
Integrating R and C/C++

Day 2

Robert Putnam - putnam@bu.edu

Katia Oleinik - koleinik@bu.edu

Information Services and Technology

Introduction

 Welcome back!

 Agenda
 Day two

 C wrap-up

 Review dot product code, then touch on

functions/prototyping, make, struct, cpp, and I/O.

 Optimization (C, C with GSL)

 Metropolis (R, C, R+C, R+Rcpp)

 LM (Rcpp+RccpGSL)

 Your applications

Information Services & Technology 5/16/2012

For future reference, slides and code available here:

 http://www.bu.edu/tech/research/training/tutorials/list/

http://www.bu.edu/tech/research/training/tutorials/list/
http://www.bu.edu/tech/research/training/tutorials/list/

dotprod.c
#include <stdio.h>

#include <stdlib.h>

int main() {

 int i, veclen;

 float *v1, *v2, d;

 printf("Please input size of vectors: ");

 scanf("%d", &veclen);

 v1 = malloc(veclen*sizeof(float));

 v2 = malloc(veclen*sizeof(float));

 printf("Please input vector #1: ");

 for(i=0;i<veclen;i++) {

 scanf("%f", v1+i);

 }

Information Services & Technology

3

5/15/2012

 printf("Please input vector #2: ");

 for(i=0;i<veclen;i++) {

 scanf("%f", v2+i);

 }

 d = 0.0;

 for(i=0;i<veclen;i++) {

 dp += *(v1+i) * *(v2+i);

 }

 printf("Dot product = %7.2f\n", d);

}

if/else

Information Services & Technology

4

5/15/2012

 Conditional execution of block of source code

 Based on relational operators
 < less than

 > greater than

 == equal

 <= less than or equal

 >= greater than or equal

 != not equal

 && and

 || or

if/else (cont’d)

 Condition is enclosed in parentheses

 Code block is enclosed in curly brackets

if(x > 0.0 && y > 0.0) {

 printf(“x and y are both positive\n”);

 z = x + y;

}

Information Services & Technology

5

5/15/2012

if/else (3)

Information Services & Technology

6

5/15/2012

 Can have multiple conditions by using else if

if(x > 0.0 && y > 0.0) {

 z = 1.0/(x+y);

} else if(x < 0.0 && y < 0.0) {

 z = -1.0/(x+y);

} else {

 printf(“Error condition\n”);

}

Functions

Information Services & Technology

8

5/15/2012

 C functions return a single value

 Return type should be declared (default is int)

 Argument types must be declared

 Sample function definition:

float sumsqr(float x, float y) {

 float z;

 z = x*x + y*y;

 return z;

}

Functions (cont’d)

Information Services & Technology

9

5/15/2012

 Use of sumsqr function:

a = sumsqr(b,c);

 Call by value
 when function is called, copies are made of the arguments

 scope of copies is scope of function

 after return from function, copies no longer exist

Functions (3)

Information Services & Technology

10

5/15/2012

b = 2.0; c = 3.0;

a = sumsqr(b, c);

printf(“%f”, b);

float sumsqr(float x, float y) {

 float z;

 z = x*x + y*y;

 x = 1938.6;

 return z;

}

this line has no effect on b

will print 2.0

Functions (4)

 If you want to change argument values, pass pointers

int swap(int *i, int *j) {

 int k;

 k = *i;

 *i = *j;

 *j = k;

 return 0;

}

Information Services & Technology

11

5/15/2012

Exercise 7

 Modify dot-product program to use a function to

compute the dot product
 The function definition should go after the includes but before the

main program in the source file

 Arguments can be an integer containing the length of the vectors and

a pointer to each vector

 Function should only do dot product, no i/o

 Do not give function same name as executable

 I called my executable “dotprod” and the function “dp”

 solution

Information Services & Technology

17

5/15/2012

http://scv.bu.edu/documentation/presentations/intro_to_c/ex7/

Function Prototypes

 C compiler checks arguments in function definition and

calls
 number

 type

 If definition and call are in different files, compiler

needs more information to perform checks
 this is done through function prototypes

Information Services & Technology

18

5/15/2012

Function Prototypes (cont’d)

 Prototype looks like 1st line of function definition
 type

 name

 argument types

float dp(int n, float *x, float *y);

 Argument names are optional:

float dp(int, float*, float*);

Information Services & Technology

19

5/15/2012

Function Prototypes (3)

 Prototypes are often contained in include files

/* mycode.h contains prototype for myfunc */

#include “mycode.h”

int main(){

…

myfunc(x);

…

}

Information Services & Technology

20

5/15/2012

Basics of Code Management

 Large codes usually consist of multiple files

 Some programmers create a separate file for each

function
 Easier to edit

 Can recompile one function at a time

 Files can be compiled, but not linked, using –c option;

then object files can be linked later

gcc –c mycode.c

gcc –c myfunc.c

gcc –o mycode mycode.o myfunc.o

Information Services & Technology

21

5/15/2012

Exercise 8

 Put dot-product function and main program in separate

files

 Create header file
 function prototype

 .h suffix

 include at top of file containing main

 Compile, link, and run

 solution

Information Services & Technology

22

5/15/2012

http://scv.bu.edu/documentation/presentations/intro_to_c/ex8/

Makefiles

 make is a Unix utility to help manage codes

 When you make changes to files, it will
 automatically deduce which files have been modified and compile

them

 link latest object files

 Makefile is a file that tells the make utility what to do

 Default name of file is “makefile” or “Makefile”
 Can use other names if you’d like

Information Services & Technology

23

5/15/2012

Makefiles (cont’d)

 Makefile contains different sections with different

functions
 The sections are not executed in order!

 Comment character is #
 As with source code, use comments freely

Information Services & Technology

24

5/15/2012

Makefiles (3)

 Simple sample makefile

suffix rule

.SUFFIXES:

.SUFFIXES: .c .o

.c.o:

 gcc -c $*.c

compile and link

myexe: mymain.o fun1.o fun2.o fun3.o

 gcc –o myexe mymain.o fun1.o fun2.o fun3.o

Information Services & Technology

25

5/15/2012

Makefiles (4)

 Have to define all file suffixes that may be

encountered

.SUFFIXES: .c .o

 Just to be safe, delete any default suffixes first with a

null .SUFFIXES: command

.SUFFIXES:

.SUFFIXES: .c .o

Information Services & Technology

26

5/15/2012

Makefiles (5)

 Have to tell how to create one file suffix from another

with a suffix rule

.c.o:

 gcc -c $*.c

 The first line indicates that the rule tells how to create

a .o file from a .c file

 The second line tells how to create the .o file

 *$ is automatically the root of the file name

 The big space before gcc is a tab, and you must use it!

Information Services & Technology

27

5/15/2012

Makefiles (6)

 Finally, everything falls together with the definition of a

recipe

target: prerequisites

 recipe

 The target is any name you choose
 Often use name of executable

 Prerequisites are files that are required by other files
 e.g., executable requires object files

 Recipe tells what you want the makefile to do

 May have multiple targets in a makefile

Information Services & Technology

28

5/15/2012

Makefiles (7)

 Revisit sample makefile

suffix rule

.SUFFIXES:

.SUFFIXES: .c .o

.c.o:

 gcc -c $*.c

compile and link

myexe: mymain.o fun1.o fun2.o fun3.o

 gcc –o myexe mymain.o fun1.o fun2.o fun3.o

Information Services & Technology

29

5/15/2012

automatic variable for file root

Makefiles (8)

 When you type “make,” it will look for a file called

“makefile” or “Makefile”

 searches for the first target in the file

 In our example (and the usual case) the object files

are prerequisites

 checks suffix rule to see how to create an object file

 In our case, it sees that .o files depend on .c files

 checks time stamps on the associated .o and .c files to

see if the .c is newer

 If the .c file is newer it performs the suffix rule
 In our case, compiles the routine

Information Services & Technology

30

5/15/2012

Makefiles (9)
 Once all the prerequisites are updated as required, it

performs the recipe

 In our case it links the object files and creates our

executable

 Many makefiles have an additional target, “clean,” that

removes .o and other files
clean:

 rm –f *.o

 When there are multiple targets, specify desired target

as argument to make command
make clean

Information Services & Technology

31

5/15/2012

Makefiles (10)

 Also may want to set up dependencies for header files
 When header file is changed, files that include it will automatically

recompile

 example:
myfunction.o: myincludefile.h

 if time stamp on .h file is newer than .o file and .o file is required in

another dependency, will recompile myfunction.c

 no recipe is required

Information Services & Technology

32

5/15/2012

Exercise 9a

 Create a makefile for your dot product code

 Include 2 targets
 create executable

 clean

 Include header dependency (see previous slide)

 Delete old object files and executable manually
 rm *.o dotprod

 Build your code using the makefile

 solution

Information Services & Technology

33

5/15/2012

http://scv.bu.edu/documentation/presentations/intro_to_c/ex9/

Exercise 9b

 Type make again
 should get message that it’s already up to date

 Clean files by typing make clean
 Type ls to make sure files are gone

 Type make again
 will rebuild code

 Update time stamp on header file
 touch dp.h

 Type make again
 should recompile main program, but not dot product function

Information Services & Technology

34

5/15/2012

C Preprocessor

 Initial processing phase before compilation

 Directives start with #

 We’ve seen one directive already, #include
 simply includes specified file in place of directive

 Another common directive is #define
#define NAME text

 NAME is any name you want to use

 text is the text that replaces NAME wherever it appears in source

code

Information Services & Technology

35

5/15/2012

C Preprocessor (cont’d)

 #define often used to define global constants

#define NX 51

#define NY 201

…

float x[NX][NY];

 Also handy to specify precision

#define REAL double

…

REAL x, y;

Information Services & Technology

36

5/15/2012

C Preprocessor (3)

 Since #define is often placed in header file, and

header will be included in multiple files, this construct

is commonly used:

#ifndef REAL

#define REAL double

#endif

 This basically says “If REAL is not defined, go ahead

and define it.”

Information Services & Technology

37

5/15/2012

C Preprocessor (3)

 Can also check values using the #if directive

 In the current exercise code, the function fabsf is used,

but that is for floats. For doubles, the function is fabs.

We can add this to dp.h file:

#if REAL == double

#define ABS fabs

#else

#define ABS fabsf

#endif

Information Services & Technology

38

5/15/2012

C Preprocessor (4)

 #define can also be used to define a macro with

substitutable arguments

#define IND(m,n) (n + NY*m)

k = 5*IND(i,j); k = 5*(i + NY*j);

 Be careful to use () when required!
 without () above example would come out wrong

 k = 5*i + NY*j wrong!

Information Services & Technology

40

5/15/2012

Structures

 Can package a number of variables under one name

struct grid{

 int nvals;

 float x[100][100], y[100][100], jacobian[100][100];

};

 Note semicolon at end of definition

Information Services & Technology

42

5/15/2012

Structures (cont’d)

 To declare a variable as a struct

struct grid mygrid1;

 Components are accessed using .
mygrid1.nvals = 20;

mygrid1.x[0][0] = 0.0;

 Handy way to transfer lots of data to a function

int calc_jacobian(struct grid mygrid1){…

Information Services & Technology

43

5/15/2012

i/o

 Often need to read/write data from/to files rather than

screen

 File is associated with a file pointer through a call to

the fopen function

 File pointer is of type FILE, which is defined in stdio.h.

Information Services & Technology

45

5/15/2012

i/o (cont’d)

 fopen takes 2 character-string arguments
 file name

 mode

 “r” read

 “w” write

 “a” append

FILE *fp;

fp = fopen(“myfile.d”, “w”);

Information Services & Technology

46

5/15/2012

Note: NULL is returned on error

i/o (3)

 Write to file using fprintf
 Need stdio.h

 fprintf has 3 arguments
1. File pointer

2. Character string containing what to print, including any formats

 %f for float or double

 %d for int

 %s for character string

3. Variable list corresponding to formats

Information Services & Technology

47

5/15/2012

i/o (4)

 Special character \n produces new line (carriage

return & line feed)
 Often used in character strings

“This is my character string.\n”

 Example:

fprintf(fp, “x = %f\n”, x);

 Read from file using fscanf
 arguments same as fprintf

 Return type = int: EOF on error, otherwise # items read

 When finished accessing file, close it

fclose(fp);

Information Services & Technology

48

5/15/2012

Exercise 12

 Modify dot-product code to read inputs (size of vector

and values for both vectors) from file “inputfile”. (You

can use a #define for the name; a better approach will

be shown in the next exercise.)

 solution

Information Services & Technology

49

5/15/2012

http://scv.bu.edu/documentation/presentations/intro_to_c/ex12/

Command-Line Arguments
 It’s often convenient to type some inputs on the

command line along with the executable name, e.g.,

mycode 41.3 “myfile.d”

 Define main with two arguments:
 int main(int argc, char *argv[])

1. argc is the number of items on the command line, including name

of executable

• “argument count”

2. argv is an array of character strings containing the arguments

 “argument values”

 argc[0] is pointer to executable name

 argc[1] is pointer to 1st argument, argc[2] is pointer to 2nd

argument, etc.

Information Services & Technology

52

5/15/2012

Command-Line Arguments (cont’d)

 Arguments are character strings. We often want to

convert them to numbers.

 Some handy functions:
 atoi converts string to integer

 atof converts string to double

 They live in stdlib.h

 arguments are pointers to strings, so you would use, for example

ival = atoi(argv[2])

to convert the 2nd argument to an integer

Information Services & Technology

53

5/15/2012

Command-Line Arguments (3)

 Often want to check the value of argc to make sure the

correct number of command-line arguments were

provided

 If wrong number of arguments, can stop execution

with exit statement
 Can exit with status, e.g.:

exit(1);

 With csh shell, view status by echoing ‘$status’:

 % echo $status

 1

Information Services & Technology

54

5/15/2012

Exercise 14
 Modify dot-product code to enter a maximum vector

length as a command-line argument (and give an error

if the value read from the file exceeds it).

 Use atoi

 Add test on argc to make sure a command-line

argument was provided
 argc should equal 2, since the executable name counts

 if argc is not equal to 2, print message and return to stop execution

 solution

Information Services & Technology

55

5/15/2012

http://scv.bu.edu/documentation/presentations/intro_to_c/ex14/

R -> C Agenda
 Benchmark/profile R code

 Is it a good candidate for speedup? Tools: system.time, Rprof(),

cmpfile, etc.

 Convert to C standalone

 Modify C code to be callable from R
 http://cran.r-project.org/doc/manuals/R-exts.html

 Use Rcpp for simpler R<->C interface
 http://dirk.eddelbuettel.com/code/rcpp.html

Information Services & Technology

57

5/16/2012

http://cran.r-project.org/doc/manuals/R-exts.html
http://cran.r-project.org/doc/manuals/R-exts.html
http://cran.r-project.org/doc/manuals/R-exts.html
http://cran.r-project.org/doc/manuals/R-exts.html
http://cran.r-project.org/doc/manuals/R-exts.html
http://cran.r-project.org/doc/manuals/R-exts.html
http://dirk.eddelbuettel.com/code/rcpp.html

R->C: Using the .Call interface
 C functions called from R will receive pointers to R

objects. These pointers are called SEXPs (for "S

expression pointer", which shows R's roots in the

language S).

 Macros and functions are provided in R header files

(R.h and Rdefines.h [or Rinternals.h]) which provide

access to the data pointed to by SEXPs.

 C functions called from R must return a SEXP (or

R_NilValue).

 If a C function called from R creates new R objects,

those objects must be PROTECTed from being

reaped by the R garbage collector.

Information Services & Technology

58

5/16/2012

R->C: Using the .Call interface (cont.)
 Use Rprintf instead of printf, and don't include stdio.h.

 Don’t call exit (as this will stop your R session).

 Compile at the command line:
 R CMD SHLIB file.c

 Load into R
 > dyn.load(“file.so”)

 Use .Call interface
 > .Call(“myfun”, arg1, arg2,…)

Information Services & Technology

59

5/16/2012

Note: There is another R->C interface (“.C”), which

we are not covering. It has largely been superceded by

.Call.

Exercise
 Write “hello, world” using the .Call interface

 Include R.h and Rdefines.h

 Use Rprintf

 Return R_NilValue

Information Services & Technology

60

5/16/2012

Survey

 Please fill out the course survey at

http://scv.bu.edu/survey/tutorial_evaluation.html

Information Services & Technology

61

5/15/2012

