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1. One way to obtain bootstrap estimates for the coefficients β from the regression

y = Xβ + e, E[e|X] = 0, Var[e|X] = σ2In, (∗)

is based on sampling the residuals as in the procedure below:

Step 1. Obtain the LSE β̂ and residuals ê by regressing y on X as in (*).

Step 2. Bootstrap the residuals : sample with replacement and equally likely each of the
residuals in ê to obtain ê∗. Note that we can write ê∗ = Bê where B is a matrix
where the i-th row “selects” the i-th sampled residual, that is, if the j-th residual
was sampled at the i-th time then the i-th row of B has zeros in every position
but j, which has one (Bij = 1.)

Step 3. Define bootstrap responses y∗ = Xβ̂+ ê∗ using the residuals in the previous step.
Note that β̂ is fixed.

Step 4. Finally, obtain a bootstrap estimate for β as the LSE β̂∗ from regressing y∗ on X.

Let H and ŷ be the hat matrix and the fitted values from (*).

(a) Show that y∗ is a linear combination of y, that is, find a matrix A that depends on
H and B such that y∗ = Ay. Is it possible for y∗ to be y? Explain.

(b) Show that (i) Var[ê∗|X,B] = σ2B(I−H)BT and so, using the result from the previous
item, that

Var[y∗|X,B] = Var[ŷ|X] + Var[ê∗|X,B]. (ii)

What can you conclude from (ii) about the correlation between ŷ and ê∗? How would
you explain this result in light of the correlation between ŷ and the original residuals
ê?

(c) Suppose you regress the bootstrap residuals ê∗ on X with mean function E[ê∗|X] =
Xγ to obtain the LSE γ̂. Now show, using the fact that regressing the fitted values
ŷ on X yields the same LSE β̂, that β̂∗ = β̂ + γ̂. Is β̂∗ unbiased for β? Explain.

(d) Show that when β includes an intercept then, on average, the bootstrap estimate for
β is the LSE β̂, that is, show that

EB[β̂∗|X] = β̂

where the expectation is taken over bootstrap samples.



2. Suppose that in an experimental study you suspect that many observations were tainted
by a technician and now you want to test them jointly for being outliers. To this end, you
organize the suspected observations as the last q observations from a total of n and adopt
a mean shift outlier model (MSOM) on these last observations:

y1 = xT
1 β + e1

...

yn−q = xT
n−qβ + en−q

yn−q+1 = xT
n−q+1β + δ1 + en−q+1

...

yn = xT
nβ + δq + en

This model can be specified in matrix form by[
y1

y2

]
︸︷︷︸

y

=

[
X1 0
X2 Iq

]
︸ ︷︷ ︸

X

[
β
δ

]
+ e

where E[e|X] = 0 and Var[e|X] = σ2In (as usual) and δ = [δ1 · · · δq]T . After some algebra,
we can show that
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Now consider β̂ and δ̂, the LSE for β and δ under this model, and β̂1, the LSE for β when
regressing only y1 on X1, that is, when ignoring the last q observations.

(a) Show that (i) β̂ = β̂1 and (ii) δ̂ = y2 −X2β̂1, that is, the LSE for δ is the difference
between the (removed) observed values and the fitted values for X2 in the model
without the last q suspected observations.

(b) Show that the last q observations are perfectly fit by the MSOM: ŷ2
.
= X2β̂+ δ̂ = y2.

What can you say about the relation between the LSE σ̂2 for σ2 under the MSOM
and the LSE σ̂2

1 for σ2 under the model without the last q observations?

(c) Find the hat matrix for the MSOM and comment on the leverage for the suspected
data points in light of the results from the previous item.

(d) Conduct a joint outlier test by testing δ1 = · · · = δq = 0. State the test statistic and
its distribution under the null.


