
Integrating R and C/C++

Day 2

Robert Putnam - putnam@bu.edu

Katia Oleinik - koleinik@bu.edu

Information Services and Technology

Introduction

 Welcome back!

 Agenda
 Day two

 C wrap-up

 Review dot product code, then touch on

functions/prototyping, make, struct, cpp, and I/O.

 Optimization (C, C with GSL)

 Metropolis (R, C, R+C, R+Rcpp)

 LM (Rcpp+RccpGSL)

 Your applications

Information Services & Technology 5/16/2012

For future reference, slides and code available here:

 http://www.bu.edu/tech/research/training/tutorials/list/

http://www.bu.edu/tech/research/training/tutorials/list/
http://www.bu.edu/tech/research/training/tutorials/list/

dotprod.c
#include <stdio.h>

#include <stdlib.h>

int main() {

 int i, veclen;

 float *v1, *v2, d;

 printf("Please input size of vectors: ");

 scanf("%d", &veclen);

 v1 = malloc(veclen*sizeof(float));

 v2 = malloc(veclen*sizeof(float));

 printf("Please input vector #1: ");

 for(i=0;i<veclen;i++) {

 scanf("%f", v1+i);

 }

Information Services & Technology

3

5/15/2012

 printf("Please input vector #2: ");

 for(i=0;i<veclen;i++) {

 scanf("%f", v2+i);

 }

 d = 0.0;

 for(i=0;i<veclen;i++) {

 dp += *(v1+i) * *(v2+i);

 }

 printf("Dot product = %7.2f\n", d);

}

if/else

Information Services & Technology

4

5/15/2012

 Conditional execution of block of source code

 Based on relational operators
 < less than

 > greater than

 == equal

 <= less than or equal

 >= greater than or equal

 != not equal

 && and

 || or

if/else (cont’d)

 Condition is enclosed in parentheses

 Code block is enclosed in curly brackets

if(x > 0.0 && y > 0.0) {

 printf(“x and y are both positive\n”);

 z = x + y;

}

Information Services & Technology

5

5/15/2012

if/else (3)

Information Services & Technology

6

5/15/2012

 Can have multiple conditions by using else if

if(x > 0.0 && y > 0.0) {

 z = 1.0/(x+y);

} else if(x < 0.0 && y < 0.0) {

 z = -1.0/(x+y);

} else {

 printf(“Error condition\n”);

}

Functions

Information Services & Technology

8

5/15/2012

 C functions return a single value

 Return type should be declared (default is int)

 Argument types must be declared

 Sample function definition:

float sumsqr(float x, float y) {

 float z;

 z = x*x + y*y;

 return z;

}

Functions (cont’d)

Information Services & Technology

9

5/15/2012

 Use of sumsqr function:

a = sumsqr(b,c);

 Call by value
 when function is called, copies are made of the arguments

 scope of copies is scope of function

 after return from function, copies no longer exist

Functions (3)

Information Services & Technology

10

5/15/2012

b = 2.0; c = 3.0;

a = sumsqr(b, c);

printf(“%f”, b);

float sumsqr(float x, float y) {

 float z;

 z = x*x + y*y;

 x = 1938.6;

 return z;

}

this line has no effect on b

will print 2.0

Functions (4)

 If you want to change argument values, pass pointers

int swap(int *i, int *j) {

 int k;

 k = *i;

 *i = *j;

 *j = k;

 return 0;

}

Information Services & Technology

11

5/15/2012

Exercise 7

 Modify dot-product program to use a function to

compute the dot product
 The function definition should go after the includes but before the

main program in the source file

 Arguments can be an integer containing the length of the vectors and

a pointer to each vector

 Function should only do dot product, no i/o

 Do not give function same name as executable

 I called my executable “dotprod” and the function “dp”

 solution

Information Services & Technology

17

5/15/2012

http://scv.bu.edu/documentation/presentations/intro_to_c/ex7/

Function Prototypes

 C compiler checks arguments in function definition and

calls
 number

 type

 If definition and call are in different files, compiler

needs more information to perform checks
 this is done through function prototypes

Information Services & Technology

18

5/15/2012

Function Prototypes (cont’d)

 Prototype looks like 1st line of function definition
 type

 name

 argument types

float dp(int n, float *x, float *y);

 Argument names are optional:

float dp(int, float*, float*);

Information Services & Technology

19

5/15/2012

Function Prototypes (3)

 Prototypes are often contained in include files

/* mycode.h contains prototype for myfunc */

#include “mycode.h”

int main(){

…

myfunc(x);

…

}

Information Services & Technology

20

5/15/2012

Basics of Code Management

 Large codes usually consist of multiple files

 Some programmers create a separate file for each

function
 Easier to edit

 Can recompile one function at a time

 Files can be compiled, but not linked, using –c option;

then object files can be linked later

gcc –c mycode.c

gcc –c myfunc.c

gcc –o mycode mycode.o myfunc.o

Information Services & Technology

21

5/15/2012

Exercise 8

 Put dot-product function and main program in separate

files

 Create header file
 function prototype

 .h suffix

 include at top of file containing main

 Compile, link, and run

 solution

Information Services & Technology

22

5/15/2012

http://scv.bu.edu/documentation/presentations/intro_to_c/ex8/

Makefiles

 make is a Unix utility to help manage codes

 When you make changes to files, it will
 automatically deduce which files have been modified and compile

them

 link latest object files

 Makefile is a file that tells the make utility what to do

 Default name of file is “makefile” or “Makefile”
 Can use other names if you’d like

Information Services & Technology

23

5/15/2012

Makefiles (cont’d)

 Makefile contains different sections with different

functions
 The sections are not executed in order!

 Comment character is #
 As with source code, use comments freely

Information Services & Technology

24

5/15/2012

Makefiles (3)

 Simple sample makefile

suffix rule

.SUFFIXES:

.SUFFIXES: .c .o

.c.o:

 gcc -c $*.c

compile and link

myexe: mymain.o fun1.o fun2.o fun3.o

 gcc –o myexe mymain.o fun1.o fun2.o fun3.o

Information Services & Technology

25

5/15/2012

Makefiles (4)

 Have to define all file suffixes that may be

encountered

.SUFFIXES: .c .o

 Just to be safe, delete any default suffixes first with a

null .SUFFIXES: command

.SUFFIXES:

.SUFFIXES: .c .o

Information Services & Technology

26

5/15/2012

Makefiles (5)

 Have to tell how to create one file suffix from another

with a suffix rule

.c.o:

 gcc -c $*.c

 The first line indicates that the rule tells how to create

a .o file from a .c file

 The second line tells how to create the .o file

 *$ is automatically the root of the file name

 The big space before gcc is a tab, and you must use it!

Information Services & Technology

27

5/15/2012

Makefiles (6)

 Finally, everything falls together with the definition of a

recipe

target: prerequisites

 recipe

 The target is any name you choose
 Often use name of executable

 Prerequisites are files that are required by other files
 e.g., executable requires object files

 Recipe tells what you want the makefile to do

 May have multiple targets in a makefile

Information Services & Technology

28

5/15/2012

Makefiles (7)

 Revisit sample makefile

suffix rule

.SUFFIXES:

.SUFFIXES: .c .o

.c.o:

 gcc -c $*.c

compile and link

myexe: mymain.o fun1.o fun2.o fun3.o

 gcc –o myexe mymain.o fun1.o fun2.o fun3.o

Information Services & Technology

29

5/15/2012

automatic variable for file root

Makefiles (8)

 When you type “make,” it will look for a file called

“makefile” or “Makefile”

 searches for the first target in the file

 In our example (and the usual case) the object files

are prerequisites

 checks suffix rule to see how to create an object file

 In our case, it sees that .o files depend on .c files

 checks time stamps on the associated .o and .c files to

see if the .c is newer

 If the .c file is newer it performs the suffix rule
 In our case, compiles the routine

Information Services & Technology

30

5/15/2012

Makefiles (9)
 Once all the prerequisites are updated as required, it

performs the recipe

 In our case it links the object files and creates our

executable

 Many makefiles have an additional target, “clean,” that

removes .o and other files
clean:

 rm –f *.o

 When there are multiple targets, specify desired target

as argument to make command
make clean

Information Services & Technology

31

5/15/2012

Makefiles (10)

 Also may want to set up dependencies for header files
 When header file is changed, files that include it will automatically

recompile

 example:
myfunction.o: myincludefile.h

 if time stamp on .h file is newer than .o file and .o file is required in

another dependency, will recompile myfunction.c

 no recipe is required

Information Services & Technology

32

5/15/2012

Exercise 9a

 Create a makefile for your dot product code

 Include 2 targets
 create executable

 clean

 Include header dependency (see previous slide)

 Delete old object files and executable manually
 rm *.o dotprod

 Build your code using the makefile

 solution

Information Services & Technology

33

5/15/2012

http://scv.bu.edu/documentation/presentations/intro_to_c/ex9/

Exercise 9b

 Type make again
 should get message that it’s already up to date

 Clean files by typing make clean
 Type ls to make sure files are gone

 Type make again
 will rebuild code

 Update time stamp on header file
 touch dp.h

 Type make again
 should recompile main program, but not dot product function

Information Services & Technology

34

5/15/2012

C Preprocessor

 Initial processing phase before compilation

 Directives start with #

 We’ve seen one directive already, #include
 simply includes specified file in place of directive

 Another common directive is #define
#define NAME text

 NAME is any name you want to use

 text is the text that replaces NAME wherever it appears in source

code

Information Services & Technology

35

5/15/2012

C Preprocessor (cont’d)

 #define often used to define global constants

#define NX 51

#define NY 201

…

float x[NX][NY];

 Also handy to specify precision

#define REAL double

…

REAL x, y;

Information Services & Technology

36

5/15/2012

C Preprocessor (3)

 Since #define is often placed in header file, and

header will be included in multiple files, this construct

is commonly used:

#ifndef REAL

#define REAL double

#endif

 This basically says “If REAL is not defined, go ahead

and define it.”

Information Services & Technology

37

5/15/2012

C Preprocessor (3)

 Can also check values using the #if directive

 In the current exercise code, the function fabsf is used,

but that is for floats. For doubles, the function is fabs.

We can add this to dp.h file:

#if REAL == double

#define ABS fabs

#else

#define ABS fabsf

#endif

Information Services & Technology

38

5/15/2012

C Preprocessor (4)

 #define can also be used to define a macro with

substitutable arguments

#define IND(m,n) (n + NY*m)

k = 5*IND(i,j); k = 5*(i + NY*j);

 Be careful to use () when required!
 without () above example would come out wrong

 k = 5*i + NY*j wrong!

Information Services & Technology

40

5/15/2012

Structures

 Can package a number of variables under one name

struct grid{

 int nvals;

 float x[100][100], y[100][100], jacobian[100][100];

};

 Note semicolon at end of definition

Information Services & Technology

42

5/15/2012

Structures (cont’d)

 To declare a variable as a struct

struct grid mygrid1;

 Components are accessed using .
mygrid1.nvals = 20;

mygrid1.x[0][0] = 0.0;

 Handy way to transfer lots of data to a function

int calc_jacobian(struct grid mygrid1){…

Information Services & Technology

43

5/15/2012

i/o

 Often need to read/write data from/to files rather than

screen

 File is associated with a file pointer through a call to

the fopen function

 File pointer is of type FILE, which is defined in stdio.h.

Information Services & Technology

45

5/15/2012

i/o (cont’d)

 fopen takes 2 character-string arguments
 file name

 mode

 “r” read

 “w” write

 “a” append

FILE *fp;

fp = fopen(“myfile.d”, “w”);

Information Services & Technology

46

5/15/2012

Note: NULL is returned on error

i/o (3)

 Write to file using fprintf
 Need stdio.h

 fprintf has 3 arguments
1. File pointer

2. Character string containing what to print, including any formats

 %f for float or double

 %d for int

 %s for character string

3. Variable list corresponding to formats

Information Services & Technology

47

5/15/2012

i/o (4)

 Special character \n produces new line (carriage

return & line feed)
 Often used in character strings

“This is my character string.\n”

 Example:

fprintf(fp, “x = %f\n”, x);

 Read from file using fscanf
 arguments same as fprintf

 Return type = int: EOF on error, otherwise # items read

 When finished accessing file, close it

fclose(fp);

Information Services & Technology

48

5/15/2012

Exercise 12

 Modify dot-product code to read inputs (size of vector

and values for both vectors) from file “inputfile”. (You

can use a #define for the name; a better approach will

be shown in the next exercise.)

 solution

Information Services & Technology

49

5/15/2012

http://scv.bu.edu/documentation/presentations/intro_to_c/ex12/

Command-Line Arguments
 It’s often convenient to type some inputs on the

command line along with the executable name, e.g.,

mycode 41.3 “myfile.d”

 Define main with two arguments:
 int main(int argc, char *argv[])

1. argc is the number of items on the command line, including name

of executable

• “argument count”

2. argv is an array of character strings containing the arguments

 “argument values”

 argc[0] is pointer to executable name

 argc[1] is pointer to 1st argument, argc[2] is pointer to 2nd

argument, etc.

Information Services & Technology

52

5/15/2012

Command-Line Arguments (cont’d)

 Arguments are character strings. We often want to

convert them to numbers.

 Some handy functions:
 atoi converts string to integer

 atof converts string to double

 They live in stdlib.h

 arguments are pointers to strings, so you would use, for example

ival = atoi(argv[2])

to convert the 2nd argument to an integer

Information Services & Technology

53

5/15/2012

Command-Line Arguments (3)

 Often want to check the value of argc to make sure the

correct number of command-line arguments were

provided

 If wrong number of arguments, can stop execution

with exit statement
 Can exit with status, e.g.:

exit(1);

 With csh shell, view status by echoing ‘$status’:

 % echo $status

 1

Information Services & Technology

54

5/15/2012

Exercise 14
 Modify dot-product code to enter a maximum vector

length as a command-line argument (and give an error

if the value read from the file exceeds it).

 Use atoi

 Add test on argc to make sure a command-line

argument was provided
 argc should equal 2, since the executable name counts

 if argc is not equal to 2, print message and return to stop execution

 solution

Information Services & Technology

55

5/15/2012

http://scv.bu.edu/documentation/presentations/intro_to_c/ex14/

R -> C Agenda
 Benchmark/profile R code

 Is it a good candidate for speedup? Tools: system.time, Rprof(),

cmpfile, etc.

 Convert to C standalone

 Modify C code to be callable from R
 http://cran.r-project.org/doc/manuals/R-exts.html

 Use Rcpp for simpler R<->C interface
 http://dirk.eddelbuettel.com/code/rcpp.html

Information Services & Technology

57

5/16/2012

http://cran.r-project.org/doc/manuals/R-exts.html
http://cran.r-project.org/doc/manuals/R-exts.html
http://cran.r-project.org/doc/manuals/R-exts.html
http://cran.r-project.org/doc/manuals/R-exts.html
http://cran.r-project.org/doc/manuals/R-exts.html
http://cran.r-project.org/doc/manuals/R-exts.html
http://dirk.eddelbuettel.com/code/rcpp.html

R->C: Using the .Call interface
 C functions called from R will receive pointers to R

objects. These pointers are called SEXPs (for "S

expression pointer", which shows R's roots in the

language S).

 Macros and functions are provided in R header files

(R.h and Rdefines.h [or Rinternals.h]) which provide

access to the data pointed to by SEXPs.

 C functions called from R must return a SEXP (or

R_NilValue).

 If a C function called from R creates new R objects,

those objects must be PROTECTed from being

reaped by the R garbage collector.

Information Services & Technology

58

5/16/2012

R->C: Using the .Call interface (cont.)
 Use Rprintf instead of printf, and don't include stdio.h.

 Don’t call exit (as this will stop your R session).

 Compile at the command line:
 R CMD SHLIB file.c

 Load into R
 > dyn.load(“file.so”)

 Use .Call interface
 > .Call(“myfun”, arg1, arg2,…)

Information Services & Technology

59

5/16/2012

Note: There is another R->C interface (“.C”), which

we are not covering. It has largely been superceded by

.Call.

Exercise
 Write “hello, world” using the .Call interface

 Include R.h and Rdefines.h

 Use Rprintf

 Return R_NilValue

Information Services & Technology

60

5/16/2012

Survey

 Please fill out the course survey at

http://scv.bu.edu/survey/tutorial_evaluation.html

Information Services & Technology

61

5/15/2012

