Smart Charging Management of Shared Autonomous Electric Vehicles: Opportunities & Challenges

T. Donna Chen, PE, PhD
Assistant Professor
Department of Engineering Systems & Environment

Tony Z. Zhang
Software Engineer
Factual, Inc.

November 6, 2019
Why Shared Autonomous Electric Vehicles (SAEVs)?

Autonomous
- Alleviates “range anxiety.”
- Automated charging/fueling is easier to achieve with electric vehicles.

Electric
- Accelerates EV adoption to meet urban air quality & transport emissions goals.
- Fewer components lead to reduced maintenance (compared to internal combustion engine vehicles).

Shared
- Eliminates driver labor cost. Enables strategic relocation (avoiding spatial mismatch of demand & supply).
- High cost of automation technology incentivizes shared use.
- Alleviates “range anxiety.”
Shared Autonomous Electric Vehicle Research

Vehicle Automation

Vehicle Electrification

Use Case

EV-Grid Interaction

Research Question: What are the implications of Smart Charging for a SAEV fleet, under different electricity pricing and generation scenarios?
SAEV Modeling Framework

1. **Discrete-time SAEV Simulator**
 - **Travel Request**
 - *Being served*
 - *Unserved*
 - **Move SAEV and Update Position**
 - **SAEV Relocation**
 - **Reactive SAEV Charging**
 - **Smart Charging Framework**
 - *SOC, number of available SAEV*
 - **Trip-SAEV Matching**
 - **Generate Charging Station**
 - **Generate SAEV**
 - **Core Loop**
 - **Initialization**
 - **Operation**
 - *Energy data from grid operator*
 - **Phase 1**
 - **Phase 2**
 - **Phase 3**
Baseline Charging Strategy

• **Base strategy**
 – **Unmanaged**: charging activity mostly on peak and add strain and volatility on grid, especially in evening peak. SAEV unoccupied travel distance for charging is minimized.
 – **Distributed**: minimum charging infrastructure required.

High grid loads
Smart Charging Strategy

• **Operational level objectives**
 – Minimize SAEV electricity costs (*Time-of-Use* and *Real-Time Pricing* Scenarios)
 – Maximize self-consumption (*Renewable Generation* Scenario)
 – Objectives achieved through coordinated SAEV fleet charging assignment

• **Operational level constraints**
 – No SAEV that are in use for mobility service is considered for charging management
Travel Demand Data (PSRC 2016)

• 3700 travel analysis zones (TAZs) in the 5-county region
• 6.9k sq mi area
• 12 million vehicle-trips for a weekday
• 10% of total trips are simulated to be served by SAEV
• Average trip length is 5.9 miles
• Link travel times by 5 times-of-day (input to SAEV simulation model)
Energy Scenarios Data

• **Time-of-use** pricing scenario (*rates from Seattle City Light in 2017*)
 – Two-tier pricing structure, off-peak between 10 pm - 6 am
 – Demand charge recurring monthly

• **Real-time pricing** scenario (*LMP from ColumbiaGrid in 2017*)
 – Price updates hourly
 – Price data based on electricity wholesale market

• **PV generation** scenario (*solar integration dataset from NREL*)
 – Generalized generation pattern based on regional solar data
Transportation Technology Assumptions

Average energy efficiency: 3.3 mi/kWh

Accounts for 20% increase in energy consumption due to vehicle automation hardware and software

Due to non-linearity of the charging rate, 20% range reduction is assumed in FC scenarios.

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Charging Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Level 2 Charging</td>
</tr>
<tr>
<td>Vehicle Battery Size</td>
<td></td>
</tr>
<tr>
<td>40 kWh</td>
<td>132 mile range</td>
</tr>
<tr>
<td></td>
<td>7 kW/hr charge rate</td>
</tr>
<tr>
<td>90 kWh</td>
<td>273 mile range</td>
</tr>
<tr>
<td></td>
<td>20 kW/hr charge rate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vehicle Battery Size</th>
<th>Scenarios</th>
<th>Charging Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40 kWh</td>
<td>SR-LV2 132 mile range 7 kW/hr charge rate SR-FC 107 mile range 70 kW/hr charge rate</td>
</tr>
<tr>
<td></td>
<td>90 kWh</td>
<td>LR-LV2 273 mile range 20 kW/hr charge rate LR-FC 218 mile range 120 kW/hr charge rate</td>
</tr>
</tbody>
</table>
With increased battery capacity, LR vehicles exhibit superior ability to avoid charging on-peak.
Compared to unmanaged charging, electricity costs can reduce 10% (SR SAEVs) to 34% (LR SAEVs).
When all operational costs are accounted for, **SR vehicle scenarios are still cheaper to operate on a per-mile basis.**
Sampled 10 days of LMP data (Wednesday of every 5th week) from 2017
RTP Prediction via Machine Learning

![Graph showing price over time](image)

- Price ($/MWh)
- Time (h)
- t1 to t18
- LMP
LR vehicles are able to decrease electricity cost by 36 to 43% compared to SR vehicles with smart charging.
PV Generation Results - Charging Behavior

LR EVs can reach **higher self-consumption rates (93-99%)** while SR EVs reach 81% self-consumption.
Level 2 chargers cause increased wait times for passengers. All PV Generation scenarios increase zero-occupant vehicle miles traveled.
Key Takeaways

- **Disruptive mobility** trends will change the way urban transportation systems interact with the electric grid.
- Based on simulated SAEV travel & charging behavior, the **SAEV unmanaged charging peak occurs between 6 pm and 8 pm**, which correspond to the end of PM transportation peak.
- Under **TOU pricing** structure, **SC strategies with LR vehicles can reduce energy costs** for the SAEV fleet operator while **maintaining the level of mobility service**.
- Fleet operator electricity costs can be reduced further under **RTP pricing** (especially with LR vehicles). Results suggest operator should focus on **peak-shaving** rather than valley-filling, when price is dynamic.
- **SAEV charging** can be managed to **effectively absorb PV generation**, but at the cost of **increasing zero-occupant miles traveled** (to charge).
- **Battery capacity** plays an essential role in the SAEV-grid interaction. Larger batteries enable SAEVs to act simultaneously as mobile energy user & storage. But with current battery costs & static electricity pricing, fleet operators are likely not incentivized to adopt LR vehicles.