Qualifying Exam: CAS MA 582

Boston University, Spring 2008

- 1. Let $X \sim Pois(\theta)$ with unknown $\theta > 0$ to be estimated.
 - a. Find the maximum likelihood estimator (MLE) $\hat{\theta}_{\text{MLE}}$ of θ .
 - b. Show that $\hat{\theta}_{ME}$ is unbiased for θ .
 - c. Show that $\hat{\theta}_{MLE}$ is consistent for θ .
 - d. Show that $\hat{\theta}_{MF}$ is asymptotically normal.
 - e. Compute Fisher's Information for θ .
 - f. Is $\hat{\theta}_{MLE}$ an efficient estimator of θ ?
 - g. Find the MLE of θ^3 and prove it is consistent and asymptotically normal.
- 2. Recall that $X \sim Exp(\lambda)$ if X has pdf $f(x) = \lambda \exp(-\lambda x)$, for x > 0, and 0 elsewhere. Recall, too, that $E(X) = 1/\lambda$ in this parameterization.
 - a. Find the mgf of X.
 - b. Let $X, X_1, X_2, ..., X_n$ be iid $Exp(\lambda)$ RV's. Show that $S_n = X_1 + X_2 + ... + X_n$ has gamma distribution $\Gamma(n, \lambda)$, written $S_n \sim \Gamma(n, \lambda)$.
 - c. Suppose R and T are iid with common mgf $M(t) = 1/(1-t)^2$. Identify the distribution of R+T.
 - d. If $S_n \sim \Gamma(n, \lambda)$, show that $\sqrt{n}(\frac{S_n}{n} \frac{1}{\lambda})$ converges in distribution, and identify its asymptotic distribution completely and explicitly. (Hint: Use (b).)
 - e. Show that $\sqrt{n}(\sqrt{\frac{S_n}{n}} \sqrt{\frac{1}{\lambda}})$ converges in distribution, and identify its asymptotic distribution completely and explicitly.

3. A random variable (RV) X is said to have a Pareto distribution with parameters $\alpha > 0$ and $\beta > 0$ ($X : Par(\alpha, \beta)$), if the cdf F(x) of X is given by

$$F(x) = F(x; \alpha, \beta) = \begin{cases} 1 - \left(\frac{\beta}{x}\right)^{\alpha}, & \text{for } x \ge \beta \\ 0, & \text{for } x < \beta. \end{cases}$$

- a. Find the pdf f(x) of X.
- b. Find the mean of X.
- c. Let U: Unif(0,1) be a RV with uniform distribution on (0,1). Find a transformation g(u) such that the cdf of a RV g(U) coincides with F(x).
- d. Let $X_1, X_2, ..., X_n$ be a random sample from the Pareto distribution $X : Par(\alpha, \beta)$. Find the distribution (cdf) of the first order statistic $X_{(1)} = \min(X_1, X_2, ..., X_n)$.
- e. Let $X_1, X_2, ..., X_n$ be a random sample from the Pareto distribution $X : Par(\alpha = 3, \beta)$ with unknown parameter β . Show that the statistic $\hat{\beta} = X_{(1)} = \min(X_1, X_2, ..., X_n)$ is e-1) a biased estimator for β (compute the bias of $\hat{\beta}$) e-2) a consistent estimator for β (Hint: use part d.) e-3) a sufficient statistic for β .
- f. Let $X_1, X_2, ..., X_n$ be a random sample from the Pareto distribution $X : Par(\alpha, \beta = 3)$ with unknown parameter α . Show that $\hat{\alpha} = \prod_{k=1}^n X_k$ is a sufficient statistic for α .