Sequential Estimation in Sparse Factor Regression (Kun Chen - University of Connecticut)

  • Starts: 4:00 pm on Thursday, April 14, 2016
  • Ends: 5:00 pm on Thursday, April 14, 2016
Abstract: Multivariate regression models of large scales are increasingly required and formulated in various fields. A sparse singular value decomposition of the regression component matrix is appealing for achieving dimension reduction and facilitating model interpretation. However, how to recover such a composition of sparse and low-rank structures remains a challenging problem. By exploring the connections between factor analysis and reduced-rank regression, we formulate the problem as a sparse factor regression and develop an efficient sequential estimation procedure. At each sequential step, a latent factor is constructed as a sparse linear combination of the observed predictors, for predicting the responses after accounting for the effects of the previously found latent factors. Comparing to the complicated joint estimation approach, a prominent feature of our proposed sequential method is that each step reduces to a simple regularized unit-rank regression, in which the orthogonality requirement among the sparse factors becomes optional rather than necessary. The ideas of coordinate descent and Bregman iterative methods are utilized to ensure fast computation and algorithmic convergence, even in the presence of missing data and when exact orthogonality is desired. Theoretically, we show that the sequential estimators enjoy the oracle properties for recovering the underlying sparse factor structure. The efficacy of the proposed approach is demonstrated by simulation studies and two real applications in genetics.
Location:
MCS 148