Minimal Energy Routing with Latency
Quality-of-Service Guarantees

Yannis Paschalidis
yannisp@bu.edu, http://ionia.bu.edu/

Center for Information and Systems Engineering (CISE),
Department of Manufacturing Engineering, and
Department of Electrical and Computer Engineering
Boston University

November 17, 2006
Sensor Network Consortium Meeting
Boston University
Focus on low data rate SNETs serving time-critical applications (e.g., surveillance, environmental monitoring).

A common strategy to preserve energy is to have SNET nodes shut down their radios (go to “sleep”).

Hence, SNETs can operate in an event-based sensing mode.

This creates challenges for (timely) routing data to the gateway.

Trade-off: Long hops (lots of energy) vs. short hops (large delay).
Outline

- **System Model.**
- **Performance metrics and analysis.**
- **Routing algorithms.**
- **Numerical results.**
- **Conclusions.**
System Model

- Continuous time t.
- N nodes, 1 gateway (node $N + 1$): $(\mathcal{V}, \mathcal{E})$.

\[X^t_k: \text{channel state} \] between nodes $s(k)$ and $d(k)$ at time t
- Stochastic process, independent of all the other channels.
- Two-state Markov process: 1 (“good”) and 0 (“bad”).

\[Y^t_i: \text{state of node } i \text{ at time } t; 1 \text{ (ON)} \text{ or } 0 \text{ (OFF)} \]
- Two-state Markov process.
- $Y^t_{N+1} = 1$, for all t.

Energy consumption model for each link $k \in \mathcal{E}$
- c_k: power consumption before connection is established (Watt).
- g_k: energy consumption after connection is established (Joule).
Comments on the System Model

- Channel model.
 - Finite state Markov model for Rayleigh fading channels.
 - Gilbert-Elliot model.

- Sleeping schedule model.
 - No time synchronization required.
 - Randomized transition between ON and OFF (good for security).

- Few data at a low rate.
 - Data is generated at a slow time scale.
 - Transmission, propagation and queueing delays negligible.
 - Only causes of latency
 - Bad channel conditions.
 - Sleeping nodes.
Objective

Let p the path from node 1 to the gateway.

- Necessary and sufficient condition for successful delivery on link k at time t: **channel is good** $(X_k^t = 1)$ and **downstream node is ON** $(Y_{d(k)}^t = 1)$.

- L_k: (random) time needed for node $s(k)$ to successfully deliver a packet to $d(k)$.

- Total time for packet delivery on path p: $\sum_{k \in p} L_k$.

- **Energy consumption** on path p: $T_p = \sum_{k \in p} (c_k L_k + g_k)$.

- **Latency probability** $P(L_p \geq d)$ for a constant d on path p.

Objective

Characterize $E(T_p)$ and $P(L_p \geq d)$, and **optimize** by selecting routing strategies.
Performance Metrics

- **Expected energy consumption**

\[E(T_p) = \sum_{k \in p} E(T_k) \]

(We can obtain a closed-form expression)

- **Latency probability** \(P(L_p \geq d) = P\left(\sum_{k \in p} L_k \geq d\right) \)

- Requires convolution of latencies on all links in path \(p \) ...
- Computationally *expensive* for long paths.
- **Significant** communication overhead.
- We have developed tight approximations of \(P(L_p \geq d) \) with
 much lower complexity.
Bound on latency probability $P(L_p \geq d)$

Latency probability is hard to compute exactly. Consider bounds and approximations ...

Chernoff bound: For any $\theta \geq 0$

$$P(L_p \geq d) \leq \exp \left(\sum_{k \in p} \Lambda_k(\theta) - \theta d \right),$$

where $\Lambda_k(\theta)$ is the **logarithmic moment generating function** of L_k (it depends on the transition probability matrices of channel and sleeping schedule Markov chains).
Large Deviations-type asymptotic for $P(L_p \geq d)$

Let λ_k the maximum eigenvalue of H_k (a matrix that depends on the transition probabilities of the Markov chains).

Theorem

For any $\mathbf{p} \in \mathcal{P}$, we have

$$\lim_{d \to \infty} \frac{1}{d} \log P(L_{\mathbf{p}} \geq d) = \max_{k \in \mathbf{p}} \lambda_k,$$

where λ_k is a quantity that characterizes link k.

Interpretation: $P(L_{\mathbf{p}} \geq d) \approx e^{d \max_{k \in \mathbf{p}} \lambda_k}$, i.e., it decreases exponentially w.r.t. d.

- “Bottleneck link”.
- **Convenient** to characterize and update.
Energy vs. delay trade-off

- Generally, $E(T_p)$ and $P(L_p \geq d)$ cannot be minimized on the same path $p \in \mathcal{P}$.

- A possible formulation to capture the trade-off

 $\min_{p \in \mathcal{P}} \sum_{k \in p} E(T_k)$

 s.t. $P(L_p \geq d) \leq \epsilon$.

- Resource constrained shortest path problem. **NP-hard**.

- Alternative objective: weighted sum of $E(T_p)$ and (Chernoff bound) exponent of $P(L_p \geq d)$.

 $\min_{p \in \mathcal{P}} \left(E(T_p) + \beta \min_{\theta \geq 0} (\Lambda_p(\theta) - \theta d) \right)$

 where β is a positive constant, $\Lambda_p(\theta) = \sum_{k \in p} \Lambda_k(\theta)$.

- Nontrivial **global optimization** problem.
Energy vs. delay trade-off (cont.)

- Exchange the order of minimization

\[
\min_{\theta \geq 0} \left(-\beta \theta d + \min_{p \in \mathcal{P}} (E(T_p) + \beta \Lambda_p(\theta)) \right)
\]

- The inner minimization is a **shortest path problem**.
- Objective function: **continuous, piecewise convex** w.r.t. \(\theta \).
Solution approaches

- **Approach I**: *Convex polynomial underestimation* approach (centralized).

![Typical shape of the objective function](image_url)
Solution Approaches (cont.)

- **Approach II:** Simulated annealing based approach.
 - Scoring function:
 \[
 \nu(p) = \mathbb{E}(T_p) + \beta \min_{\theta \geq 0} (\Lambda_p(\theta) - \theta d)
 \]
 The second term is a surrogate for \(\beta \log \mathbb{P}(L_p \geq d) \).
 - **Large deviations**-based scoring function:
 \[
 \log \mathbb{P}(L_p \geq d) \approx \log(-\lambda_p \mathbb{E}(L_p)) + d \lambda_p
 \]
 \[
 \nu(p) = \mathbb{E}(T_p) + \beta \log(-\lambda_p \mathbb{E}(L_p)) + \beta d \lambda_p
 \]
 where \(\lambda_p \triangleq \max\{\lambda_k \mid k \in p\} \).
 - Arbitrarily choose an initial path.
 - Change the path configuration locally.
 - Accept/reject the new path according to the Metropolis criterion.
 - **Distributed** algorithm.
Simulated annealing algorithm
Optimization over duty cycles

- Nodes have power consumption q_i ($i = 1, \ldots, N$) when they are ON, but NOT transmitting any packets.
- What is the fraction of time nodes should stay ON?
- This adds a new dimension to the problem over which one can further optimize.
- Solution approach: simulated annealing algorithm combined with local minimization methods.
Numerical results: solution quality comparison

Setting:
- 300 networks with random topologies.
- Each network has 50 nodes and 1 gateway.

f_{min}: benchmark optimal value obtained by exhaustive search.
- Empirically, centralized method always finds the optimal solution.
- Simulated annealing based algorithm: objective value f^*.

<table>
<thead>
<tr>
<th>$\frac{f^* - f_{\text{min}}}{f_{\text{min}}}$</th>
<th>5%</th>
<th>10%</th>
<th>15%</th>
<th>20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of cases</td>
<td>87.0%</td>
<td>88.0%</td>
<td>92.7%</td>
<td>95.0%</td>
</tr>
</tbody>
</table>

- Mean = 2.2%, Std = 8.8%.
- Using our large deviations approximation: 1 order of magnitude faster with less communication overhead and simplified computation.
- Further optimizing over duty cycles: In 92/100 instances had improvement, on average by 16.5%.
Summary

- Considered the expected energy consumption and the latency probability in sensor networks in the presence of varying channel conditions and sleeping schedules.
- Energy vs. latency trade-off.
- **Large deviations asymptotic** for the latency probability.
- Centralized and distributed solution approaches:
 - There are significant gains from optimizing the duty cycle and the sleeping schedule.
 - We considered a randomized sleeping schedule (no time synchronization, security advantages).