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Executive Summary

Statistical inferences from observational studies are often subject to confounding caused

by both observed and unobserved confounding variables. Conventional methods for con-

trolling for confounding include applying statistical techniques such as stratification and

multivariable regression analysis. In the presence of time-dependent confounders, however,

such techniques may still lead to biased estimates. Marginal structural modeling (MSM)

uses a multi-step estimation strategy to separate confounding control from the estimation

of the parameters of interest, allowing the investigator to obtain unbiased estimates. Given

that there are no unmeasured confounders and the probability of treatment is positive, the

estimates of a marginal structural model can be interpreted as causal. This report serves as

a starting point for researchers who wish to use MSM in their studies, providing an overview

of the theory behind MSM and a guidance for its implementation.

Keywords: marginal structural models, causal inference, time-dependent confounders,

weighted regression, counterfactuals
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1 Introduction

A causal relationship between a treatment and its associated outcome variable becomes

ambiguous in the presence of a confounder; the treatment effect is confounded when one or

more risk factors for the outcome are also correlated with the treatment. Randomization

in clinical trials eliminates or reduces most of such confounding by randomly assigning each

subject into either the control or treatment group, thereby allowing the investigator to mea-

sure the true causal effect of the treatment. Observational studies, in which randomization

cannot be performed, typically address confounding by applying statistical techniques such

as stratification and multivariable regression analysis. For a point treatment study in which

the treatment is administered once, multivariable regression models may be sufficient to con-

trol for confounding variables. However, in longitudinal studies with repeated treatments

over time, the estimates from regression models may still be biased if (1) there exists a time-

dependent covariate that predicts subsequent treatment and is an independent predictor of

the outcome, and (2) past treatment history predicts the covariate (Hernán, Brumback, &

Robins, 2001). A covariate or risk factor is considered as a time-dependent confounder if it

satisfies (1). Robins (1999) proposes a marginal structural model (MSM) as a method by

which one can infer a causal relationship between a time-dependent treatment and outcome

in the presence of a time-dependent confounder. MSM uses a two-step modeling strategy

that separates confounder control from the structural model, avoiding over-adjustment of

confounders (Joffe, Have, Feldman, & Kimmel, 2004). Since its development several studies

have applied MSM to investigate the effect of medication use: aspirin use on cardiovascular

deaths, methtrexate use on mortality in patients with rheumatoid arthritis, asthma rescue

medication on peak expiratory flow rate, and heparin use on arteriovenous fistula surgery

outcome in patients with ESRD (Choi, Hernan, Seeger, Robins, & Wolfe, 2002; Cook, Cole,

& Hennekens, 2002; Joffe et al., 2004; Mortimer, Neugebauer, van der Laan, & Tager, 2005).

This paper is intended to provide a practical guide to researchers who wish to use MSM

in a relatively quick manner. As such, the following sections on the theory of MSM and
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its estimation strategy are not exhaustive. Refer to Robins, Greenland, and Hu (1999) and

Robins (1999) for a thorough exposition of the theory and its mathematical justifications.

2 Theory

2.1 Counterfactuals

Ideally, individual causal effects can be estimated simply by comparing the outcome

under the treatment (Ya = 1) and the outcome under no treatment (Ya = 0) for each person.

However, observational data usually consist of only one of the two outcomes because each

person receives either treatment or no treatment. This may be considered as a missing-data

problem, in which counterfactual outcomes—the outcome that would have been observed

had the individual received the treatment other than the one s/he actually received—are

not observed (Mortimer et al., 2005). Marginal structural models estimate the average

causal effect of a treatment on potential outcomes (or counterfactuals) by comparing the

distributions of Ya = 1 and Ya = 0 on the aggregate (Joffe et al., 2004).

2.2 Causal Pathway

Figure 1 is a set of directed acyclic graphs (DAG) that depict the causal pathways be-

tween variables of a longitudinal study in which a time-dependent treatment is present. In

a DAG, the nodes represent variables and the directed arrows represent direct causal effects

(Pearl, 1995). The treatment At is time-dependent because its effect on the outcome varies

depending on when it is administered. Figure 1(a) shows that both the measured and unmea-

sured covariates at baseline, L0 and U0 respectively, predict subsequent treatment A1 and

also independently predict the outcome, Y , confounding the treatment effect. Furthermore,

the past treatment history A0 predicts the subsequent covariate levels L1 and U1. Since Ut

cannot be measured, it is impossible to control for the confounding caused by Ut. MSM uses

weighted estimation to adjust for the confounding caused by Lt, assuming that there is no
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Figure 1: Directed acyclic graphs (DAG) illustrating the causal pathways between measured
(Lt) and unmeasured (Ut) covariates, a time-dependent treatment (At), and the outcome (Y ):
(a) At is confounded by both unmeasured and measured covariates (b) At is confounded by
only Lt (c) No confounding exists. Source: Robins et al. (2000).
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unmeasured confounding as in Figure 1(b). Figure 1(c) represents the relationship in which

no confounding exists.

2.3 Assumptions

MSM assumes that there exists no unmeasured confounders. In order for IPTW esti-

mation to consistently estimate the causal effect of a time-dependent treatment, all rele-

vant confounders should be measured (Robins, 1999). While such an assumption may seem

too strong, point-treatment studies require the same assumption to make causal inferences

from regression parameter estimates (Hernán, Brumback, and Robins, 2000; 2001). The as-

sumption of no unmeasured confounders cannot be tested directly using observational data

(Hernán et al., 2001). However, one may conduct a sensitivity analysis to examine the effect

of the confounding caused by unmeasured confounders on the causal parameter estimates

(Robins et al., 1999; Robins, 1999). Alternatively, Henneman, van der Laan, and Hubbard

(2002) suggest using instrumental variables to control for unmeasured confounding.

Another critical assumption of MSM is that the probability of treatment must be nonzero.

Often called the positivity condition or experimental treatment assumption, it requires that

the probability of being assigned to each of the treatment options is greater than zero. In

fact, wi (defined in 2.4) is undefined when the conditional probability of treatment is 0. An

example in which the positivity condition is violated is an exposure study in an occupational

setting (Robins et al., 2000). If At = 1 denotes positive exposure to some industrial chemical

at time t and Lt = 1 indicates when the worker was off duty (e.g. weekends, sick days),

then At = 0 for all workers with Lt = 1. Robins et al. (2000) suggest using structural

nested models for such studies. In practice, even extremely low probabilities of treatment

may substantially bias the IPTW estimator (Mortimer et al., 2005). For example, subjects

with certain characteristics may be practically unlikely to receive treatment. To assess

the extent to which the IPTW estimates are biased due to a violation of the experimental

treatment assumption, Wang, Petersen, Bangsberg, and van der Laan (2006) have developed
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a diagnostic procedure that quantifies the magnitude of the bias.

2.4 Estimation

Several methods have been used to estimate the parameters in marginal structural mod-

els including inverse-probability-of-treatment weight (IPTW), double robust, and targeted

maximum likelihood estimators (Odden et al., 2011).

IPTW estimator is the most commonly used estimator for MSM owing to its ease of

implementation using standard statistical software packages (Mortimer et al., 2005). IPTW

estimation is a two-stage process. In the first stage, weights are derived for each subject

i. As its name suggests, the weights of the IPTW estimator are simply the inverse of

the conditional probability of receiving treatment A given the past treatment history and

covariate history:

wi =
t∏

k=0

1

P (Aik = 1 | Āik−1, L̄ik)
(1)

Āk−1 denotes treatment history through time t− 1 and L̄k denotes the covariate history

through time t. Ā−1 is defined as A0. wi is then used to perform a weighted regression analysis

in the second stage. Weighting in effect creates a pseudo-population in which no confounding

exists by replicating wi copies of each subject (Li, Evans, & Hser, 2010). Therefore, the

parameter estimate of the treatment in this population can be interpreted as the true causal

effect of the treatment on the outcome.

The IPTW estimator performs inefficiently if wi has extremely large or small values. To

stabilize the distribution of wi, 1 in the numerator is replaced by the conditional probability

of the treatment given the past treatment history and the baseline covariates (Robins et al.,

2000):

swi =
t∏

k=0

P (Aik = 1 | Āik−1, Li0)

P (Aik = 1 | Āik−1, L̄ik)
(2)
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Note that if the confounding effect of L̄ik = 0 (i.e. no confounding exists), swi = 1. Both

the denominator and the numerator of swi can be estimated using the standard statistical

software packages (e.g. Stata and SAS): A logistic regression can be performed for a binary

treatment variable and an OLS regression can be performed for a continuous treatment

variable. Compared to swi, wi tends to be more variable and skewed (Li et al., 2010).

However, swi is still subject to skewness caused by extreme values. However, Bodnar,

Davidian, Siega-Riz, and Tsiatis (2004) and Li et al. (2010) report that re-estimating the

treatment effect after either removing the individuals with extreme weights or top-coding

the extreme weights did not qualitatively change their findings.

The treatment model in the denominator must be correctly specified to obtain an un-

biased estimate of the parameter coefficient in the subsequent regression (Mortimer et al.,

2005). However, one may be tempted to include all potential confounders in the treatment

model in effort to avoid a violation of the no unmeasured confounder assumption (discussed

in Section 2.3). In fact, Bodnar et al. (2004), citing Robins, suggest that including more

variables may be preferable to the risk of excluding relevant confounders. While it may

decrease the risk of violating the no unmeasured confounders assumption, including more

(and possibly irrelevant) variables increases the risk of model misspecification. Mortimer et

al. (2005) propose a model building procedure that selects the best treatment model from

several candidate models with different combinations of variables. In essence, the procedure

chooses the treatment model that gives the best IPTW estimate of the MSM parameter de-

termined from the validation using 10 percent of the observed data. It uses the Monte Carlo

cross-validation with a modified residual sums of squares criterion to evaluate goodness of

fit, which optimizes the tradeoff between bias and variance (Mortimer et al., 2005).

In a longitudinal study, some study subjects are lost to follow-up due to, among many

other reasons, adverse events, personal reasons, and death. Loss to follow-up, or attrition, is

a major source of selection bias because it may cause significant differences in the composition

of the remaining study subjects and those who drop out. Consequently, not adjusting for loss

7



to follow-up may result in biased MSM parameter estimates. Censoring weights—attrition

is considered as right-censoring— are typically used to account for any loss to follow-up in

the observed data (Hernán et al., 2001). Conceptually, censoring is considered as another

time-dependent treatment (Robins et al., 2000). Therefore, censoring weights are derived

similarly to swi, where

cwi =
t∏

k=0

P (Cik = 0 | C̄ik−1 = 0, Aik−1, Li0)

P (Cik = 0 | C̄ik−1 = 0, Aik−1, L̄ik)
(3)

The only difference here is that the denominator models the probability of not receiving

treatment (being censored) at time t instead of receiving treatment (Ait = 1) as in swi. The

final weight is simply the product of the two weights previously derived:

fwi = swi · cwi (4)

fwi is then used in a subsequent regression model to obtain the MSM parameter estimate.

Fewell et al. (2004) outline how to derive fwi and conduct a weighted regression analysis in

Stata.

2.5 Limitations

MSM assumes that the treatment regime is fixed over time. For instances in which the

treatment varies depending on an intermediate measure (e.g. white blood cell count), the

parameter estimates of MSM may be biased (Bodnar et al., 2004). History-adjusted MSM—

generalized MSM—has been proposed as an alternative approach for modeling dynamic

treatment regimes (Brunelli et al., 2008; Neugebauer, Fireman, Roy, O’Connor, & Selby,

2012; Petersen, Deeks, Martin, & van der Laan, 2005).

Consistency of the IPTW estimator relies heavily on the assumption of no unmeasured

confounders (Bodnar et al., 2004). Misspecification of the treatment model due to omitted

confounders in deriving the IPTW can cause substantial bias in the subsequent regression

8



model using those weights (Mortimer et al., 2005). To address this issue, Imai and Ratkovic

(2013) have proposed a new method—the covariate balancing propensity score method—

that optimizes the inverse probability weights by making the treatment model robust to

misspecification.

3 Applications

Cook et al. (2002) examine the effect of aspirin use on cardiovascular deaths. The data

come from the Physicians’ Health Study, a clinical trial that randomized about 22,000 physi-

cians to either aspirin use every other day or placebo. In this study, non-fatal cardiovascular

events such as MI, stroke, and coronary artery bypass graft are identified as a time-dependent

confounder because they are predicted by prior aspirin use and predict subsequent aspirin

use. They are also an independent risk factor for the outcome—cardiovascular (CV) death.

Compared to the intent-to-treat analysis estimate of RR=0.99 (95% C.I.: 0.70 - 1.40), the

MSM parameter estimate from a weighted pooled logistic regression suggests that aspirin

use is protective against CV death (RR=0.74, 0.48 - 1.15). Although none of the estimates

are statistically significant, the lower RR given by MSM indicates that the IPTW weight

appears to have removed the confounding by indication—those who experience a non-fatal

CV event are more likely to initiate aspirin use compared to those who do not.

While most applications of MSM are found in epidemiology and medicine, some studies

have begun to apply MSM in other contexts. Do, Wang, and Elliott (2012), for example,

apply MSM to investigate the effect of neighborhood poverty on mortality risk. Because

neighborhood exposure is dynamic—factors that affect neighborhood such as demograph-

ics, socioeconomics, and the environment change over time—they suggest that single-point

estimates are likely to be underestimates. Moreover, they point out that time-varying covari-

ates such as income, marital status, educational attainment, and employment status predict

future likelihood of living in a certain neighborhood and also independently predict health
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outcomes. Therefore, adjusting for the time-varying covariates in a single regression model

to estimate the neighborhood effect on mortality risk may result in biased estimates. Calling

such a model the näıve model, they compare the estimates obtained from the näıve models

to that of the MSM models. Whereas the näıve models do not show any significant neigh-

borhood effect, the MSM model for the neighborhood poverty from 20% to 100% indicates

a 63% increase in the odds of mortality for every 10% increase in neighborhood poverty.

4 Example

Cook et al. (2002) provide a hypothetical example in which 200,000 subjects are random-

ized to either aspirin or no aspirin use and followed for 2 years (Figure 2). The outcome

variable is death cause by myocardial infarction (MI). The probabilities of occurrence for

each state are listed in Cook et al. (2002).

Analysis Rate ratio
Intent-to-treat 0.52

As-treated (AT) 0.66
Counterfactual AT 0.43

MSM 0.44

Table 1: Rate ratios of the rate of
deaths among aspirin users to that
of non-users based on the frequen-
cies in Figure 2. The rate ratio for
MSM was taken from Cook et al.
(2002).

The estimated rate ratio (RR) in the intent-to-treat (ITT) analysis is 0.52 while the

RR in the as-treated (AT) analysis is 0.63 (Table 1). The AT RR is greater than the ITT

RR because those who experience nonfatal MI in year 1 have increased risk of MI death

in year 2 compared to those who do not experience nonfatal MI (Cook et al., 2002). Both

estimates are still biased because the effect of aspirin use on MI death is confounded by

the nonfatal MI. The true causal RR can be estimated by assuming full compliance to the

10



 

Figure 2: A hypothetical population of 200,000 randomized to aspirin (ASAt) or no aspirin
use (ASAt), where t indicates the follow-up year. MI denotes myocardial infarction, N, the
frequency of subjects who followed each path, and SW, the stabilized weights for subjects in
each subgroup. Source: Cook et al. (2002).

treatment assignment. The counterfactual N reflects the frequencies of each state in year 2

under full compliance (Figure 2). The counterfactual RR of 0.43—lower than the arbitrary

RR of 0.5—suggests that aspirin use reduces not only the risk of MI death, but also the risk

of nonfatal MI. The MSM estimate using the stabilized weights is 0.44—slightly higher but

the closest to the true causal RR compared to the ITT and AT estimates (Table 1).

A reproduced version of the example, not written by the original authors, is available as

an Excel spreadsheet (https://www.dropbox.com/s/n84tpnpax7ru4a8/COOK%20APPENDIX

mod.xlsx).
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5 Suggested Reading

Cook et al. (2002) presents a relatively straightforward application of MSM in examining

the effect of aspirin use on cardiovascular deaths. The hypothetical example in its appendix

is described in Section 4. Most of the applications of MSM presented in this paper involve

a medication treatment effect; as summarized in Section 3, Do et al. (2012) applies MSM to

investigate the effect of a non-medication treatment—neighborhood poverty.

Fewell et al. (2004) provides useful information for implementing MSM using Stata.

Complete with step-by-step Stata codes and abbreviated outputs in the body of the text

(not in appendix), it guides the reader in programming Stata to run a MSM.

Robins et al. (1999) and Robins (1999) develop the theory on marginal structural mod-

eling. It provides the intuition of the method as well as its mathematical justifications.

While difficult to read due to their theoretical nature, they do represent the early works that

formally developed MSM.

MSM is only one class of models that estimate causal parameters. In their book, Causal

Inference (work in progress), Miguel Hernán and Jamie Robins synthesize the theories and

methods used in modeling causality in a cohesive manner. A detailed description of the

book as well as the drafts and other supplemental materials including SAS, Stata, and

R programs can be found on Hernán’s webpage: http://www.hsph.harvard.edu/miguel

-hernan/causal-inference-book/.

In addition to the materials from Causal Inference, more programs are available on

the webpage from the Program on Causal Inference at Harvard School of Public Health

(http://www.hsph.harvard.edu/causal/software/). The programs pertaining to this

report include “Marginal structural Cox model in SAS”, “Structural models for survival

analysis in SAS: the MSM macro”, and “Marginal structural models in Stata”. Note that

“Marginal structural models in Stata” does not provide the actual program file as in the first

two, but merely refers to Fewell et al. (2004).

12

http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
http://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
http://www.hsph.harvard.edu/causal/software/


References

Bodnar, L. M., Davidian, M., Siega-Riz, A. M., & Tsiatis, A. A. (2004). Marginal structural

models for analyzing causal effects of time-dependent treatments: an application in

perinatal epidemiology. Am J Epidemiol , 159 (10), 926–34.

Brunelli, S. M., Joffe, M. M., Israni, R. K., Yang, W., Fishbane, S., Berns, J. S., & Feldman,

H. I. (2008, May). History-adjusted marginal structural analysis of the association

between hemoglobin variability and mortality among chronic hemodialysis patients

[Article; Proceedings Paper]. Clinical Journal of the American Society of Nephrology ,

3 (3), 777–782. (39th Annual Meeting of the American-Society-of-Nephrology, San

Diego, CA, NOV 14-19, 2006)

Choi, H., Hernan, M., Seeger, J., Robins, J., & Wolfe, F. (2002, APR 6). Methotrexate

and mortality in patients with rheumatoid arthritis: a prospective study. Lancet ,

359 (9313), 1173-1177.

Cook, N., Cole, S., & Hennekens, C. (2002, JUN 1). Use of a marginal structural model

to determine the effect of aspirin on cardiovascular mortality in the physicians’ health

study. Am J Epidemiol , 155 (11), 1045-1053.

Do, D. P., Wang, L., & Elliott, M. (2012). Investigating the relationship between neighborhood

poverty and mortality risk: A marginal structural modeling approach (Tech. Rep. No.

12-763). University of Michigan Institute for Social Research.
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Glossary

as-treated analysis based on subjects’ observed treatment and outcome in a randomized

clinical trial. While it accommodates loss to follow-up, randomization is lost because

the remaining subjects in each treatment arm may no longer be random.

intent-to-treat analysis based on subjects’ initial treatment assignment in a randomized

clinical trial. Consequently, it does not take into account attrition (or loss to follow-up).
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