
INTRODUCTION TO

OPENMP & OPENACC

Kadin Tseng

Boston University

Research Computing Services

Outline

• Introduction to OpenMP (for CPUs)

• Introduction to OpenACC (for GPUs)

2 Introduction to OpenMP & OpenACC

Introduction to OpenMP (for CPUs)

• Types of parallel machines

• Distributed memory

• each processor has its own memory address space

• variable values are independent

x = 2 on one processor, x = 3 on a different processor

• example: among nodes of the SCC

• Shared memory

• also called Symmetric Multiprocessing (SMP)

• typically, parallel computing units are threads (or cores)

• single address space for all threads

• If one thread sets x = 2 , x will also equal 2 on other threads (unless

specified otherwise)

• example: cores within each SCC node

3 Introduction to OpenMP & OpenACC

Shared vs. Distributed Memory

CPU 0 CPU 1 CPU 2 CPU 3 CPU 0 CPU 1 CPU 2 CPU 3

MEM 0 MEM 1 MEM 2 MEM 3 MEM

shared distributed

4 Introduction to OpenMP & OpenACC

Shared Computing Cluster (SCC)

Node Z

CPU 0 CPU 1 CPU .. CPU m

MEM Z

shared

5 Introduction to OpenMP & OpenACC

Node A

CPU 0 CPU 1 CPU ..

MEM A

shared

Node X

Memories shared within each node.

Memories not shared (distributed) among nodes.

CPU n

What is OpenMP ?
• Application Programming Interface (API) for multithreaded

parallelism consists of

• Compiler directives (placed in source code by programmer)

• Runtime utility functions and header files

• Environment variables

• Languages supported: FORTRAN, C, C++

• Advantages

• Easy to use

• Incremental parallelization

• Flexible -- from coarse grain to fine grain (loop level)

• Portable -- on any SMP machine (e.g., each individual SCC node)

• Disadvantages

• Shared-memory systems only (i.e., not across SCC nodes)

6 Introduction to OpenMP & OpenACC

Basics

• Goal – distribute work among threads

• Two methods to be discussed

• Loop-level

• Specific loops are parallelized

• Used in automatic parallelization tools, like MATLAB PCT

• Parallel regions

• Also called “coarse-grained parallelism”

7 Introduction to OpenMP & OpenACC

Basics (cont’d)

loop

loop

Loop-level Parallel regions

serial

serial

serial

8 Introduction to OpenMP & OpenACC

Directive format

 FORTRAN

!$omp parallel do default(none) private(i,j,k) shared(a,b,c,n)

c$omp parallel do default(none) private(i,j,k) shared(a,b,c,n)

 C/C++

#pragma omp parallel for default(none) private(i,j,k) shared(a,b,c,n)

Sentinel directive name clauses (optional)

9 Introduction to OpenMP & OpenACC

parallel for (parallel do) directive
• parallel do (Fortran) or parallel for (C) directive

#pragma omp parallel for

for(i = 0; i < maxi; i++){

 c[i] = a[i] + b[i];

}

!$omp parallel do

do i = 1, maxi

 c(i) = a(i) + b(i)

enddo

!$omp end parallel do

Use “c$” for fixed-format Fortran

10 Introduction to OpenMP & OpenACC

• Suppose maxi = 1000 and 4 threads are available
Thread 0 gets i = 1 to 250

Thread 1 gets i = 251 to 500

Thread 2 gets i = 501 to 750

Thread 3 gets i = 751 to 1000

• Barrier (synchronization) imposed at end of loop

workshare

• For Fortran 90/95 array syntax, the parallel workshare

directive is analogous to parallel do

• Previous example would be:

• Also works for forall and where statements

• No equivalent directive for C/C++

!$omp parallel workshare

c = a + b

!$omp end parallel workshare

11 Introduction to OpenMP & OpenACC

Shared vs. Private

ifirst = 10 ! shared by all threads

!$omp parallel do

do i = 1, maxi ! i is private

 i2 = 2*i ! i2 is shared

 j(i) = ifirst + i2 ! j also shared

enddo

!$omp end parallel do

ifirst = 10; // shared by all threads

#pragma omp parallel for

for(i = 0; i < maxi; i++){ // i is private

 i2 = 2*i; // i2 is shared

 j[i] = ifirst + i2; // j also shared

}

12 Introduction to OpenMP & OpenACC

• In parallel region, variables are shared by default
• Loop indices are always private by default
• What is wrong with the following code segment ?

Shared vs. Private (cont’d)

ifirst = 10 !shared by all threads

!$omp parallel do private(i2)

do i = 1, maxi ! i is private

 i2 = 2*i ! i2 different on each thread

 j(i) = ifirst + i2

enddo

!$omp end parallel do

ifirst = 10;

#pragma omp parallel for private(i2)

for(i = 0; i < maxi; i++){ // i is private

 i2 = 2*i; // i2 different on each thread

 j[i] = ifirst + i2;

}

13 Introduction to OpenMP & OpenACC

Need to declare i2 with a private clause

Data Dependencies

• Data on one thread can be dependent on data on another

thread

• This can result in wrong answers

• thread 0 may require a variable that is calculated on thread 1

• answer depends on timing – When thread 0 does the calculation,

has thread 1 calculated it’s value yet?

14 Introduction to OpenMP & OpenACC

Data Dependencies (cont’d)

• Example – Fibonacci Sequence 0, 1, 1, 2, 3, 5, 8, 13, …

a(1) = 0

a(2) = 1

do i = 3, 100

 a(i) = a(i-1) + a(i-2)

enddo

a[1] = 0;

a[2] = 1;

for(i = 3; i <= 100; i++){

 a[i] = a[i-1] + a[i-2];

}

15 Introduction to OpenMP & OpenACC

Lets parallelize on 2 threads.

Thread 0 gets i = 3 to 51

Thread 1 gets i = 52 to 100

Follow calculation for i = 52 on

thread 1. What will be values of

a at i -1 and i - 2 ?

More clauses
• Can make private the default rather than shared

• Fortran only

• handy if most of the variables are private

• can use continuation characters for long lines

ifirst = 10

!$omp parallel do &

!$omp default(private) &

!$omp shared(ifirst,maxi,j)

do i = 1, maxi

 i2 = 2*i

 j(i) = ifirst + i2

enddo

!$omp end parallel do

16 Introduction to OpenMP & OpenACC

More clauses (cont’d)

• Can use default none

• Must declare all variables’ status (forces you to account for them)

• Any variable not declared will receive a complaint from compiler .

17 Introduction to OpenMP & OpenACC

More clauses (3)
ifirst = 10

!$omp parallel do &

!$omp default(none) &

!$omp shared(ifirst,maxi,j) private(i2)

do i = 1, maxi

 i2 = 2*i

 j(i) = ifirst + i2

enddo

!$omp end parallel do

ifirst = 10;

#pragma omp parallel for \

 default(none) \

 shared(ifirst,maxi,j) private(i2)

for(i = 0; i < maxi; i++){

 i2 = 2*i;

 j[i] = ifirst + i2;

}

18 Introduction to OpenMP & OpenACC

Firstprivate
• Suppose we need a running total for each index value on each thread

• if iper were declared private, the initial value would not be carried

into the loop

iper = 0

do i = 1, maxi

 iper = iper + 1

 j(i) = iper

enddo

iper = 0;

for(i = 0; i < maxi; i++){

 iper = iper + 1;

 j[i] = iper;

}

19 Introduction to OpenMP & OpenACC

Firstprivate (cont’d)
• Solution – firstprivate clause

• Creates private memory location for each thread

• Copies value from master thread (thread 0) to each memory location

 iper = 0
!$omp parallel do &

!$omp firstprivate(iper)

do i = 1, maxi

 iper = iper + 1

 j(i) = iper

enddo

!$omp end parallel do

iper = 0;

#pragma omp parallel for \

 firstprivate(iper)

for(i = 0; i < maxi; i++){

 iper = iper + 1;

 j[i] = iper;

}

20 Introduction to OpenMP & OpenACC

Lastprivate
• saves value corresponding to the last loop index

• "last" in the serial sense

!$omp parallel do lastprivate(i)

do i = 1, maxi

 a(i) = b(i)

enddo

a(i) = b(1)

!$omp end parallel do

#pragma omp parallel for lastprivate(i)

for(i = 0; i < maxi; i++){

 a[i] = b[i];

}

a[i] = b[0];

21 Introduction to OpenMP & OpenACC

Reduction
• Following example won’t parallelize correctly

• different threads may try to write to s simultaneously

s = 0.0

!$omp parallel do

do i = 1, maxi

 s = s + a(i)

Enddo

!$omp end parallel do

s = 0.0;

#pragma omp parallel for

for(i = 0; i < maxi; i++){

 s = s + a[i];

}

22 Introduction to OpenMP & OpenACC

Reduction (cont’d)
• Solution is to use the reduction clause

• each thread performs its own reduction (sum, in this case)

• results from all threads are automatically reduced
(summed) at the end of the loop

s = 0.0

!$omp parallel do reduction(+:s)

do i = 1, maxi

 s = s + a(i)

enddo

!$omp end parallel do

s = 0;

#pragma omp parallel for reduction(+:s)

for(i = 0; i < maxi; i++){

 s = s + a[i];

}

23 Introduction to OpenMP & OpenACC

Reduction (3)

• Fortran operators/intrinsics: MAX, MIN, IAND, IOR, IEOR,

+, *, -, .AND., .OR., .EQV., .NEQV.

• C operators: +, *, -, /, &, ^, |, &&, ||

• roundoff error may be different than serial case

24 Introduction to OpenMP & OpenACC

Conditional Compilation
• For C, C++: conditional compilation performed with _OPENMP

macro name (defined during compilation with OpenMP turned on*)

.

• For Fortran: there are two alternatives

• The above for C works if fortran file named with suffix .F90 or .F

• Source lines start with !$ become active with OpenMP turned on*

 !$ print*, ‘number of procs =', nprocs

* How to turn on OpenMP is discussed in Compile and Run page.

#ifdef _OPENMP

 … do stuff …

#endif

25 Introduction to OpenMP & OpenACC

Basic OpenMP Functions

• omp_get_thread_num()

• returns current thread ID; effective inside parallel region

• omp_set_num_threads(nthreads)

• subroutine in Fortran

• sets number of threads in next parallel region to nthreads

• overrides OMP_NUM_THREADS environment variable

• Effective outside parallel region

• omp_get_num_threads()

• returns number of threads in current parallel region

26 Introduction to OpenMP & OpenACC

Some Tips

• OpenMP will do what you tell it to do

• If you try to parallelize a loop with a dependency, it will go

ahead and do it! (but gives wrong answer)

• Generally, no benefit to parallelize short/shallow loops

• Maximize number of operations performed in parallel

• parallelize outer loops where possible

• For Fortran, add “use omp_lib” to include header

• For C, header file is omp.h

27 Introduction to OpenMP & OpenACC

Compile and Run on SCC
• Portland Group compilers:

• Compile with -mp flag to turn on OpenMP

• scc1% pgfortran –o myprog myprog.f90 –mp –O3

• scc1% pgcc –o myprog myprog.c –mp –O3

• GNU compilers:

• Compile with -fopenmp flag to turn on OpenMP

• scc1% gfortran –o myprog myprog.f90 –fopenmp –O3

• scc1% gcc –o myprog myprog.c –fopenmp –O3

• Run interactive job (up to 16 threads; 4 on login node)

• scc1% setenv OMP_NUM_THREADS 4

• scc1% myprog

28 Introduction to OpenMP & OpenACC

Parallel
• parallel do/for can be separated into two directives.

is the same as

!$omp parallel do

do i = 1, maxi

 a(i) = b(i)

enddo

!$omp end parallel do

#pragma omp parallel for

for(i=0; i<maxi; i++){

 a[i] = b[i];

}

!$omp parallel

!$omp do

do i = 1, maxi

 a(i) = b(i)

enddo

!$omp end parallel

#pragma omp parallel

#pragma omp for

for(i=0; i<maxi; i++){

 a[i] = b[i];

}

29 Introduction to OpenMP & OpenACC

Parallel (cont’d)

• Note that an end parallel directive is required.

• end do not needed

• Everything within the parallel region will run in parallel.

• The do/for directive indicates that the loop indices will be

distributed among threads rather than duplicating every

index on every thread.

30 Introduction to OpenMP & OpenACC

Parallel (3)
• Multiple loops in parallel region:

• parallel directive has a significant overhead associated
with it.

• The above example has the potential to be faster than
using two parallel do/parallel for directives.

!$omp parallel

!$omp do

do i = 1, maxi

 a(i) = b(i)

enddo

!$omp do

do i = 1, maxi

 c(i) = a(2)

enddo

!$omp end parallel

#pragma omp parallel

#pragma omp for

for(i=0; i<maxi; i++){

 a[i] = b[i];

}

#pragma omp for

for(i=0; i<maxi; i++){

 c[i] = a[2];

}

#pragma omp end parallel

31 Introduction to OpenMP & OpenACC

Coarse-Grain Parallelism

• OpenMP is not restricted to loop-level, or fine-

grained, parallelism.

• The !$omp parallel or #pragma omp parallel

directive duplicates subsequent code within its

 scope on all threads.

• Parallelization similar to MPI style.

32 Introduction to OpenMP & OpenACC

Coarse-Grain Parallelism (cont’d)
!$omp parallel &

!$omp private(myid,istart,iend,nthreads,nper)

nthreads = omp_get_num_threads()

nper = maxi/nthreads

myid = omp_get_thread_num()

istart = myid*nper + 1

iend = istart + nper – 1

call do_work(istart,iend)

do i = istart, iend

 c(i) = a(i)*b(i) + ...

enddo

!$omp end parallel

#pragma omp parallel \

#pragma omp private(myid,istart,iend,nthreads,nper)

nthreads = omp_get_num_threads();

nper = maxi/nthreads;

myid = omp_get_thread_num();

istart = myid*nper;

iend = istart + nper – 1;

do_work(istart,iend);

for(i=istart; i<=iend; i++){

 c[i] = a[i]*b[i] + ...

}

33 Introduction to OpenMP & OpenACC

Thread Control Directives

34 Introduction to OpenMP & OpenACC

• barrier synchronizes threads

• Here barrier assures that a(1) or a[0] is available before
computing myval

Barrier

!$omp parallel private(myid,istart,iend)

call myrange(myid,istart,iend)

do i = istart, iend

 a(i) = a(i) - b(i)

enddo

!$omp barrier

myval(myid+1) = a(istart) + a(1)

!$omp end parallel

#pragma omp parallel private(myid,istart,iend)

myrange(myid,&istart,&iend);

for(i=istart; i<=iend; i++){

 a[i] = a[i] – b[i];

}

#pragma omp barrier

myval[myid] = a[istart] + a[0]

35 Introduction to OpenMP & OpenACC

• if you want part of code to be executed only on master

thread, use master directive

• “non-master” threads will skip over master region and

continue

Master

36 Introduction to OpenMP & OpenACC

Master Example - Fortran

!$OMP PARALLEL PRIVATE(myid,istart,iend)

 call myrange(myid,istart,iend)

 do i = istart, iend

 a(i) = a(i) - b(i)

 enddo

 !$OMP BARRIER

 !$OMP MASTER

 write(21) a

 !$OMP END MASTER

 call do_work(istart,iend)

 !$OMP END PARALLEL

37 Introduction to OpenMP & OpenACC

Master Example - C

#pragma omp parallel private(myid,istart,iend)

 myrange(myid,&istart,&iend);

 for(i=istart; i<=iend; i++){

 a[i] = a[i] – b[i];

 }

 #pragma omp barrier

 #pragma omp master

 fwrite(fid,sizeof(float),iend-istart+1,a);

 #pragma omp end master

 do_work(istart,iend);

 #pragma omp end parallel

38 Introduction to OpenMP & OpenACC

If you :

• want part of code to be executed only by a single thread

• don’t care whether or not it’s the master thread

The use single directive

• Unlike the end master directive, end single has barrier

Single

39 Introduction to OpenMP & OpenACC

Single Example - Fortran

!$OMP PARALLEL PRIVATE(myid,istart,iend)

 call myrange(myid,istart,iend)

 do i = istart, iend

 a(i) = a(i) - b(i)

 enddo

 !$OMP BARRIER

 !$OMP SINGLE

 write(21) a

 !$OMP END SINGLE

 call do_work(istart,iend)

 !$OMP END PARALLEL

40 Introduction to OpenMP & OpenACC

Single Example - C

#pragma omp parallel private(myid,istart,iend)

 myrange(myid,istart,iend);

 for(i=istart; i<=iend; i++){

 a[i] = a[i] – b[i];

 }

 #pragma omp barrier

 #pragma omp single

 fwrite(fid,sizeof(float),nvals,a);

 #pragma omp end single

 do_work(istart,iend);

41 Introduction to OpenMP & OpenACC

If you have code section that:

1. must be executed by every thread

2. threads may execute in any order

3. threads must not execute simultaneously

This does not have a barrier.

Critical

42 Introduction to OpenMP & OpenACC

Critical Example - Fortran

!$OMP PARALLEL PRIVATE(myid,istart,iend)

 call myrange(myid,istart,iend)

 do i = istart, iend

 a(i) = a(i) - b(i)

 enddo

 !$OMP CRITICAL

 call mycrit(myid,a)

 !$OMP END CRITICAL

 call do_work(istart,iend)

 !$OMP END PARALLEL

43 Introduction to OpenMP & OpenACC

Critical Example - C

#pragma omp parallel private(myid,istart,iend)

 myrange(myid,istart,iend);

 for(i=istart; i<=iend; i++){

 a[i] = a[i] – b[i];

 }

 #pragma omp critical

 mycrit(myid,a);

 #pragma omp end critical

 do_work(istart,iend);

 #pragma omp end parallel

44 Introduction to OpenMP & OpenACC

Ordered

• Suppose you want to write values in a loop:

• If loop were parallelized, could write out of order

• ordered directive forces serial order

do i = 1, nproc

 call do_lots_of_work(result(i))

 write(21,*) i, result(i)

enddo

for(i = 0; i < nproc; i++){

 do_lots_of_work(result[i]);

 fprintf(fid,”%d %f\n,”i,result[i]”);

}

45 Introduction to OpenMP & OpenACC

Ordered (cont’d)

!$omp parallel do

do i = 1, nproc

 call do_lots_of_work(result(i))

 !$omp ordered

 write(21,*) i, result(i)

 !$omp end ordered

enddo

#pragma omp parallel for

for(i = 0; i < nproc; i++){

 do_lots_of_work(result[i]);

 #pragma omp ordered

 fprintf(fid,”%d %f\n,”i,result[i]”);

 #pragma omp end ordered

}

46 Introduction to OpenMP & OpenACC

• Since do_lots_of_work takes a lot of time, most parallel

benefit will be realized

Schedule

• schedule refers to the way in which loop indices are

distributed among threads

• ([static[, chunk]])

• static is the default

• each thread is assigned a contiguous chunk of indices in thread

number order

• number of indices assigned to each thread is as equal as possible

• Chunk size may be specified

• (dynamic[, chunk])

• Good way for varying work load among loop iterations

47 Introduction to OpenMP & OpenACC

Spring 2012 49

Integration Example

• An integration of the cosine function between 0 and π/2

• Integral ≈ sum of areas of rectangles (height width)

• Several parallel methods will be demonstrated.

cos(x)
; % range

; % # of increments

; % increment

h

x=b x=a

mid-point of increment

 
  


















p

i

n

j

h
ij

p

i

n

j

ha

a

b

a
hadxxdxx

ij

ij 1 1

2

1 1

)cos()cos()cos(

Worker 1

Worker 2

Worker 3

Worker 4

• OpenMP is for CPUs, OpenACC is for GPUs

• Has runtime library like OpenMP

• Can mix OpenMP with OpenACC

50 Introduction to OpenMP & OpenACC

Introduction to OpenACC

Laplace Equation

51

Boundary Conditions:

0
y

u

x

u










2

2

2

2

10 010

101

100

y yuyu

x xu

x xu







),(),(

 0),(

 0),(

Introduction to OpenMP & OpenACC

Discretize equation by centered-difference yields:

Finite Difference Numerical Discretization

52

where n and n+1 denote the current and the next time step, respectively,

while

For simplicity, we take

mj m; i
4

uuuu
u ,1,2,,1,2,

n

1i,j

n

1i,j

n

1,ji

n

1,jin

ji  



1

,

1m

1
yx




), yjx(iu

m; jm) i,y(xuu

n

ji

nn

i,j 1,0,1,2,1,0,1,2,



  

Introduction to OpenMP & OpenACC

Computational Domain

53

,m1,2,j ,m;1,2, i
4

uuuu
u

n
1i,j

n
1i,j

n
1,ji

n
1,ji1n

ji  





,

0u(1,y) 

0u(0,y) 

0),(0 xu

0)u(x,1

x, i

y, j

Introduction to OpenMP & OpenACC

Five-point Finite-difference Stencil

54

 x

 Interior cells.

Where solution of the Laplace

equation is sought.

 Exterior cells.

Green cells denote cells where

homogeneous boundary

conditions are imposed while

non-homogeneous boundary

conditions are colored in blue.

 x x

 x x

 o

Introduction to OpenMP & OpenACC

 x

 x x

 x

 o

Laplace Solver with OpenMP
!$omp parallel do shared(m, n, up, u) reduction(max:error)

 do j=1,m

 do i=1,n

 up(i,j) = (u(i+1, j) + u(i-1,j) + u(i, j-1) + u(i, j+1)) * 0.25

 error = max(error, abs(up(i, j)-u(i, j)))

 end do

 end do

!$omp end parallel do

Corresponding C parallel directive is:

#pragma parallel for shared(m,n,up,u) reduction(max:error)

55 Introduction to OpenMP & OpenACC

Laplace Solver with OpenACC
!$acc kernels

 do j=1,m

 do i=1,n

 up(i, j) = (u(i+1, j) + u(i-1, j) + u(i, j-1) + u(i, j+1)) * 0.25

 error = max(error, abs(up(i, j) - u(i, j)))

 end do

 end do

!$acc end kernels

• #pragma acc kernels for C

• Alternatively, !$acc parallel loop, !$acc parallel and !$acc loop

 are available. Good to start with kernels . . .

56 Introduction to OpenMP & OpenACC

OpenACC data clause
#pragma acc data copy(u), create(up)

while (error > tol && iter < iter_max) { error = 0.0;

#pragma acc kernels

 for (int i = 1; i <= n; i++) {

 for (int j = 1; j <= m; j++) {

 up[i][j] = (u[i][j+1] + u[i][j-1] + u[i-1][j] + u[i+1][j]) * 0.25;

 error = fmax(error, fabs(up[i][j] - u[i][j])); }

 }

#pragma acc kernels

 for (int i = 1; i <= n; i++) {

 for (int j = 1; j <= m; j++) {

 u[i][j] = up[i][j]; }

 }

 iter++;

}

57 Introduction to OpenMP & OpenACC

• copy into and out of region

• copyin only on in

• copyout only on out

• create within region

• Default is copy without data

OpenACC on SCC
• Hardware (GPU)

• Each node has 3 Nvidia Tesla M2050 GPUs – Nehalem class buy-in 12-core nodes

• 3 GB memory/gpu, 448 cores/gpu

• Each node has 8 Nvidia Tesla M2070 GPUs – Nehalem class public 12-core nodes

• 6 GB memory/gpu, 448 cores/gpu

• Compiler

• On the SCC, only Portland Group compilers support OpenACC

• Current (default) version is 13.5

• How to compile codes with OpenACC directives
• scc1% pgfortran –o prog prog.f90 -tp=nehalem -acc -ta=nvidia,time -Minfo=accel

• scc1% pgcc –o myprog myprog.c -tp=nehalem -acc -ta=nvidia,time -Minfo=accel

• -tp=nehalem below creates executable for Intel Nehalem class

• -acc engages the OpenACC API

• -ta=nvidia,time links with Nvidia library for timing data in accelerator region

• -Minfo=accel instructs compiler to display warning and error messages

• Tips from PGI

• http://www.pgroup.com/resources/openacc_tips_fortran.htm

58 Introduction to OpenMP & OpenACC

http://www.pgroup.com/resources/openacc_tips_fortran.htm

OpenACC on SCC (cont’d)
• How to run jobs

 Login nodes have no GPUs. Must run via batch scheduler

• Interactive batch -- for program development and debugging

 Example: 1 gpu, 1 cpu, 4 hours of estimated runtime

• scc1% qsh -l gpus=1 -l h_rt=04:00:00

• -l gpus=G/C; G = number of GPUs, C = number of CPU cores

• Background Batch -- for production runs

 Example: 8 GPUs, 12 CPUs, 4 hours of runtime

• scc1% qsub -l gpus=0.667 -pe omp 12 -l h_rt=04:00:00

• -l gpus = G/C = 8/12 = 0.667

• scc1% qsub myscript (myscript includes above parameters)

59 Introduction to OpenMP & OpenACC

