David Anderson - University of Wisconsin, Madison

Starts: 4:00 pm on Thursday, November 21, 2013
Ends: 5:00 pm on Thursday, November 21, 2013
Location: MCS 148

Title: Stochastic analysis of biochemical reaction networks with absolute concentration robustness. Abstract: It has recently been shown that structural conditions on the reaction network, rather than a fine-tuning of system parameters, often suffice to impart "absolute concentration robustness" on a wide class of biologically relevant, deterministically modeled mass-action systems [Shinar and Feinberg, Science, 2010]. Many biochemical networks, however, operate on a scale insufficient to justify the assumptions of the deterministic mass-action model, which raises the question of whether the long-term dynamics of the systems are being accurately captured when the deterministic model predicts stability. I will discuss recent results that show that fundamentally different conclusions about the long-term behavior of such systems are reached if the systems are instead modeled with stochastic dynamics and a discrete state space. Specifically we characterize a large class of models which exhibit convergence to a positive robust equilibrium in the deterministic setting, whereas trajectories of the corresponding stochastic models are necessarily absorbed by a set of states that reside on the boundary of the state space (i.e. an extinction event). The results are proved with a combination of methods from stochastic processes and chemical reaction network theory.