MA 581 Qualifying Exam Problems

April 2016

- 1. Let X be a random variable with a geometric distribution with parameter 0 .
 - 1) Find P(X = 3).
 - 2) Find P(X = 7|X > 5).
 - 3) Find the moment generating function $M_X(t)$ of X.
 - 4) Compute the expected value $\mathbb{E}[X]$ using $M_X(t)$.
 - 5) Use the fact $\operatorname{Var}[X] = (1-p)/p^2$ to compute $\mathbb{E}[X(1-X)]$.

Suppose X_1, X_2, \ldots are independent and identically distributed like X. Let $S_n = X_1 + X_2 + \ldots + X_n$.

- 6) Find Var[\bar{X}_4], where $\bar{X}_4 = S_4/4$.
 - 7). Find the exact distribution of S_4 and justify your answer.
- 2. Let X be a rv with pdf given by $f(x) = cx^3$, for 1 < x < 3, where c is a constant.
 - a. Determine the value of c.
 - b. Find P(2 < X < 2.5).
 - c. Find the cdf F of X.
 - d. Compute P(X > 2.2 | X < 2.7).
 - e. Compute E(X).
 - f. Compute stdev(X).
 - g. Compute E[$cos(X) / X^3$] exactly.
 - h. Compute the pdf of X^2 .
 - i. Suppose that 10 students each independently generate their own value of X. Find the probability that exactly 7 of those students generate a value greater than 2.2.
 - j. Suppose Y is a rv such that X and Y are iid (where X is the rv of this problem). Compute

stdev (3X - 7Y).