height};$i++){
for ($j=1;$j<=$self->{width};$j++){

print "#";
}
print "\n";
}
print "\n";
return $self;

}

sub area {
my $self=shift;
my $a = ($self->{width})*($self->height});
print "$a\n";
return $self;

}

1;

Rectangle.pm (continued)

Let's analyze this a bit.

27

#!/usr/local/bin/perl5
package Rectangle;

the class name = the package name = the module name

In a script that utilizes the Rectangle class, we will include the line:

use Rectangle;

Note, there are no lines (as we saw in Stuff.pm) of the form

use Exporter;
@ISA=qw(Exporter);
@EXPORT=qw($VAR1 $VAR2 ... SUB1 SUB2 etc..);

since we will not be explicitly exporting any variables or subs to a script
that uses this module. (This is considered good form for OOP.)

This ‘encapsulation’ is such that no variables in Rectangle.pm such as

$special=“COOL”;

are passed along to any program calling Rectangle.pm

So if we were to try to use such a variable within our program it won’t reveal its value.

However, $special is visible to the subroutines within Rectangle.pm.

Moreover, if we create a variable called $special within our program
(which uses Rectangle.pm) it won’t conflict with the value of $special
within Rectangle.pm. This highlights two complementary benefits of this
methodology:

• One cannot modify any internal variables in Rectangle.pm by any
variable declarations within a program which calls it.

• Variable declarations within Rectangle.pm cannot possibly conflict with
any in a program which uses it.

28

As mentioned before, the attributes of the object are kept inside a hash.
In fact, the objects we create using the class are anonymous hashes.

The syntax is usually

$x = ClassName->new();

which will make $x a reference to an anonymous hash returned by
a sub new() in the package.

new() would be an example of a constructor since it creates objects
from the class (note, it need not be called new but this is conventional)

The hash will contain the attributes as keys.
Moreover, $x will 'know' that it belongs to the class in question.

We'll make this precise in a moment.

In our script we will invoke new() as follows:

$r = Rectangle->new(3,5);

The parameters 3 and 5 will be the height and width, respectively, of the rectangle.

Note, one could use indirect notation for this and other methods, e.g.:

$r = new Rectangle(3,5);

but we'll stick with arrow notation.

29

sub new {
my $class=shift;
my $self={};
bless $self,$class;
$self->{height} = shift;
$self->{width} = shift;
return $self;

}

the Class name
'Rectangle' is passed
(silently) as the first
argument to new when
invoked this way, hence we
shift it off @_the other two
elements of @_are 3 and 5.
i.e. @_=(Rectangle,3,5)
so $class = Rectangle;

i.e.

$r=Rectangle->new(3,5)

$self is the anonymous
hash reference that
will be the object

The blessfunction blesses, that is
associates the reference ($self)
into a class, specifically
$class='Rectangle'

The next two values in @_will be
the height and width of the rectangle

return the reference (i.e. object) $self

$_[0] $_[1] $_[2]

Now, there are also two methods which we can invoke on the object.

• 'area' which returns the area of the rectangle object

• 'draw' which draws the rectangle object (albeit crudely)

Here $r is $_[0] which is shifted off @_
and into the value $self

So therefore $self->{width}
and $self->{height} are, of course,

$r->{width} and $r->{height}

sub area {
my $self=shift;
my $a = ($self->{width})*($self->{height});
print "$a\n";
return $self;

}

$r->area();

Ex: Usage in a script

Observe that the object passed to the method
call is (silently) returned. More on this in a moment...

30

sub draw {
my $self = shift;
my $i,$j;
for ($i=1;$i<=$self->{height};$i++){
for ($j=1;$j<=$self->{width};$j++){

print "#";
}
print "\n";
}
print "\n";
return $self;

}

$r->draw();

Ex: Usage in a script

here too
$self->{height} =$r->{height}

and
$self->{width} =$r->{width}

Again, observe that the object passed is also returned.

Sample usage of Rectangle.pm

#!/usr/local/bin/perl5
use Rectangle;
$r=Rectangle->new(3,5);
$r->draw();
$r->area();

#####
#####
#####

15

which yields

31

The constructor new() can create as many objects as we want,
moreover, since the element to the left of the arrow is the first
parameter of the method on the right, we can do things like this.

Ex:

$r=Rectangle->new(3,5)->draw();

This would not only create the rectangle, but also immediately draw it.

The reason for this is that the argument to the left of the arrow is $_[0]
with respect to the method (sub) to the right and as the return value of
each method is the object, then each method can act on the object in
sequence from left to right.

first create a 3x5 rectangle

then this rectangle becomes the first parameter to the draw()
method which returns the object back

lastly the object
returned by draw()
is then assigned to $r

We can even chain several method calls together.

$r=Rectangle->new(3,5);
$r->draw()->area();

because again, the entity to the left of each arrow is the first
parameter of the method call to the right.

32

Note, if we take ref() of an object created in this fashion, it
returns the name of the class to which the object belongs.

Ex: #!/usr/bin/perl
use Rectangle;
$r=Rectangle->new(3,5);
print ref($r);

yields

Rectangle

This is due to the bless() function we saw which makes an
object (in this case a hash reference) know that it belongs
to the Rectangle class.

Otherwise ref($r) would simply return HASH

As a fitting final note, let us talk of destructors, that is methods that
destroy or are called when objects are destroyed.

Generally, Perl's garbage collecting will clean up things once all references
to a given entity are gone ('the reference count goes to zero') but you may
wish to explicitly perform some action for every object that is destroyed.

To do so, we add this to our module, for example:

sub DESTROY {
my $rectangle=shift;
print "destroying the $rectangle->{height} x

$rectangle->{width} rectangle\n";
}

This method will be invoked on every object destroyed.

This method must be called DESTROYso Perl's garbage collector
will know it is a destructor.

33

So if we create some rectangles, we can see them destroyed before
the program exits.

$r1=Rectangle->new(3,4);
$r2=Rectangle->new(4,5);
.
.
... program exits

destroying the 3 x 4 rectangle
destroying the 4 x 5 rectangle

References for further information on Perl

• Advanced Perl Programming by Sriram Srinivasan (O' Reilly)

• Learning Perl by Randal L. Schwartz & Tom Christiansen (O' Reilly)

• Object Oriented Perl by Damian Conway (Manning)

• Programming Perl by Larry Wall, Tom Christiansen and Jon Orwant (O' Reilly)

• Perl in a Nutshell by Ellen Siever, Stephen Spainhour, and Nathan Patwardhan (O' Reilly)

Books

Web
http://www.perl.com

http://www.cpan.org

http://www.perl.com/doc/FMTEYEWTK/perltoot.html

http://math.bu.edu/people/tkohl/perl My Perl Page!

34

Advanced Perl

Boston University

Information Services & Technology

Course Coordinator: Timothy Kohl

c 2015 TRUSTEES OF BOSTON UNIVERSITY
Permission is granted to make verbatim copies of this
document, provided copyright and attribution are
maintained.

Information Services &Technology
111 Cummington Mall
Boston, Massachusetts 02215

