MA 582 Qualifying Exam Problems

1. The number of breakdowns X per day for a certain machine is a Poisson RV with unknown mean q $(0 < q < \infty)$, that is, the probability mass function (pmf) p(x;q) of X is given by

$$p(x;q) = P(X = x) = \begin{cases} \frac{q^x \cdot e^{-q}}{x!}, & \text{for } x = 0, 1, 2, ... \\ 0, & \text{elsewhere.} \end{cases}$$

- Let $X_1, X_2, ..., X_n$ denote the observed number of breakdowns for *n* independently selected days.
- a) Identify the distribution of the random variable $Y_1 = X_1 + X_2 + \dots + X_n$.
- b) Find the maximum likelihood estimator $\hat{q}_{\scriptscriptstyle MLE}$ of q .
- c) Show that the MLE $\hat{q}_{_{MLE}}$ is a consistent estimator for q.
- d) Show that the MLE $\hat{q}_{_{MLE}}$ is an efficient estimator for q.
- e) The daily cost of repairing the breakdowns is given by $Y_2 = 3X^2$. Find a MLE \hat{h}_{MLE} for $h = E[Y_2]$.
- f) What is the asymptotic distribution of $\sqrt{n}(\hat{q}_{_{MLE}}-q)$ as $n \to \infty$?

g) Let
$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
. Obtain the limiting distribution of $Z_n = \frac{X_n - q}{\sqrt{\overline{X}_n / n}}$ as $n \to \infty$.

- h) Let $Y_n = \sqrt{n} [\cos(\overline{X}_n) \cos(q)]$. Obtain the limiting distribution of Y_n as $n \to \infty$.
- i) Find a variance stabilizing transformation, that is, a function $g(\cdot)$ satisfying $\sqrt{n}[g(\bar{X}_n) g(q)]$: AN(0,1).
- 2. Let X be a random variable having a power family distribution with parameters a = 2 and b = q > 0(written X : D(q) = P(2,q)), that is, X has a probability density function (pdf) f(x;q) given by

$$f(x;q) = \begin{cases} \frac{2x}{q^2}, & \text{for } 0 < x < q \\ 0, & \text{elsewhere.} \end{cases}$$

Consider the parameterized family $\{D(q): q > 0\}$.

- i) Let Y_n be the maximum likelihood estimator of the random sample of size n from the distribution of X. Find the cdf and pdf of Y_n .
- ii) Show that Y_n is a consistent estimator of q.
- iii) Show that Y_n is a biased estimator of q.
- iv) Find an unbiased estimator of q, call it T_n .
- v) Show that $n(q Y_n)$ converges in distribution, and find its asymptotic distribution explicitly.
- vi) Show that $n(q-T_n)$ converges in distribution, and find its asymptotic distribution explicitly.
- vii) Does the family $\{D(q): q > 0\}$ obey all the regularity conditions for maximum likelihood estimation? Why or why not?