
Introduction to R
Data Analysis and Calculations

Katia Oleinik

koleinik@bu.edu

Scientific Computing and Visualization

Boston University

http://www.bu.edu/tech/research/training/tutorials/list/

http://www.bu.edu/tech/research/training/tutorials/list/
http://www.bu.edu/tech/research/training/tutorials/list/

Outline

• Introduction

• Help System

• Variables

• R environment

• Vectors

• Matrices

• Datasets (data frames)

• Lists

• Online Resources

2

Introduction

• Open source programming language for statistical computing and graphics

• Part of GNU project

• Written primarily in C and Fortran.

• Available for various operating systems: Unix/Linux, Windows, Mac

• Can be downloaded and installed from http://cran.r-project.org/

3

http://cran.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/

Advantages

• Easy to install. Ready to use in a few minutes.

• A few thousand supplemental packages

• Open source with a large support community: easy to find help!

• Many books, blogs, tutorials.

• Frequent updates

• More popular than major statistics packages (SAS, Stata, SPSS etc.)

4

Getting Started

To start R session type R:

5

katana:~% R

R version 2.13.2 (2011-09-30)

Copyright (C) 2011 The R Foundation for

Statistical Computing

ISBN 3-900051-07-0

Platform: x86_64-unknown-linux-gnu (64-bit)

>

> 7 + 5 # arithmetic operations

 [1] 12

R as a calculator

system prompt

User’s input

Text following # sign is a

comment

Number of output elements

Answer

6

> 7 -

+ 4

 [1] 3

R as a calculator

system prompt

Incomplete expression

Plus sign appears to prompt for continuation of the input expression

answer

7

R as a calculator

8

> 7 + 5 # arithmetic operations

[1] 12

> 6 – 3 * (8/2 – 1)

[1] -3

> log(10) # commonly used functions

[1] 2.302585

> exp(7)

[1] 1096.633

> sqrt(2)

[1] 1.414214

Math functions

sqrt(x), sum(x), sign(x), abs(x), …

trigonometric

sin(x), cos(x), tan(x), asin(x), acos(x), …

hyperbolic

sinh(x), cosh(x), …

logarithmic and exponent

log(x), log10(x), log2(x) or log(x, base=10), exp(x)

factorial and combination functions

factorial(n) , choose(n ,m)

built-in constants

T, F, pi, LETTERS, letters, month.abb, month.name

9

Logical operations

 Symbol Meaning

 ! logical NOT

 & logical AND

 | logical OR

 < less than

 <= less than or equal to

 > greater than

 >= greater than or equal to

 == logical equals

 ! = not equal

10

Operations in R

11

A few operations can be listed on one line.

Use semicolon(;) to separate them

> cos(0); sqrt(2)

[1] 1

[1] 1.414214

getting Help

12

> # get help on function read.table()

> ?read.table

or

> help(read.table)

> help.start() # help in html format

> # find all functions related to the subject of interest

> help.search("data input")

getting Help

13

> # list all the function names that include the text matrix

> apropos("matrix")

> # see examples of function usage

> example(matrix)

> # see some demos

> demo(lm.glm) # lm() demo

> demo(graphics) # graphics examples

> demo(persp) # 3D plot examples

> demo(Hershey) # fonts, symbols, etc.

> demo(plotmath) # plotting Math functions

> demo() # list of demos

variables

Assignment operator is <-

Equal sign (=) could be used instead, but <- operator is preferred

14

> x <- 5 # assign value 5 to a variable

> x # print value of x

 [1] 5

> x <- 4; y <- 3 # semicolon can be used as a separator

> z <- x*x – y*y # assign the result to a new variable

variables

Caution: Be careful comparing a variable with a negative number!

15

> x <- -5 # assign value -5 to a variable

> # Wrong evaluation :

> x <-3 # Desired : Is x less than -3

> x

 [1] 3

variables

Caution: Be careful comparing a variable with a negative number!

16

> x <- -5 # assign value -5 to a variable

> # Correct evaluation (use space!):

> x < -3 # Is x less than -3

 [1] TRUE

> # Even better (use parenthesis):

> x <(-7) # Is x less than -7

 [1] FALSE

variables

-> can also be used as an assignment operator

Objects can take values Inf, -Inf, NaN (not a number)

and NA (not available) for missing data

17

> 5 -> a # assign value 5 to a variable

> a

[1] 5

> a -> NA # assign “missing data” value to a variable

> a

[1] NA

variables

• Names of the objects may contain any combinations of letters, numbers and dots (.)

18

> sept14.2012.num <- 1000 # correct!

>

variables

• Names of the objects may contain any combinations of letters, numbers and dots (.)

• Names of the objects may NOT start with a number

19

> 2012.sept14.num <- 1000 # wrong!

Error: unexpected symbol in " 2012.sept14.num"

variables

• Names of the objects may contain any combinations of letters, numbers and dots (.)

• Names of the objects may NOT start with a number

• Case sensitive

20

> a <- 5; A <- 7

> a

 [1] 5

> A

 [1] 7

variables

• Names of the objects may contain any combinations of letters, numbers and dots (.)

• Names of the objects may NOT start with a number

• Case sensitive

• Avoid renaming predefined R objects, constants and functions: c, q, s, t, C, D, F, I, and T

21

> # examples of correct variable assignments

> b.total <- 21; b.average <- 3

> b.total

 [1] 21

> b.average

 [1] 3

string variables

Strings are delimited by " or by '.

22

> myName <- "Katia"

> myName

 [1] "Katia"

> hisName <- 'Alex'

> hisName

 [1] "Alex"

built-in constants

LETTERS: 26 upper-case letters of the Roman alphabet

letters: 26 lower-case letters of the Roman alphabet

month.abb: 3 – letter abbreviations for month names

month.name: month names

pi: ratio of circle circumference to diameter

c, T, F, t built-in objects/functions (avoid using these as var. names)

23

Data types

There are 5 atomic data types:

• Integer(*)

• Numerical

• Complex

• Logical (Boolean)

• Character string

(*) Strictly speaking, integer is not an atomic data type

24

> num_value <- 21.69

> cmp_value <- 7 + 3i

> log_value <- (2 < 4)

> str_value <- "Hello R"

> int_value <- 21L

Data types

mode() or class():

Note: There is some differences between these functions. See help

for more information:

25

> mode(num_value)

 [1] "numeric"

> class(str_value)

 [1] "character"

> class(int_value)

 [1] "integer"

> mode(int_value)

 [1] "numeric"

session commands

26

katana:~ % R # to start an R session in the current directory

> q() # end R session

 Save workspace image? [y/n/c]:

y – yes

n – no (in most cases select this option to exit the workspace without saving)

c – cancel

katana:~ %

saving current session

27

> a <- 5

> b <- a + 3;

> myString <- "apple"

> # list all objects in the current session

> ls()

 [1] "a" "b" "myString"

> # save contents of the current workspace into .RData file

> save.image()

> # save contents to the file with a given name

> save.image(file = "myFile.Rdata")

> # save some objects to the file

> save(a,b, file = "ab.Rdata")

loading stored objects

28

> # load saved session

> load("myFile.Rdata")

> # list all the objects in the current workspace

> ls()

or
> objects()

> # remove objects from the current workspace

> rm(a, b)

other useful commands

29

> # delete the file (or directory!)

> unlink("myFile.Rdata")

> # get working directory path

> getwd()

> # set working directory path

> setwd(path)

other useful commands

30

> # List attached packages (on path) and R objects

> search()

> # Execute system commands

> system('ls –lt *.RData')

> system('ls -F') # list all files in the directory

> # vector with one line per character string

> # if intern = TRUE, the output of the command – is character strings

> system("who", intern = TRUE)

Tips

• Use arrow keys (“up” and “down”) to traverse through the history of commands.

• “Up arrow” – traverse backwards (older commands)

• “Down arrow” – traverse forward (newer commands)

31

data objects overview

Vectors, matrices, data frames & lists

• Vector – a set of elements of the same type.

• Matrix - a set of elements of the same type organized in rows and columns.

• Data Frame - a set of elements organized in rows and columns, where

columns can be of different types.

• List - a collection of data objects (possibly of different types) – a

generalization of a vector.

32

vectors

Vector : a set of elements of the same type.

2, 3, 7, 5, 1

TRUE, FALSE, FALSE, TRUE, FALSE

"Monday", "Tuesday", "Wednesday", "Thursday", "Friday"

33

vectors

To create a vector – use function “concatenate” : c()

34

> myVec <- c(1,6,9,2,5)

> myVec

 [1] 1 6 9 2 5

> # lets find out the type of myVec object

> mode(myVec)

 [1] "numeric"

> # fill vector with consecutive numbers from 5 to 9 and print it

> print(a<- c(5:9))

 [1] 5 6 7 8 9

vectors

We can also use function “sequence” : seq()

35

> myVec <- seq(-1.1, 0.5, by=0.2)

> myVec

 [1] -1.1 -0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5

Or function “repeat” : rep()

> myVec <- rep(7, 3)

> myVec

 [1] 7 7 7

vectors

 What can we do with vectors?

36

> # create more vectors:

> a <- c(1, 2, 4)

> b <- c(7, 3)

> ab <- c(a, b)

> ab

 [1] 1 2 4 7 3

> # append more values

> ab[6:10] <- c(0, 6, 4, 1, 9)

vectors

 What can we do with vectors?

37

> # access individual elements

> ab[3]

 [1] 4 # notice: index starts with 1 (like in FORTRAN)

> # list all but 3rd element

> ab[-3]

 [1] 1 2 7 3 0 6 4 1 9

> # list 3 elements, starting from the second

> ab[2:4]

 [1] 2 4 7

> # list a few elements

> ab[c(1, 3, 5)] # this technique is called slicing

 [1] 1 4 3

vectors

Accessing vector data (partial list)

x[n] nth element

x[-n] all but nth element

x[1:n] first n elements

x[-(1:n)] elements starting from n+1

x[c(1,3,6)] specific elements

x[x>3 & x<7] all element greater than 3 and less than 7

x[x<3 | x>7] all element less than 3 or greater than 7

length(x) vector length

which(x == max(x)) which indices are largest

38

vectors

Math with vectors (partial list)

Any math function used for scalars:

sqrt, sin, cos, tan, asin, acos, atan, log, exp etc.

Standard vector functions:

max(x), min(x), range(x)

sum(x), prod(x) # sum and product of elements

mean(x) , median(x) # mean and median values of vector

var(x), sd (x) # variance and standard deviation

IQR(x) # interquartile range

39

vectors

Additional functions of interest:

40

> # cumulative maximum and minimum

> x <- c(12, 14, 11, 13, 15, 12, 10, 17, 13, 9, 19)

> cummax(x) # running (cumulative) maximum

 [1] 12 14 14 14 15 15 15 17 17 17 19

> cummin(x) # running (cumulative) minimum

 [1] 12 12 11 11 11 11 10 10 10 9 9

> # repetitions of a value

> rep("yes", 5)

 [1] "yes" "yes" "yes" "yes" "yes"

> gender <- c(rep("male", 3), rep("female",2))

vectors

Creating a composition of operations:

41

> # define a vector that holds scores for a group of numbered athletes

> scores <- c(80,95,70,90,95,85,95,75)

> # how many athletes do we have?

> num <- length(scores)

> # get the vector that holds the number of each athlete

> id <- 1:num

> # what is the maximum score

> best <- max(scores)

> # which athletes got the maximum score

> id[scores == best]

> # we can do all this in just ONE powerful statement !

> (1:length(scores))[scores == max(scores)]

 [1] 2 5 7

vectors

Handling of missing data:

42

> # Sometimes data are not available

> y <- c(3, 2, NA, 7, 1, NA, 5)

> # in some cases we might want to replace them with some other value

> v[is.na(v)] <- 0 # replace missing data with zeros

> # the following will not work:

> v[v == NA] <- 0

> v == NA # v is unchanged because all the elements of v==NA evaluate to NA

 [1] NA NA NA NA NA NA NA

vectors

Operations with 2 vectors:

43

> x <- c(2, 4, 6, 8)

> y <- c(1, 2, 3, 4)

> print(r1 <- x + y) # print the result

 [1] 3 6 9 12

> (r2 <- x – y) # another way to print the result

 [1] 1 2 3 4

> (r3 <- x * y) # Note: multiplication is performed for elements

 [1] 2 8 18 32

> (r4 <- x / y)

 [1] 2 2 2 2

vectors

44

> x <- c(2, 4, 6, 8)

> y <- c(1, 2, 3, 4)

> x %*% y

 [,1]

[1,] 60

If we would like to perform a “usual” - scalar - multiplication, we should use %*% :

vectors

Operations with vectors of different length:

45

> x <- c(2, 3, 4, 8)

> y <- c(1, 2, 3)

> r1 <- x + y

 Warning message:

 In x + y : longer object length is not a multiple

of shorter object length

> r1

 [1] 3 5 7 9

vectors

Example – finding a unit vector:

46

> x <- c(1, 4, 8)

> x2 <- x * x

> x2sum <- sum(x2)

> xmag <- sqrt(x2sum)

> x / xmag

 [1] 0.1111111 0.4444444 0.8888889

This can be done with just one line:

> x / sqrt(sum(x*x))

 [1] 0.1111111 0.4444444 0.8888889

vectors

Useful vector operations:

47

sort(x) returns sorted vector (in increasing order)

rev(x) reverses the order of elements

unique(x) returns the vector of unique elements

duplicate(x) returns the logical vector indicating non-unique elements

vectors

Useful vector operations:

48

which.max(x) returns index of the larges element

which.min(x) returns index of the smallest element

which(x == a) returns vector of indices i, for which x[i]==a

summary(x) summary statistics (mean, median, min, max, quartiles)

vectors

Useful vector operations (handling of missing values) :

49

is.na(x) returns the logical vector indicating missing elements

na.omit(x) suppress observations with missing data

sum(is.na(x)) get the number of missing elements

which(is.na(x)) get indices of the missing elements in a vector

mean(x, na.rm=TRUE) calculate mean of all non-missing elements

x[is.na(x)] <- 0 replace all missing elements with zeros

vectors

Named vector elements :

50

define a vector

> v <- c("Alex", "Johnson")

> v

 [1] "Alex" "Johnson"

provide names of vector ’s elements

> names(v) <- c("first", "last")

> v

 first last

 [1] "Alex" "Johnson"

vectors

Named vector elements :

51

an alternative way to provide names to the vecotr elements

> v <- c(first = "Alex", last = "Johnson")

> v

 first last

 [1] "Alex" "Johnson"

access vector elements using names

> v["first"]

 [1] "Alex"

matrices

Matrix : a set of elements of the same type organized in rows

and columns.

2 3 7 5 1 TRUE FALSE FALSE

7 9 1 4 0 FALSE TRUE FALSE

8 2 6 3 7 FALSE FALSE TRUE

52

matrices

Matrices are very similar to vectors. The data (of the same type) organized in rows and columns.

There are a few way to create a matrix

53

Using matrix(data, nrow, ncol, byrow) function:

> mat <- matrix(seq(1:21) ,nrow = 7)

> mat

 [,1] [,2] [,3]

[1,] 1 8 15

[2,] 2 9 16

[3,] 3 10 17

[4,] 4 11 18

[5,] 5 12 19

[6,] 6 13 20

[7,] 7 14 21

matrices

The byrow argument specifies how the matrix is to be filled. By default, R fills out the matrix

column by column (similar to FORTRAN and Matlab, and unlike C/C++ and WinBUGS).

If we prefer to fill in the matrix row-by-row, we must activate the byrow setting:

54

> mat <- matrix(seq(1:21) ,nrow=7, byrow=TRUE)

> mat

 [,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

[4,] 10 11 12

[5,] 13 14 15

[6,] 16 17 18

[7,] 19 20 21

matrices

To create an identity matrix of size N x N, use diag() function:

55

> dmat <- diag(5)

> dmat

 [,1] [,2] [,3] [,4] [,5]

[1,] 1 0 0 0 0

[2,] 0 1 0 0 0

[3,] 0 0 1 0 0

[4,] 0 0 0 1 0

[5,] 0 0 0 0 1

matrices

To find dimensions of a matrix, use dim() function:

56

> dmat <- diag(5)

> dim(dmat)

[1] 5 5

To find the number of rows and columns of a matrix, use nrow() and

ncol() respectfully:

> dmat <- matrix(seq(1:21) ,nrow = 7)

> nrow(dmat)

[1] 7

> ncol(dmat)

[1] 3

matrices

Operations with matrices:

57

> # transpose
> mat <- t(mat)

> mat

 [,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 1 4 7 10 13 16 19

[2,] 2 5 8 11 14 17 20

[3,] 3 6 9 12 15 18 21

matrices

Matrix multiplication:

58

> # matrix’ elements multiplication
> x <- matrix(seq(1:9), nrow=3)

> y <- matrix(seq(1:9), nrow=3, byrow=TRUE)

> (x * y)

 [,1] [,2] [,3]

[1,] 1 8 21

[2,] 8 25 48

[3,] 21 48 81

> # as with vectors, to perform usual matrix multiplication, use %*%
> (x %*% y)

 [,1] [,2] [,3]

[1,] 66 78 90

[2,] 78 93 108

[3,] 90 108 126

matrices

Other operations:

59

> # return diagonal elements
> diag(x)

 [1] 1 5 9

> # row sum and means:
> rowSums(x)

 [1] 12 15 18

> rowMeans(x)

 [1] 4 5 6

> # column sum and means:
> colSums(x)

 [1] 12 15 18

> colMeans(x)

 [1] 2 5 8

! note: we used diag() before to
create an identity matrix

matrices

Other operations:

60

> # determinant
> det(x)

 [1] 0

> # inverse matrix:
> w <- matrix(c(1,0,0,2),2)

> solve(w)

 [,1] [,2]

[1,] 1 0.0

[2,] 0 0.5

> # If the matrix is singular (not invertible), the error message is displayed:
> solve(x)

 Error in solve.default(x) :

 Lapack routine dgesv: system is exactly singular

matrices

Function solve()can be used to solve a system of linear equations:

61

> w <- matrix(c(1,0,0,2), 2)

> v <- c(3, 8)

> solve(w, v)

 [1] 3 4

matrices

62

Accessing matrix data (partial list)

x[2,3] element in the 2nd row, 3rd column

x[2,] all elements of the 2nd row (the result is a vector)

x[,3] all elements of the 3rd column (the result is a vector)

x[c(1,3,4),] all elements of the 1st 3rd and 4th columns

 (the result is a matrix)

x[,-3] all elements but 3rd column (the result is a matrix)

Logical operations similar to the vector’s apply

matrices

63

Naming matrix rows and columns

rownames(x) set or retrieve row names of matrix

colnames(x) set or retrieve column names of matrix

dimnames(x) set or retrieve row and column names of matrix

> # define matrix
> x <- matrix(1:6, nrow = 2)

 [,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> # specify column names:
> colnames(x) <- c("col1" , "col2", "col3")

> # specify both – row and column names:
> dimnames(x) <- list(c("col1" , "col2", "col3"),

+ c("row1" , "row2"))

matrices

64

Combining vectors and matrices:

> # To stuck 2 vectors or matrices, one below the other, use rbind()
> x <- rbind(c(1,2,3) , c(4,5,6))

> x

 [,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

> # To stuck 2 vectors or matrices, next to each other, use cbind()
> x <- cbind(c(1,2,3) , c(4,5,6))

> x

 [,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

data frames

• Data frames are fundamental data type in R

• A data frame is a generalization of a matrix

• Different columns may have different types of data

• All elements of any column must have the same data type

65

Age Weight Height Gender

18 150 67 F

23 170 70 M

38 160 65 M

52 190 68 F

data frames

We can create data on the fly:

66

> age <- c(18, 23, 38, 52)

> weight <- c(150, 170, 160, 190)

> height <- c(67, 70, 65, 68)

> gender <- c("F", "M", "M", "F")

> data0 <- data.frame(Age = age, Weight = weight, Height = height,

+ Gender = gender)

> data0

 Age Weight Height Gender

1 18 150 67 F

2 23 170 70 M

3 38 160 65 M

4 52 190 68 F

data frames

The data usually come from an external file.

First consider a simple text file : inData.txt

To load such a file, use read.table() function:

67

> data1 <- read.table(file = "inData.txt", header = TRUE)

> data1

 Age Weight Height Gender

1 18 150 67 F

2 23 170 70 M

3 38 160 65 M

4 52 190 68 F

data frames

Often data come in a form of a spreadsheet. To read this into R, first save
the data as a CSV file, for example inData.csv.

To load such a file, use read.csv() function:

68

> data1 <- read.csv(file="inData.csv", header=TRUE, sep=",")

> data1

 Age Weight Height Gender

1 18 150 67 F

2 23 170 70 M

3 38 160 65 M

4 52 190 68 F

data frames

The contents of the text file can be displayed using file.show() function.

69

> file.show("inData.csv")

Age,Weight,Height,Gender

18,150,67,F

23,170,70,M

38,160,65,M

52,190,68,F

data frames

To explore the data frame:

70

> # get column names
> names(data1)

 [1] "Age" "Weight" "Height" "Gender"

> # get row names (sometimes each row is given some name)
> row.names(data1)

 [1] "1" "2" "3" "4"

> # to set the rows the names use row.names function
> row.names(data1) <- c("Mary", "Paul", "Bob", "Judy")

> data1

 Age Weight Height Gender

Mary 18 150 67 F

Paul 23 170 70 M

Bob 38 160 65 M

Judy 52 190 68 F

data frames

71

> # access a single column
> data1$Height

 or

> data1[,3]

 or

> data1[, "Height"]

 or

> data1[[3]] # access the object that is stored in the third list element

 [1] 67 70 65 68

To access the data in the data frame:

data frames

Very convenient function to analyze the data set - summary() :

72

> summary(data1)

 Age Weight Height Gender

 Min. :18.00 Min. :150.0 Min. :65.0 F:2

 1st Qu.:21.75 1st Qu.:157.5 1st Qu.:66.5 M:2

 Median :30.50 Median :165.0 Median :67.5

 Mean :32.75 Mean :167.5 Mean :67.5

 3rd Qu.:41.50 3rd Qu.:175.0 3rd Qu.:68.5

 Max. :52.00 Max. :190.0 Max. :70.0

lists

List: a collection of data objects (possibly of different types) – a

generalization of a vector.

4, TRUE , "John", 7, FALSE, "Mary"

73

lists

A List is a generalized version of a vector. It is similar to struct in C.

74

> # create an empty list

> li <- list()

> li0 <- list("Alex", 120, 72, T)

> li0

 [[1]]

 [1] "Alex"

 [[2]]

 [1] 120

 [[3]]

 [1] 72

 [[4]]

 [1] TRUE

* Notice double brackets to access each element of the list

lists

We can also give names to each element, i.e.:

75

> # create a list that stores data along with their names:
> li <- list(name = "Alex", weight = 120, height = 72, student = TRUE)

> li

 $name

[1] "Alex"

$weight

[1] 120

$height

[1] 72

$student

[1] TRUE

lists

We can access elements in the list using the indices or their names:

76

> # access using names
> li$name

 [1] "Alex"

> # the name of the element can be abbreviated as long as it does not cause ambiguity:
> li$na

 [1] "Alex"

> # access using the index (notice – double brackets !)
> li[[2]]

 [1] 120

lists

We can add more elements after the list has been created

77

> li$year <- "freshman"

> # check if the element got into the list:
> li

 $name

[1] "Alex"

$weight

[1] 120

$height

[1] 72

$student

[1] TRUE

$year

[1] "freshman"

lists

Elements can be added using indices:

78

> li[[6]] <- 3.75

> li[7:8] <- c(TRUE, FALSE)

lists

Delete elements from the list, assigning NULL:

79

> li$year <- NULL

> li[[6]] <- NULL

> # check the length of the list

> length(li)

[1] 6

Online Resources

Online Books:

"An introduction to R. Notes on R: A Programming Environment for Data Analysis and Graphics", by W. N.

Venables, etc.

"Using R for Introductory Statistics ", by John Verzani.

"R for Beginners", by Emmanuel Paradis.

"The R Guide", W. J. Owen.

"Using R for Data Analysis and Graphics. Introduction, Code and Commentary", by J. H. Maindonald.

Official CRAN R language manuals:

http://cran.r-project.org/manuals.html

Free Online Courses & Code Examples:

http://www.codeschool.com/courses/try-r by Code School

http://www.ats.ucla.edu/stat/ Institute for Digital Research and Education

Many MOOCs courses!

80

http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/contrib/Verzani-SimpleR.pdf
http://cran.r-project.org/doc/contrib/Verzani-SimpleR.pdf
http://cran.r-project.org/doc/contrib/Verzani-SimpleR.pdf
http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf
http://cran.r-project.org/doc/contrib/Owen-TheRGuide.pdf
http://cran.r-project.org/doc/contrib/Owen-TheRGuide.pdf
http://cran.r-project.org/doc/contrib/Owen-TheRGuide.pdf
http://cran.r-project.org/doc/contrib/usingR.pdf
http://cran.r-project.org/doc/contrib/usingR.pdf
http://cran.r-project.org/doc/contrib/usingR.pdf
http://cran.r-project.org/manuals.html
http://cran.r-project.org/manuals.html
http://cran.r-project.org/manuals.html
http://www.codeschool.com/courses/try-r
http://www.codeschool.com/courses/try-r
http://www.codeschool.com/courses/try-r
http://www.codeschool.com/courses/try-r
http://www.ats.ucla.edu/stat/
http://www.ats.ucla.edu/stat/

81

This tutorial has been made possible by

Scientific Computing and Visualization

group

at Boston University.

Katia Oleinik

koleinik@bu.edu

http://www.bu.edu/tech/research/training/tutorials/list/

http://www.bu.edu/tech/research/training/tutorials/list/

	Introduction to R (Data Analysis and Calculations)

	Outline

	Introduction

	R as a calculator

	Getting Help

	Variables

	String Variables

	Built-in constants

	Data Types

	R Session Commands

	Vectors

	Accessing Vector Data

	Vector
Functions
	Handling Missing Data

	Useful Vector Operations

	Named Vector Elements

	Matrices

	Matrix Multiplication

	Matrix Operations

	Accessing Matrix Elements

	Naming Matrix Rows and Columns

	Combining Vectors and Matrices

	Dataframes

	Reading from the file

	Explore Dataframe

	Access Dataframe elements

	Lists

	Accessing List Elements

	Online Resources

