MA 575 – Qualifying Exam

Spring 2010

1. Given the dataset $\{\mathbf{x}_i, y_i\}_{i=1}^n$, we wish to obtain a *bootstrapped* least-squares estimate for β under the model

$$\mathbf{y} = X\beta + \mathbf{e}, \quad \mathbf{E}[\mathbf{e}|X] = 0, \quad \mathrm{Var}[\mathbf{e}|X] = \sigma^2 I_n,$$
(1)

with $X = [\mathbf{x}_1^T \cdots \mathbf{x}_n^T]^T$.

If $\mathbf{u}_i \doteq (\delta_{ij})_{j=1}^n$ is a $1 \times n$ vector with zero entries apart from $u_{ii} = 1$, then we can "select" the *i*-th row of X by $\mathbf{x}_i = \mathbf{u}_i X$, or the *i*-th entry in \mathbf{y} by $y_i = \mathbf{u}_i \mathbf{y}$. Thus, if \tilde{X} and $\tilde{\mathbf{y}}$ are the bootstrap samples of X and \mathbf{y} respectively, we can represent the bootstrap sample by a matrix B with rows that are similar to \mathbf{u}_i , but with *i* being sampled, and such that $\tilde{X} = BX$ and $\tilde{\mathbf{y}} = By$.

(a) Show that the bootstrapped LSE for β , say $\tilde{\beta}(B)$, is a *weighted* least-squares estimate. More specifically, show that $\tilde{\beta}(B)$ is the least-squares estimator for β in

$$\mathbf{y} = X\beta + \mathbf{e}, \quad \mathbf{E}[\mathbf{e}|X, B] = 0, \quad \mathbf{Var}[\mathbf{e}|X, B] = \sigma^2 W(B)^{-1},$$

where the weight matrix $W(B)^{-1}$ is a function of the bootstrap sample.

(b) Provide an expression for $w(B) \doteq \text{Diag}(W(B)^{-1})$ and argue that

$$w(B)_i \sim \texttt{Binomial}(n, 1/n), \quad i = 1, \dots, n$$

What does $w(B)_i$ represent?

- (c) Since $\hat{\beta}(B)$ depends on w(B), let us denote w(B) as w and set $\hat{\beta}(w) \doteq \hat{\beta}(B)$. Now regard $\hat{\beta}(w)$ as a function of w and use the delta method with a second order approximation around E[w] to conclude that $E_w[\hat{\beta}(w)] \approx \hat{\beta}$, where $\hat{\beta}$ is the least-squares estimator for β in (1).
- (d) Argue that with *positive* probability $\beta(w)$ might not exist. What can go wrong? Be as specific as possible.

2. In regularized regression on p predictors we seek an estimator $\hat{\beta}_R(\Lambda)$ in the model

$$\mathbf{y} = X\beta + \mathbf{e}, \quad \mathbf{E}[\mathbf{e}|X] = 0, \quad \mathrm{Var}[\mathbf{e}|X] = \sigma^2 I_n,$$
(2)

that minimizes

$$SS_{\Lambda}(\mathbf{b}) = (\mathbf{y} - X\mathbf{b})^T (\mathbf{y} - X\mathbf{b}) + \mathbf{b}^T \Lambda^T \Lambda \mathbf{b}.$$

(a) Show that the least-squares estimator for β in the *augmented* model (with artificial observations)

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} X \\ \Lambda \end{bmatrix} \beta + \begin{bmatrix} \mathbf{e} \\ \tilde{\mathbf{e}} \end{bmatrix}$$

is $\hat{\beta}_R(\Lambda) \doteq \underset{\mathbf{b}}{\operatorname{arg\,min}} SS_{\Lambda}(\mathbf{b})$ and give an expression for it.

Assume that $X \doteq [\mathbf{x}_1 \cdots \mathbf{x}_p]$ is *orthogonal* and that we now focus on one regularizing parameter λ and set $\Lambda = \sqrt{\lambda}I_p$. Denote $\hat{\beta}(\lambda) \doteq \hat{\beta}(\Lambda)$.

- (b) If $\hat{\beta}$ is the least-squares estimate for model (2), show that $(\hat{\beta}_R(\lambda))_i = s_i(\lambda)\hat{\beta}_i$ for $i = 1, \ldots, p$ and provide an expression for $s_i(\lambda)$, the *i*-th shrinkage factor.
- (c) Define the hat matrix $H(\lambda)$ with respect to $\hat{\beta}_R(\lambda)$ in model (2) and show that $H(\lambda)$ is symmetric but *not*, in general, idempotent.
- (d) Find the effective degrees of freedom, defined as the trace of $H(\lambda)$, $df(\lambda) \doteq \operatorname{tr}(H(\lambda))$. Verify that df(0) = p (no regularization) and describe the behavior of $df(\lambda)$ as $\lambda \to \infty$. (Hint: recall that $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.)
- (e) If \mathbf{r}_i is the *i*-th row of X, define

$$C(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - \mathbf{r}_i^T \hat{\beta}_R(\lambda)}{1 - H(\lambda)_{ii}} \right)^2,$$

where $H(\lambda)_{ii}$ is the *i*-th entry in the diagonal of $H(\lambda)$. How would you select λ based on $C(\lambda)$? Explain your answer in light of an interpretation for $C(\lambda)$.