Qualifying Exam: CAS MA 582

Boston University, Spring 2011

Problem 1. Let $X_1, ..., X_n$ be independent identically distributed random variables with probability density function $f_X(x) = \frac{x^3 e^{-x/\theta}}{6\theta^4}$. It is known that $E[X_i] = 4\theta$ and that $Var[X_i] = 4\theta^2$.

- (a) Write down the log likelihood for the data as a function of θ .
- (b) Compute the maximum likelihood estimator, $\hat{\theta}$, for θ .
- (c) Compute the mean and variance of $\hat{\theta}$.
- (d) Compute the Fisher information for θ . Is $\hat{\theta}$ efficient?
- (e) Let $\lambda = 1/\theta$. Find the maximum likelihood estimator of λ and compute its asymptotic distribution as $n \rightarrow \infty$.

Problem 2.

We say the rv X has the W distribution with parameter $\theta > 0$ (written X ~ W(θ)) if X has pdf f(x)= $3x^2/\theta^3$, for $0 < x < \theta$, and f(x) = 0, elsewhere.

Consider the parameterized W family $\{W(\theta) : \theta > 0\}$.

- a. Let Y_n be the maximum of the random sample of size n. Show that Y_n is a consistent estimator of θ .
- b. Find the pdf of Y_n . (*Hint:* Find the cdf first.)
- c. Show that Y_n is NOT an unbiased estimator of θ .
- d. Show that $n(\theta Y_n)$ converges in distribution, and find its asymptotic distribution explicitly.
- e. Find an unbiased estimator of θ , call it T_n . Show that T_n is a consistent estimator of θ .
- f. Show that $n(\theta T_n)$ converges in distribution, and find its asymptotic distribution explicitly.