
MA 575 – Qualifying Exam

Spring 2012

1. You are given the results from fitting a linear regression with the same response and predic-
tors to two datasets, (X1,y1) and (X2,y2), each with the same number n of observations:

yi = Xiβ + ei, ei ∼ N(0, σ2In), i = 1, 2.

Unfortunately, the original datasets were lost, but from the results you have the least
squares estimators β̂1 and β̂2 from datasets 1 and 2, respectively, and, from their sampling
covariances, (XT

1
X1)−1 and (XT

2
X2)−1. Since both datasets aim to estimate the same

coefficients, you wish to combine the datasets. To this end, you decide to obtain the
(linearly) combined estimate

β̂λ = λβ̂1 + (1− λ)β̂2

where 0 ≤ λ ≤ 1.

(a) Show that β̂λ is an unbiased estimator for β for any λ.

(b) Find Var[β̂λ |X1, X2] as a function of λ, σ2, X1, and X2.

(c) You have now observed x∗ and want the fitted value ŷ∗ based on β̂λ, that is, ŷ∗ = β̂T
λ x

∗.
Similarly, define ŷ∗

1
and ŷ∗

2
as the fitted values based on β̂1 and β̂2, respectively.

If Vi = Var[ŷ∗i |Xi,x∗] is the variance of the fitted value for x∗ based on β̂i, for i = 1, 2,
show that the value λ∗ that minimizes the variance V ∗ = Var[ŷ∗ |X1, X2,x∗] of ŷ∗

is V2/(V1 + V2). As a consequence, also show that the best precision—the inverse
of the variance—for the fitted value is the sum of the precisions for each dataset,
1/V ∗ = 1/V1 + 1/V2.

(d) Defining λ∗ as in the previous item gives you the best linear combination of β̂1 and
β̂2 when estimating the fitted value for x∗. What if you wanted a linear combination
that is best regardless of the observation?

To achieve this goal, you decide to really pool the datasets together and obtain a
least-squares estimator β̂ by regressing

y =

[

y1

y2

]

=

[

X1

X2

]

β + e,

where e ∼ N(0, σ2I2n). A good friend reminds you of the Searle identity that would
enable you to write

(XT
1
X1 +XT

2
X2)

−1 = (XT
1
X1)

−1
[

(XT
1
X1)

−1 + (XT
2
X2)

−1
]−1

(XT
2
X2)

−1

= (XT
2
X2)

−1
[

(XT
1
X1)

−1 + (XT
2
X2)

−1
]−1

(XT
1
X1)

−1 (by symmetry)

Show, using the identity above, that the LSE β̂ can then be written as

β̂ = Λβ̂1 + (Ip − Λ)β̂2, (*)

with Λ = (XT
2
X2)−1

[

(XT
1
X1)−1 + (XT

2
X2)−1

]−1
.



(e) Inspired by (∗), how would you obtain λ such that β̂λ is as “close” as possible to β̂?
(Note: you do not need to fully solve the problem; just comment on your reasoning,
how you would set it up and so on.)

2. Based on data from an orthogonal design—say, you are fitting a polynomial regression
with an orthogonal basis—you want to select a subset of predictors. More specifically,
the dataset contains n observations: a response y and p orthogonal predictors in X =
[

x1 · · · xp

]

, where the xj are column vectors (for each predictor.) As usual, assume
that y = Xβ + e where e ∼ N(0, In).

(a) Show that the least-squares estimator β̂ for β can be obtained component-wise using

β̂j =
xT
j y

xT
j xj

,

for j = 1, . . . , p.

(b) Since RSS = êT ê = yTy − β̂TXTXβ̂, show that Mallow’s Cp for a subset C of
candidate predictors can be written as

Cp =
yTy

σ̂2
− n−

∑

j∈C

(

(xT
j xj)β̂2

j

σ̂2
− 2

)

, (*)

where σ̂2 is the least-squares estimate of σ2 under the full model, that is, when
C = {1, . . . , p}.

Based on the expression for Cp from the last item you decide to select a model in a greedy
approach by first including the predictors that reduce Cp fastest: you order the predictors
decreasingly by Rj = xT

j xjβ̂2

j /σ̂
2. So, model 0 contains no predictor, model 1 contains

only the predictor with largest Rj, model 2 contains the two predictors with largest Rj

and so on. Now define Sj =
∑j

k=1
Rk; from your dataset you plot Sj against j, the number

of predictors in the model, in Figure (a) below, in the left.
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(c) What criterion would you use to select variables based on the expression (∗) if you
wanted to minimize Cp? How would you use this criterion in Figure (a)?

(d) Still following the order defined by Rj, you now compute AIC and PRESS for each of
the models from j = 0 to j = p. The AIC and PRESS scores are depicted in Figure
(b) above, in the right. The labels next to each point list the model (the value of
j.) If you were to select predictors based on these two criteria, would they agree?
Explain and report the best model according to each criterion.

(e) Suppose now that you want to select predictors by using forward selection with BIC
as criterion. How similar would your results be to the approach in the last item—
using only the models defined by the order on Rj—with AIC as criterion? What if
you wanted to use backward elimination instead? Explain.


