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Abstract

This paper proposes a structural model to study if patient non-compliance is the

result of strategic experimentation or side e¤ect avoidance. The model is estimated

using data from a clinical trial studying the e¤ects of Topamax on alcoholism. I �nd

empirical evidence supporting the hypothesis of "forward looking" patients who use

non-compliant behavior to increase their learning rates. On average, dose consumption

is 6.5% higher in the Topamax group and 9.2% higher in the placebo group when

comparing �forwarding looking�versus myopic patients. The dynamic model predicts

that patients in the experimental group who experiment with dose converge faster

to their actual group assignment than if they were to maximize static utility only.

Lastly, the estimated treatment e¤ect found in the structural model is nearly twice the

magnitude of the OLS estimate.

Introduction

This paper proposes a structural model of patient behavior to study if patient non-

compliance is the result of strategic experimentation or side e¤ect avoidance. In a clinical
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trial, a patient is uncertain along two dimensions: her treatment group assignment and the

experimental drug�s treatment e¤ect. In an e¤ort to resolve these uncertainties, patients may

vary dose consumption (display noncompliant behavior) to accelerate the learning process.

For example, a patient may forgo all her pills in the �rst period, then attribute any changes in

her health over this period as part of the natural progression of her disease. In the following

period, she may then choose to act compliant and again observe changes in her health. If

these changes do not deviate su¢ ciently from her previous experience, then she can infer

either the treatment e¤ect is trivial or she has been randomized into the placebo group. On

the other hand, if the change in health is large, then she updates her beliefs by increasing

her posterior belief of being randomized into the treatment group.

Patient learning is modelled within a dynamic discrete choice (DDC) framework. A

patient observes changes in her health (both side e¤ects and health status), then uses these

observed changes to update her beliefs on the treatment e¤ect and treatment group assign-

ment simultaneously using Bayes�Law. Next, the patient chooses whether to remain in

the trial and if so how much to consume. The key insight of the model is the information

gathered from side-e¤ect experiences. Although side e¤ects do present a direct source of

disutility, patients may use side e¤ect experiences as an instrument to identify their group

assignment. Consider a randomized placebo controlled trial where the experimental treat-

ment is known to present side e¤ects in the form of changing one�s hair green. If a patient

were to experience such a side e¤ect, though unpleasant, the patient could infer that she

has been assigned to the treatment group and would be able to update her beliefs on the

treatment e¤ect without the additional uncertainty of possibly consuming a placebo. Fur-

ther, if changes in health and side-e¤ects are increasing with dose, then learning may be

accelerated by consuming a higher dose than the optimal myopic level. Mirman, Grossman,

and Kihlstrom (1977) describe a model of strategic experimentation with pharmaceutical

drugs where "forward-looking" agents are found to accelerate learning by consuming more

of the drug than the optimal myopic dosage.
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The structural model is estimated using data from a clinical trial, which tests the e¤ects

of Topamax, an anti-seizure medication, on alcohol consumption. The estimated model

�nds empirical evidence supporting the hypothesis of "forward looking" patients who use

non-compliant behavior to increase their learning rates. On average, dose consumption

is 6.5% higher in the Topamax group and 9.2% higher in the placebo when comparing

forwarding looking versus myopic patients. This result is consistent with theoretical models of

learning with strategic experimentation. Further, the dynamic model predicts that patients

in the experimental group who experiment with dose converge faster to their actual group

assignment than if they were to maximize static utility only.

Literature Review

Self selection models are widely used to control for attrition and non-compliance [Haus-

man (1979), and Heckman, Hohmann, and Smith (2000)]. Self -selection assumes that a

patient makes a sequential choice: (1) "should I remain in the trial, and (2) if I remain, then

how much should I consume?" A �rst stage regression on survival probabilities is estimated.

These predicted survival probabilities are then used to correct for attrition bias in second

stage regressions on health outcome measurements. Sample selection models highlight the

e¤ect of attrition on drug e¢ cacy estimates; however, these methods can neither account for

learning, nor provide a framework in which to mitigate attrition bias by providing alternative

experimental speci�cations.1

The relationship between attrition decisions and patient learning is initially studied by

Philipson and DeSimone (PD, 1997). PD recognize that if attrition behavior is the result

of an exogenous process, then randomization in RCT�s should imply homogenous attrition

rates across treatment groups. The authors reject the null hypothesis of homogenous attrition

rates in a collection of clinical trials on substance abuse. Heterogeneous attrition rates are

1Malani (2005) further extends the discussion of selection by demonstrating self-selection in clinical trials
for treatment of ulcers is positively correlated with the inital treatment probability. The author states that
as the probability of treatment increases the enrollment of less optimistic (healthier) patients increases, thus
leading to lower estimated values of the treatment e¤ect (smaller bias).
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Figure 1: Survival Function by Treatment Group

also a feature of the Topamax clinical trial data, where attrition rates are consistently higher

in the placebo group than in the treatment group (see Figure 1). Moreover, the di¤erence

in attrition rates between treatment groups increases between weeks 3 and 12. This result

motivates the study of attrition as a utility maximizing decision.

The model presented in this paper is closely related to the growing empirical literature

on the demand for experience goods using Bayesian learning within a DDC framework [Er-

dem and Keane (1996), Ackleberg (2006), Crawford and Shum (2006), Coscelli and Shum

(2004)]. In these studies, an agent learns a product�s quality through repeated exposure

(purchase and/or advertising). These models utilize observational consumer level data to

infer product quality learning from a consumer�s purchase history. Chan and Hamilton

(2006) investigates attrition behavior in a clinical trial on HIV combination treatments (ddI,

AZT+ddI, AZT+ddC) with an active control (AZT alone). The authors o¤er a framework

for evaluating randomized experiments in light of subject learning. Side e¤ects enter as un-

observable group characteristics leading to disutility, but do not a¤ect patient learning. The

authors �nd evidence that when accounting for unobserved side e¤ects, the treatment that

maximizes utility is not always the most medically e¤ective treatment.

Unlike these previous models, which primary study switching behavior (attrition), this

study focuses on quantity experimentation. The role of patient noncompliance has been

widely studied in the medical �eld [see Efron and Feldman (1991), Goetghebeur and Lapp
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(1997), Fischer and Goetghebeur (2004)], but the issue has received much less attention from

the economics literature. Ellickson, Stern, and Trajenberg (1999) are the �rst to develop

a model of prescription drug adherence. The study builds on physician�s motives when

prescribing drugs and patient adherence associated with these drugs. Although, the authors

provide an estimation strategy to measure patient welfare, the study lacks appropriate data

to estimate the model of behavior. Lamiraud and Geo¤ard (2007) does estimate a model of

patient welfare concentrating only on drug adherence. The authors view noncompliance as

the result of a utility maximizing decision in a static discrete choice model. Side e¤ects are

a source of disutility and may lead to non-compliance. The authors estimate their model

using data from a randomized clinical trial that compares the e¢ cacy of 2 tritherapy for

treatment of HIV and �nd that for two drugs, which demonstrate the same level of clinical

e¢ cacy and toxicity, a higher adherence level is associated with higher patient welfare. These

reduced form results highlight the importance of non-compliance when evaluating the welfare

e¤ects of pharmaceutical drugs, but these techniques do not explicitly control for learning

or experimentation.

This paper extends the current literature by modelling and estimating patient noncom-

pliant behavior in a dynamic discrete choice model with Bayesian learning. In the previ-

ous models, agents are only uncertain about product quality, we consider a model where

a patient�s uncertainty extends along two dimensions: drug quality and treatment group

assignment.2 Therefore, patients cannot immediately attribute observed changes in health

to a treatment e¤ect. Following Fernandez (2009), a patient�s belief on treatment group

assignment is allowed to a¤ect her attrition decision and her level of compliance. This non-

trivial extension captures changes in patient�s behavior associated with changes in the initial

treatment probability. For example, a patient who is initially informed that her chance of

receiving the experimental treatment is 90% may be less likely to exit the trial than if her

2The proposed model can be used in other �elds of economics. In the economics of education, college
students face uncertainty in teacher quality and in their own ability when choosing to drop a class. In
labor economics, �rms face uncertainty in demand and worker productivity when making worker attrition
decisions.
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chances are only 10%. If a patient believes she may receive the experimental drug with a

90% chance, then she may remain in the trial longer for fear of forgoing actual treatment,

even when initial health bene�ts appear to be small.

Second, the model incorporates observable side e¤ect experiences as informative signals

of treatment group assignment and a potential source of disutility caused by participating in

the trial. Further, this source of disutility may intensify with an increase in dose consump-

tion. Some clinical trials do include an active ingredient in the placebo medication to mimic

the side e¤ect present in the experimental medication thereby reducing the likelihood of pa-

tients learning their treatment assignment.3 Lastly, �nancial compensation for participating

in the trial may be used to estimate welfare e¤ects associated with side e¤ect experiences,

uncertainty, and demand for clinical trial participation. The additional structure provides a

framework to analyze patient behavior under di¤erent experimental designs, such as di¤erent

initial treatment probabilities or compensation amounts.

Data

Data from a randomized double blinded placebo controlled study testing the use of

Topamax to treat alcohol dependence is used to evaluate patient learning and experimenta-

tion. Topamax (Topiramate) was originally approved by the FDA in 1996 to treat seizures,

but has recently been tested to treat various types of addiction including alcoholism. In this

study, 150 patients participate in a 12 week study where half of the patients are randomly

assigned to receive either placebo or Topamax. In addition to the study medication, pa-

tients also participate in therapy sessions, receive free medical services, and are given weekly

compensation of $20 per visit. Prior to consent, patients are informed of the possible risks in-

cluding potential side e¤ects associated with Topamax, which include drowsiness, dizziness,

slurred speech, and slowing of motor skills.

3A clinical trial studying the e¤ects of acyclovir for the prevention of recurrent herbes simplex virus
eye disease use a lactose �ller that served to mimic the gastrointestinal side e¤ects of the acyclovir. (New
England Journal of Medicine, July 1998)
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Figure 2: Health Status by Treatment Group

The study collects both medical and demographic information about each patient. De-

mographic data includes drug use, employment status, race, age, height, weight, criminal

record, and family history. Table 1 provides a comparison of means for some observable

demographic variables. The average patient is a 42 year old male with a body mass index

(BMI) of 26.12, 13.53 years of schooling, and an annual income of $39,000. Most patients

hold at least a high school diploma and have careers in various working sectors including

Clerical and Sales (25%), Administration (24%), and Skilled Manual Labor (18%). The

racial distribution among patients is white (60%), Mexican (29%) and other (11%).4

Alcohol dependence is monitored using a patient�s Gamma-glutamyl transferase (GGT)

level. The GGT test provides a better measure of alcohol dependence than a blood alcohol

level (BAL) measure because a patient would need to abstain from alcohol for 4-5 weeks

to reach normal GGT levels. A patient need only abstain from alcohol for several hours to

a¤ect the BAL measure. While GGT levels are initially higher in the experimental group

than the placebo group, the largest decrease in GGT levels are observed in the experimental

group. Baseline GGT values (81.8 Topamax and 65.3 Placebo) are compared with values

recorded during the twelfth visit (57.8 Topamax, 52.5 Placebo).5

The study documents side e¤ects by recording the date of onset, duration, severity, and

action taken. The likelihood of experiencing at least one side e¤ect is about the same in

4The distribution of race is more a re�ection of the study location, Texas, than of the population of
alcoholics.

5Though unsual, it is possible for randomization to yield unequal baseline measures in GGT.
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both groups, Topamax (47.33%) and Placebo (46%). The average number of side e¤ects

reported by patients in each group is 4.65 in Placebo, and 7.78 in Topamax. The most com-

mon side e¤ects experienced in the study are parasthesia (18%), somnolence(16%), anxiety

(13%), fatigue (12%), and weight loss (10%).6 Side e¤ects may have both direct and indirect

consequences on patient participation. The direct e¤ect of side e¤ects is disutility associ-

ated with pain or discomfort. An indirect e¤ect associated with side e¤ects is learning in

that a patient may infer her group assignment through side e¤ect experiences. For example,

parasthesia is eight times more likely to occur in the treatment group than in the placebo

group. Uninformative side e¤ect signals include anxiety and somnolence, as they are equally

likely to occur in either treatment group.

Overall, 44% of placebo patients and 28% of Topamax patients exit the trial. On

average, patients are 9.7% more likely to leave the placebo group than the Topamax group

during any given week. A formal test where the null hypothesis is homogenous attrition rates

across groups is rejected at the 1% level using a paired Student t test (T= -4.96, p-value =

.001). Two probable reasons for heterogenous attrition rates are side e¤ects and learning.

If patients are sensitive to side e¤ects, then, holding all else equal, as side e¤ects increase,

then so should the di¤erence in attrition rates between treatment groups. If side e¤ects are

the predominant factor of attrition, then one would expect to �nd higher attrition rates in

the Topamax group instead of the placebo, but attrition is observed to be higher in the

placebo group. An alternative reason for heterogenous attrition rates is learning. Patients

receive signals on the treatment e¤ect of the drug through observed changes in health. If a

patient does not experience a signi�cant improvement in health, then she may infer that her

group assignment is placebo, and would exit the trial in favor of the outside medical option.

Attrition as a result of learning would lead to higher attrition rates in the placebo group, as

is observed in the data.
6Parasthesia is a numbing sensation felt along the extreminities. Sombelance can be described as extreme

fatigue.
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Figure 3: Noncompliance by Treatment Group

An important characteristics of the data is the presence of patient non-compliance. Non-

compliance is the event when a patient does not consume her prescribed amount of the study

medication. Non-compliance is observed by the econometrician through pill consumption.

At each visitation, a patient must return any unused tablets prior to receiving additional

medication. Missed doses are calculated as [# of pills prescribed]� [# of pills consumed] =

�d: Missed doses serve as the best measure of non-compliance, but this measure is not

without �aws. A patient may choose to lie and always report she has consumed all her

prescribed pills when she has not. Alternatively, a patient may be non-compliant because she

has lost some tablets, but the measure of missed dose would observe her as being compliant.7

For simplicity, it is assumed that patients are honest and never lose their medication. Figure

3 illustrates non-compliant behavior by graphing the average level of �d by group. Non-

compliant behavior increases for both groups at the same average rate (7% - 8%) throughout

the study, but there is greater variation in the level of non-compliance in the treatment group.

I propose two reasons to observe non-compliant behavior. First, dose is chosen as the

result of maximizing current utility. A patient views improved health as the bene�t of

increasing her dose, but faces the cost of an increased risk of side-e¤ects. If side e¤ects are

signi�cantly di¤erent between groups, then one would expect higher rates of non-compliance

7Paes et al (1998) studied the compliance patterns of 91 diabetic patients using oral antidiabetics. Using
Medication Event Monitoring System data as a standard, the results show that pill count and re�ll data
overestimate the compliance of this group of patients.
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in the experimental group than in the control group.

A second reason is the patient varies dose to learn her group assignment. In an extreme

example, a patient may choose to consume none of her prescribed pills in the �rst period and

consume all her pills in the following period. If the patient observes a signi�cant improvement

in health between the two periods, then she may infer she has been randomized into the

experimental group, else her beliefs will adjust towards the placebo group. A di¤erent

channel of learning is through side e¤ects. Again, if a patient does not experience higher

than normal side e¤ects when taking all her pills, then she may infer her group assignment is

the placebo group because placebo side e¤ects are independent of dose. Patients can improve

their rate of learning by becoming "active experimenters" through dose variation. While a

non-learner is only concern with maximizing current utility. An active experimenter is a

dynamic optimizer who recognizes that dose choice today will a¤ect both health tomorrow

and their rate of learning. The study focuses on these two sources of patient non-compliance

to identify if clinical trial patients are active experimenters.8

The Topamax study used a progressive dose schedule as found in the table below. The

amount of active Topamax given to the patient each week would increase at a rate of 25mg

per day for the �rst four weeks and 50mg per day thereafter, but the number of pills given

to the patients would not increase in the same monotonic fashion.9 Failing to consume one

tablet in the �rst period may be very di¤erent than not consuming a tablet in the last

period, as the level of Topamax milligrams per tablet is di¤erent in each period.10 The

outcome variable of missed dose is made more uniform by modifying �d to capture the

number of milligrams not consumed each period, �dMGit:11

8Non-compliant behavior caused by a patient forgetting to take her pills is viewed as a random event.
On average, the percentage of non-compliant patients who forget to take their pills is expected to be the
same in both groups.

9For anti-seizure medication, it is common to use a progessive treatment plan.
10A copy of the consent form used for this trial is available in the appendix. The consent form does inform

the patient that she will receive an increasing amount of Topamax over the course of the trial, which is not
to exceed 300mg of per day.
11The amount of active ingredient is assumed to be distributed uniformly among the pills within a given

week. Therefore, the amount of Topamax per pill is the ratio of (mg per day)/(pills per day).
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Dosing Schedule

Visit 1 2 3 4 5 6 7 8 9 10 11 12

mg per day 25 50 75 100 150 200 250 300 300 300 300 300

pills 14 21 21 28 21 14 28 42 42 42 42 42

pills per day 2 3 3 4 3 2 4 6 6 6 6 6

The following regression equation is used to identify the most common characteristics of

non-compliant patients �dMGit = X� + eit for all �dit > 0 where � is a set of parameters

to be estimated, X is a matrix of patient characteristics including time, gender, age, BMI,

treatment group, occupation skill level, race, religion, and income. The error term, eit, is an

unobserved normally distributed random variable with mean zero and �nite variance.

About 67% of the patients in the sample are found to be compliant (�dit = 0) : Due

to the large mass of observations at zero, a Tobit model is appropriate to estimate the

parameters. The maximum likelihood estimates of the parameters � are found in Table 3

. A statistically signi�cant di¤erence in patient compliance is detected between treatment

groups. Non-compliance increases throughout the trial for both groups, but on average

the placebo group is more non-compliant than the experimental group. Non-compliant

behavior decreases with age and years of schooling. Patients who identify themselves as

Christians are more compliant than non-Christians. Individuals in skilled professions are

more non-compliant than unskilled patients. Finally, no statistically signi�cant di¤erence in

compliance exists with respect to gender, BMI, race, and income. These results raises the

questions of why are patient in the experimental group, who presumably are more likely to

experience side e¤ects, are more compliant than their peers in the placebo group?

These results serve as motivation to address the issue of non-compliant behavior using

a structural approach. Unlike the "black box" approach of linear regression, a structural

model has the advantage of explicitly stating how patients choose their level of dose and

when to leave the trial. The structural model can provide insight on patient learning, dose

behavior, attrition behavior, and the e¤ect of attrition on the estimated treatment e¤ect.
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Structural Model of Attrition and Learning with Experimentation

Consider a clinical trial in which there are G treatment groups. Patients are randomly

assigned to a treatment group with a �xed probability, 1=G: In each treatment period t,

patient i observes her health Higt, and two types of side e¤ects, S1igt (parathesia) and S2igt

(fatigue). After observing these signals, the patient chooses a dose level, dt, that maximizes

her expected utility and then decides to remain in or exit the trial. Health and side e¤ects

are assumed to be distributed joint normal

(1)

266664
Higt

S1igt

S2igt

377775 N

0BBBB@
266664
Hi0+�it+�gt (d)

s1igt (d)

s2igt (d)

377775 ;
 =
266664

�2" �1�u1�" �2�u2�"

�1�u1�" �2u1 �3�u1�u2

�2�u2�" �3�u1�u2 �2u2

377775
1CCCCA

where d represents the sum of previous and current dose decisions, d =
P
t

dt. Patients are

assumed to know certain components of their health equation. In particular, a patient knows

her initial health stock (log GGT), Hi0, the progression of the disease without treatment,

�it = �1 + �2 (t� 1) + ei, but is uncertain about the group speci�c experimental e¤ect,

�gt (d) = [�3dg + �4] 1g=treatment: Patients are assumed to know the conditional mean for

both side e¤ects and each side e¤ect mean has the following functional form.

sigt (d) =

exp('1+'1d)
1+exp('1+'1d)

g = treatment

exp('1)
1+exp('1)

g = placebo

Typically, pharmaceutical drugs go through three phases of testing before receiving approval

from the Federal Drug Administration.12 The second phase focuses on safety where side

e¤ects are analyzed in a larger sample setting. This information is then provided to par-

ticipant in Phase 3 clinical trials. Therefore, it is reasonable to assume that patients are

12The �rst phase conducts a small sample test on e¢ cacy. The second phase focuses on safety where
side e¤ects are analyized in a larger sample size. The third phase increases the sample size dramatically by
conducting the experiment simultaneously over several medical centers.
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informed about the potential side e¤ects. After observing prices (compensation to remain

in the trial and the cost of alternative treatments), health status, and side e¤ects in a given

period, the patient decides whether to remain in the trial or consume the outside option.

Patient�s Preferences

Patients are assumed to be forward looking agents and make the discrete choice of

attrition by maximizing the expected discounted sum of future utility �ows over a �nite

horizon, conditional on their information set, I; at time t:

(2) max
A�2A; D2D

E

"
T ��TP
�=t

"
���t(1� a� )

GX
g=1

�igtUig� (dgt)

#
+
�T

�

1� �V
0 (T �; git) jI

#

where at 2 f0; 1g is the patient�s choice of attrition at time t (0 represents the patient

remaining in the trial), At = [at; at+1; :::aT ] is a particular sequence of attrition decisions

from the set A, D = [dt; dt+1; :::dT ] is a sequence of dose choices from the set D, �igt is

patient i�s belief on being in treatment group g at time t, and � 2 [0; 1) is the discount

factor. Once a patient has exited the trial, � > T �; she may not return; therefore, if patient

i chooses at = 1 then at+x = 1 for all x � 0:

The outside option is de�ned as V 0 (t; �jI) = c1+ c2t+ �1�+ �2t�+ viot where c, is a set

of parameters to be estimated that capture the utility associated with alternative medical

options available outside of the trial. The outside option is also varies based on a patient�s

group assignment belief through the parameters �. Patients placing a high probability on

being in the experimental group may be less attracted to the outside option. The term

(c2 + �2�) t captures long term e¤ects of participating in the trial such as prolong side e¤ects

even after exiting: A patient observes health status and side e¤ects each period, then decides

whether to remain in the trial or consume the outside option. If she decides to remain in the

trial, then she chooses an optimal dose amount subject to the number of pills prescribed.
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The single period utility function for patient (i) in group (g) at time (t) is de�ned as

(3) Uigt = �
1



exp [
Higt (d)]� �1S1igt (d)� �2S2igt (d) + �3 ln(M + pt) + �i + vigt

which is a constant absolute risk aversion (CARA) utility function.13 ; 14 The vector of pa-

rameters � represent the patient�s sensitivity to side e¤ects and changes in income. The

coe¢ cient of absolute risk aversion is given by the parameter 
 > 0. Risk is an important

aspect of learning models as there exists a trade-o¤ to waiting an additional period and

forgoing the outside option to learn more about product quality. There are two sources of

unobserved heterogeneity, �i and vigt. The �rst error term, �i, is a normally distributed per-

son speci�c error with mean zero that captures a patient�s unobserved value for participating

in the trial. The unobservable could capture variation in health insurance coverage among

the participants. This error is observed by the patient, but unobserved by the econometri-

cian. The second error term, vigt, is assumed to be distributed Type I extreme value and

captures unobserved changes on the patient�s outside option. This error is revealed to the

patient at time t.

A patient�s information set is de�ned as Iit = fHit;Sit; tg; where Hit = [Hi1 � Hi0 �

�i1� ei; :::; Hit�1�Hi0� �it�1� ei] is a patient�s health history net their baseline health and

Sit = [S1i1;:::; S1it;S2i1;:::; S2it;] is a patient�s side e¤ect event history. A patient learns her

speci�c treatment e¤ect and treatment group assignment through an application of Bayes�

Law on the variables in her information set. The following section demonstrates how patients

update their beliefs.

13 The expected value of (3) conditional on a patient�s information set, Iit, has the following closed form
solution when health is normally distributed

Et (UigtjIit) = � 1


exp

�

Et (HigtjIit) +


2

2
V art (HigtjIit)

�
�a1S1igt � a2S2igt � a3 ln(M + tpit) + �i + vigt

where expected utility is increasing in the expected value of health and decreasing in the variance of health.

14Both Chan and Hamilton (2006) and Crawford and Shum (2006) de�ne utility in this fashion. Erdem
and Keane (1996) use a monotonic transformation of a CARA utility function.
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Patient Learning Process

Patient are assumed to use Bayesian updating to infer treatment e¤ects, �igt; and treat-

ment group assignment, �igt. The prior distribution of the treatment e¤ect, �ig0; is assumed

to be distributed bivariate normal

(4) �ig0 =
�
�1i0
�2ig0

�
 N

�
�
g0
=
�
�10
�2g0

�
;�
�

where �10 is the prior dose e¤ect and �2g0 is the treatment group constant. Patients know

the initial randomization probability, �g0 = 1=G, which serves as the prior on treatment

group assignment. Formally, �igt = Pr(g = gijIit) where gi 2 fPlacebo, Experimentalg.

Given the assumptions that health is distributed normal within a treatment group and

there are G distinct groups, patients�beliefs over health outcomes are generated by a normal

mixture distribution. The normal mixture distribution is the weighted sum of G distinct

normal distributions

(5) L =
GX
j=1

�igt

Z
�2�

�
�
Hit; Sitj�;
; s1g; s2g; dit

�
�
�
�j�igt;�; Dit�1;�igt= 1

�
d�

where L (�) is the likelihood function over the possible health states, � is the support of

possible treatment e¤ect values (�), � (�) is the normal probability density function, and

treatment group beliefs are restricted to satisfy
PG

g=1 �igt = 1. The normal mixture model

captures three concepts: [1] a patient�s belief that health is normally distributed; [2] the

patient is uncertain as to the parameter values of the normal distribution; [3] the patient

recognizes that there are G possible processes generating her health outcomes (e.g. G = 2

in a two armed placebo controlled trial).

Given the patient�s likelihood function on health, one would normally proceed by cal-

culating the posterior distribution on treatment e¤ects and treatment group assignment

conditional on an observed value of health. Unfortunately, a closed form solution to the pos-
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terior distribution of equation (5) does not exist.15 A continuous random variable requires

a conjugate prior for a closed form solution of the posterior distribution, but the poste-

rior distribution is always de�ned for discrete random variables. Therefore, I discretize the

probability state space de�ned by the components of (5) for a �nite number of health, side

e¤ect, and treatment e¤ect states conditional on group assignment and treatment priors.16

Speci�cally, a patient�s health corresponds to 10 discrete values of log GGT, Hit; and two

discrete values on two side e¤ect measures, Sit. The treatment e¤ect is discritized into �ve

dose coe¢ cients, �10, and �ve treatment intercepts, �2g0. For a given patient, health beliefs

are summarized using a 40x25 matrix of probabilities conditional on dose.

Once the probability space is discretized, an application of the discrete Bayes� Law

provides the joint posterior distribution on beliefs.

Pr
�
�
=
igt; �

=
igtjHit;Sit;�; s1g; s2g;
; Dit

�
=

wigt(�=�igt)P
G

P
� wigt(�)

(6)

wigt (�)=Pr (H it; Sitj�; s1g; s2g;
; dit; �igt�1) Pr (�j�g0;�; Dit�1; �igt�1)�igt�1

For each patient, the set of probabilities corresponding to each
�
�
=
igt; �

=
igt

�
beliefs pair is

stored in memory. The set of probabilities provides a �nite approximation to the continuous

joint distribution described in (5). As the number of pairs tends to in�nity, the discrete

approximation converges towards the continuous distribution. Given the joint posterior

distribution on beliefs, a patient�s expected utility is de�ned as

(7) Et [U jIit] =
X
G

X
�

U
�
�
=
igt; �

=
igt

�
Pr
�
�
=
igt; �

=
igtjHit;Sit;�; s1g; s2g;


�

where the expectation is taken over all possible treatment groups and treatment e¤ect states

conditional on a patient�s information set at time t. Patients also consider future values on

15Expected - Maximization algorithm provides an approximation of the posterior distribution for a normal
mixture model when using all observed data points. Patients may only use her own values of health to
update beliefs. Therefore, posterior values on treatment e¤ects and treatment group assignments cannot be
identi�ed with the EM algorithm for a single patient.
16See appendix for more information on discretizing the probability space
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utility. Therefore, a predictive posterior distribution is required to evaluate the expected

value of utility at time t+k for k>0. The k period predictive posterior distribution is

Et [U jIit+k] =
X
G

X
�

U
�
�
=
igt+k; �

=
igt+k

�
(Vigt+k)� (Hit+k;Sit+k)(8)

Vigt+k =

"X
H

X
S
Pr
�
�
=
igt+k; �

=
igt+kjHit+k;Sit+k;�; s1g; s2g;


�#
�
�
Hit+k; Sit+k

�
= Pr(Hit+k; Sit+kjs1g; s2g;
; �

=

igt+k�1; �
=
igt+k�1) Pr

�
�
=
igt+k�1; �

=
igt+k�1

�

where � (Hit+k;Sit+k) is the distribution of future health outcomes conditional on having the

belief pair of
�
�
=
igt+k�1; �

=
igt+k�1

�
: A patient iterates the predictive posterior distribution to

evaluate the expected value of future utility k periods into the future.

Value Function

The experimental design of a clinical trial lends itself to the use of a dynamic discrete

choice framework to model attrition behavior. Patients are informed of when the trial will

start and end. Patients are informed of the type of compensation they may receive during

the trial, the discontinuance of compensation if they are to exit the trial, and the inability to

return upon exiting the trial. Each period, the patient may take one discrete action: com-

pliance, non-compliance at a speci�c dose level, or attrition. Given the patient�s information

set, I, a patient�s value function for remaining in the trial at treatment period t can be

represented by the following Bellman Equation V CT (I) = max
AT��At

h
V
�
I
�bd� jAT ��i where bd

is the optimal dose sequence and AT � = [at = 0; at+1 = 0; ::aT � = 1; ::aT = 1] is the sequence

of discrete choices such that patient i expects to exit the trial at time T � � T: The sub-value

function V (IjAT �) is de�ned

(9) V
�
I
�bd� jAT �� = max

DT��D
EH
�
U (I (d)) + �Ev

�
maxV (I 0 (d0) jAT �) ; V 0 (I 0jAT �) jI (d)

��
where the operator EH (�) is the expected value of the objective function with respect to the

distribution of health and the operator Ev is the expected value of the continuation value.
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The value function in the last period T is V
�
I
�bdT�� = max

dT
EH [U (I (dT ))] : The discount

factor � 2 [0; 1) represents the patience of a patient between periods where individuals with

low values of � place greater weight on the current level of utility rather than future levels

of utility. The case of � = 0 is the myopic patient who only maximizes current utility �ows.

Learning and experimentation are examined under two speci�cations of the discount factor:

� = 0 and � = :98. The expectations in equation (9) are �rst taken over the distribution of

beliefs, and then taken over the future values of vigt:17 Recalling that vigt  EV
�
0; �

2�2

6

�
, a

closed form solution for the expected value of the continuation function exists

(10) Ev
�
max

�
EH
�
V (I 0jAT �)� vigt+1jI

�
,0
��
= �

"
� + ln

 
1+exp

"
EH
�
V (I 0jAT �) jI

�
�

#!#

where V (I 0jAT �) = V (I 0jAT �)�vigt+1 and � is the Euler constant.18 The function V (I 0jAT �)

is the portion of the value function that is calculated using observable measures of health,

side e¤ects, and dose. The optimal value function can be solved using the following steps:

[1] the expectation of the value function with respect to beliefs and dose sequences is taken;

[2] for a given attrition sequence, AT ��A; the optimal dose sequence, DT ��D, is found using

(10) to solve (9) backward recursively; [3] the attrition sequence AT � that maximizes the

value function, V (IitjAT �), is the optimal value function, V CT (Iit).

Econometric Speci�cation

This section presents the econometric method used to estimate the model. The like-

lihood function is comprised of two parts: patient choices and the distribution of health

outcomes. Each period a patient chooses a dose level and attrition choice pair, hdt; ati. The

econometrician observes all choice pairs made by each patient in every period. To compare

these choices, the econometrician calculates the value function for each choice pair condi-

17See Chan and Hamilton (2006) for a discussion on the expected value of the value function conditional
on the distribution of beliefs.
18See Berkovec and Stern (1991) and Rust (1987)
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tional on a patient�s information set, Iit, and the distribution of unobservables. Potentially,

an in�nite amount of dose choices exists; therefore, dose levels are discretized into a �nite

set of values, which eases the computation of the value function for each pair.19 A patient�s

value function for any choice pair hdt; ati, is

(11) V (I (at; dt)) = max
�
V CT (I (dt; at))� V 0 (Ijat = 1) ; 0

�
The value function is solved recursively for all possible combinations of the discrete dose

values. The dose level found to maximize the value function given a set of parameter is

noted by bdt: A patient remains in the trial if V
�
I
�bdt; at�� > 0 . The probability of

surviving within a given period is

(12)

Pr
�
V
�
I
�bdt; at�� > 0� = Pr�V CTigt � V 0igt > vigt � vi0t� = Pr�V it �I �bdt; at�� > vigt � vi0t�

The error term v is assumed to be distributed Type I extreme value.

Given the assumption over the distribution of the errors, the probability of remaining in

the trial is Pr (ait=0jdit = bd; ait�1 = 0; ei; �i) = exp(V it(I(bdt;at))=�)
1+exp(V it(I(bdt;at))=�) : The "no re-entry" policy

of an RCT are captured by setting Pr (ait=0jait�1= 1) = 0 and Pr (ait=1jait�1= 1; ei; �i) = 1:

The unconditional probability of attrition at time t is then given by equation (13)

(13) Pr(A = AT �;D = DT �jei; �i) = 1

1+exp(V iT�(I(bdT� ;aT�))=�)
"
T ��1Y
t=1

exp(V it(I(bdt;at))=�)
1+exp(V it(I(bdt;at))=�)

#

The second part of the likelihood function is the distribution of health and side ef-

fects. De�ne the vector of deviations between observed and predicted outcomes as Zit =

[ei + "ig1; :::ei + "igt; u1ig1; :::; u1igt; u2ig1; :::; u2igt]
0 where the deviations are stacked in the

following order: health, side e¤ect [1], and side e¤ect [2]. Given the assumption of joint

19In practice, four discrete dose amounts are chosen for each period. The four discrete dose amounts are
chosen by �nding the quartilzes of dose consumption in each period.
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normality between health and side e¤ects, the probability density function of patient i�s

outcome measurements is given by f (Zit;
) = 1

(2�)3t=2j
j1=2
exp

�
�1
2
Z 0it


�1Zit
�
where t is the

period when patient i exits the trial, and 
 is the covariance matrix. The total number

of observations for patient i is equal to 3t as there are three measures of outcomes taken

over the t treatment periods. Note, each measure of health is dependent on the predicted

dose amount at time t, bdt: Therefore, we incorporate the observed dose amounts with the
predicted doses by including a probability density function for dose. As in the reduce form

case, we assume dose is distributed normal dit ! N
�bdt; �2d�. Additional covariates may

be added to the dose density function, but to ease the computation burden no additional

covariates are used in estimation.

De�ne the set of parameters to be estimated as 	 = f�; ';
;�; �pg; �1; �2; 
; �; �2� ; �g.

The likelihood contribution of the i�th patient conditional on the unobservable errors is

(14) Li (	jait;Hit;Sit; ei; �i) = f
�
Zit;
jait; bdt; �; '�Pr�aitjbdt; ei; �i;	�Pr�dit = bdt�

The expectation of the likelihood contribution is taken with respect to the unobserved errors,

ei and �i.

(15) E [Li] =

Z Z
Li (	jait;Hit;Sit; ei; �i) f (ei) f (�i) deid�i

The error terms ei and �i are patient speci�c errors known to the patient, but unknown to

the econometrician. These errors are assumed to be independent and distributed normal.

The respective variance terms, �2e and �
2
� ; are parameters to be estimated. While no closed

form solution exists for the expected value in equation (15) ; I employ simulation methods

as suggested by Stern (1994) to integrate out the unobserved patient speci�c heterogeneity.

The simulated value of the log likelihood function is given by

(16) log bLi (	jait; dit;Hit;Sit) = log
 
1

R2

RX
r=1

RX
k=1

Li (	jait; dit;Hit;Sit; er; �k)
!
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and the parameters of the dynamic model are estimated bymax
	
log
Pn

i=1
bLi (	jait; dit;Hit;Sit).

Results

The structural parameter estimates are found in Table 5 and a set of reduced form results

are found in Table 4 for comparison. The model is estimated twice under two di¤erent

assumptions of patient behavior: "forward looking" and myopic. The second column of

Table 5 contains the estimated coe¢ cients for the dynamic model where the weekly discount

factor is �xed at � = 0:98. The third column contains the estimated coe¢ cients for the

static (myopic) model, � = 0. To allow for comparisons between models, the variance of the

extreme value error is restricted to be the same in both models.

First consider the health outcome parameter estimates as they pertain to side e¤ects.

On average, individuals in the experimental group are 3% more likely to experience fatigue

(side e¤ect 1) and 8% more likely to experience parathesia (side e¤ect 2) than individuals in

the placebo group. Parathesia conveys group information better than fatigue, because the

di¤erence in side e¤ect frequency between treatment groups is greater for parathesia. Both

variables are found to be statistically signi�cant at the 1% level in both models.

GGT measures the level of liver enzymes associated with alcohol presence. High levels of

GGT are associated with poor health outcomes. The estimated health coe¢ cients represent

the marginal e¤ect of each explanatory variable on the natural logarithmic change in health

(� log(GGT )).20 In the absence of medication, patients in the dynamic model experienced a

14 percent decrease (placebo constant) in GGT levels during the �rst period, but experience

a slow and statistically insigni�cant rise in GGT every period thereafter. The treatment

e¤ect in the experimental group is decomposed into two separate e¤ects, a constant and a

dose e¤ect. Patients in the Topamax group experience a 45% (TE) increase in GGT levels

relative to patients in the placebo group during the �rst period (constant). The e¤ect of

topamax in milligrams is captured as an elasticity. The natural log of Topamax consumption

20For small changes, the di¤erence in log(x+�)� log(x) represents the precent change in x.
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measure in milligrams is the explanatory variable of interest. A 1 percent increase in the

number of milligrams consumed leads to a .08% improvement in health. This estimate

is roughly twice the magnitude found using ordinary least squares, which estimates the

dose e¤ect to be .047% (see table ). Unobserved variation in health among patients is

primarily driven by patient speci�c unobserved heterogeneity. Patient speci�c unobserved

heterogeneity constitutes 76.5% of the unobserved health error.

The static model produce slightly di¤erent results. In the absence of medication, pa-

tients in the static model experienced a 25 percent decrease (placebo constant) in GGT levels

during the �rst period. Health continues to improve in each subsequent period at rate of

1.6%, but this improvement is not statistically signi�cant. Patients in the Topamax group

experience a 45% (TE) increase in GGT levels relative to patients in the placebo group

during the �rst period (constant). The static model estimate of the treatment dose e¤ect is

smaller in magnitude than the dynamic model. A one percent increase in milligram concen-

tration yields a 0.05% improvement in health. Lastly, the standard errors in the dynamic

model are strictly smaller in magnitude than the those found in the static model.

Prior Distribution

The estimated prior distribution of the treatment e¤ect provides insight on a patient�s

level of optimism (pessimism) for participating in the trial. In the dynamic model, the

estimated health priors suggest patients believe the experimental drug leads to an initial 11%

decrease in GGT levels, followed by a 10% decrease in each subsequent week in compared

to the progression of health without medication. The static model provides much more

optimistic beliefs with patients believing in a 94% decrease in GGT levels followed by a

more than 300% improvement in health each subsequent period. These estimates imply that

patients expect an immediate improvement in health if assigned to the experimental group.

On the other hand, the estimated treatment e¤ect, found from the health equation,

suggests health status for patients in the experimental group improves only after consuming

42 mg of Topamax in the dynamic model and 44 mg in the static model. This result implies
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patients�beliefs are initially optimistic about the potential health bene�ts associated with

participating the experiment. The estimated prior variance terms in the dynamic model

are larger than those in the static model, suggesting that patients have �atter priors (less

con�dence in their estimates) in the dynamic model (alternatively, myopic patients hold on

to their prior beliefs longer than forward looking patients).

Utility Parameters

The largest di¤erences between the dynamic and static models are found in the estimates

of the utility parameters and the outside option. The utility parameters capture a patient�s

sensitivity to changes in risk, income, and side e¤ect experiences. Sensitivity to risk is

captured by the coe¢ cient of absolute risk aversion, 
. The coe¢ cient of absolute risk

aversion is found to be roughly the same in both models: 
 = 0:6773 in the dynamic model

and 
 = 0:6096 in the static model. Patients can minimize risk in two dimensions when

dose is o¤ered as a choice variable. The two dimensions include the number of health signals

and the variation in health signals. The number of health signals is determined by how long

a patient chooses to participate in the experiment. The variation of health signals can be

manipulated using dose as a choice variables. Similar to the concepts of linear regression, a

patient�s estimate of the treatment e¤ect improve when there is more variation in dose. As

her estimates improve, the level of uncertainty decreases.

Side e¤ect sensitivity is smaller in the dynamic model than in the static model. The

di¤erence in magnitude between models is explained by the di¤erences in behavioral as-

sumptions of the two models. The direct impact of side e¤ects is concentrated in the current

period for patients in the static model, but patients in the dynamic model spread the disu-

tility of side e¤ects across current and future periods. Forward looking patients appear to

tolerate side e¤ect much better than myopic patients due to these behavior assumptions. For

example, parathesia (side e¤ect 2) decrease utility by a statically insigni�cant amount within

the dynamic framework, but in the static model experiencing parathesia is equivalent to de-

creasing a patient income by 1.4%. On the other hand, fatigue is found to be a statistically
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signi�cant source of disutility in both models. In the dynamic model an instance of fatigue

is equivalent to an increase of GGT from 300 to 302. In the myopic model, experiencing

fatigue is equivalent to increasing GGT from 300 to 307 (or decreasing income by 2%). Both

coe¢ cients are statistically signi�cant at the 1% level.

The model captures a patient�s response to compensation by estimating a patient�s

income elasticity. In the myopic setting, the e¤ect of compensation on attrition is strong. A

1% increase in income leads to a 27% increase in utility. In the dynamic setting, a patient�s

income elasticity is -.04% and is not statistically di¤erent from zero. The large di¤erence

in income elasticity between the two models displays the sensitivity of parameter estimates

with respect to the assumption placed on the discount factor.21

Lastly, I include an additional utility parameter in the last period of the experiment to

capture any unobserved bene�ts (or costs) from completing the trial. In some experiments,

patients are rewarded for completing the trial by receiving a free supply of the actual ex-

perimental treatment regardless of group assignment. The parameter estimate for "�nishing

reward" is 1.67 utils (equivalent of reducing GGT from 300 to 285) in the dynamic model

and 0.09 utils (equivalent of reducing GGT from 300 to 299) in the myopic model. A positive

coe¢ cient for this parameter captures the curvature of the survival function with respect to

time and suggests the survival function is decreasing at a decreasing rate with time. This re-

sult implies that the likelihood of exiting the trial next period decreases the longer a patient

remains in the trial.

Outside Option

The outside option captures the patient�s opportunity cost of remaining in the trial.

The outside option can be decomposed into two parts: external options and longer term cost

of participation. The external options including detoxi�cation clinics, support meetings, or

drinking. The outside option also internalizes long term e¤ects of the experimental drug

even after the patient has stopped taking the drug. These long term e¤ects are captured

21Using patient demographic characteristics to estimate a heterogenous discount factor for each patient
may alleviate this problem.
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by interacting treatment group beliefs with the value of the outside option. Long term

e¤ects can range from chronic side e¤ect experiences or permanent improvements in health.

Additionally, the inclusion of patient beliefs in the outside option can capture "placebo

e¤ects," which may improve (or hinder) unobserved components of health.

The study�s data does not contain information on patient choices after exiting the trial.

Therefore, the model takes a simplistic approach in handling external options. The outside

option is comprise of a constant and a linear time trend. These two components are allowed

to vary with patient beliefs on group assignment. The outside option constant represents

the bene�t measured in utils of exiting the trial in the �rst period. The value of the outside

option constant is 1.59 in the dynamic model and -2.38 in the myopic model. The outside

option improves quickly in subsequent periods as indicated by the time trend (dynamic model

= 1.71 and myopic model = 2.45). These improvements can be the result of a decrease in

alcohol prices or increase access to alternative treatment options. When the outside option

parameters are interacted with the patient�s subjective probability of being in the treatment

group, Eit(G = Treat), then the value of the outside option decreases in both structural

models. The dynamic model �nds a patients utility for the outside option decreases by

-6.06 utils as beliefs and time increase. The myopic model also �nds a decreasing e¤ect

on the outside option (�4:49) as belief and time increase. Patients who believe they are

receiving treatment are less likely to exit the trial, ceteris paribus. Therefore, the value

of participating in the clinical trial increases as the patient�s belief on receiving treatment

increases even when health remains constant. This result may be interpreted as a type of

"participation placebo e¤ect."

Goodness of Fit

The ability of the dynamic model to explain patient behavior is measured by simulating

dose and attrition decisions conditional on the estimated parameters, then comparing these

outcomes with observed decisions in the experiment. First, the initial health state for each

patient is their original GGT values in period 1. These values are used as a starting
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point on health histories. To capture unobservable health shocks, 10 patient speci�c errors

are drawn from the unobserved health shock and a four random health shocks from the

idosyncratic health error. Conditional on a patient�s original GGT value at the start of

the trial, I use these simulated unobservable errors in conjunction with the patient�s group

assignment, the estimated treatment e¤ects, and the health-side e¤ect covariance matrix to

complete a patient�s health and side e¤ect history.22 Next, I simulate a set of unobservable

utility shocks. The utility shocks consist of a patient speci�c error and the extreme value

error. I simulate 10 patient speci�c utility errors from a normal distribution with variance

equal to the estimated variance of the unobserved heterogeneity in the utility function. The

second utility shocks are drawn independently across patients and time from an extreme

value distribution with variance equal to (b��)2 =6:
The simulated health histories and utility shocks are then used to solve each patient�s

value function. A patient�s dose choice may take on one of d possible values in a given

evaluation period. There are a total of dT�1 possible dose combinations for any given patient

over the duration of the experiment lasting T periods.23 The value function is solve for each

dose sequence. The dose sequence that maximizes the value function is the optimal dose

choice for the patient. If a patient�s value function is > 0, then the patient remains in the

trial; otherwise, the patient exits the trial.

Figure 4 exhibits the observed survival rate versus the predicted survival rate for each

model. The dynamic model explains 91% of the variation in overall survival (attrition) rates

between weeks 0 - 9, but precision is lost when evaluating predicted survival rates in the

last period. Overall, the dynamic model can account for 45.8% of the variation in attrition

decisions. On the other hand, the static model provides a poor �t to the data. The static

model tends to over-estimate the rate of attrition throughout the experiment and explains

only 38.4% of the attrition rate. Both models tend to underpredict survival rates in each

22For each patient in the orginial trial, fourty health histories are simulated using the di¤erent combinations
of patient speci�c errors and random health shocks.
23I use both d=3 and d=4 for a total of 81 and 256 possible dose combinations, respectively.
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treatment group. Again, the dynamic model out performs the static model in predicting

attrition. The dynamic model captures 62% of the variation in attrition within the placebo

group and 31% within the Topamax group. The static model captures 51.5% of the variation

within the placebo group and only 27.4% within the Topamax group. By accounting for non-

compliant behavior, the dynamic models is better able to predict attrition decisions between

treatment groups by exploiting relative di¤erences in dose choices between groups.

Goodness of Fit: Overall Survival Probabilities

Dynamic Model

Static Model

Goodness of Fit: Survival Probabilities by Group

Dynamic Model

Static Model

Figure 4

Lastly, I compare the relative goodness of �t between the two structural models using a

likelihood ratio test. The test setup includes a null hypothesis supporting patient behavior

which is not "forward looking" (the static model) and an alternative hypothesis supporting

forward looking patients who strategically experiment with dose to increase their rate of
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learning. The F-statistic is the log di¤erence in the likelihood functions of the two models,

F = �2(LLFstatic � LLFdynamic) = 254:2: The likelihood ratio test rejects the null hypoth-

esis at the 1% level of signi�cance. Therefore, attrition behavior in clinical trials is more

likely caused by forward looking patients who are learning treatment e¤ects through dose

experimentation than a static utility maximizers.

Dose choice

A primary objective of this work is to study patient dose choice. The model allows for

patients to choose a level of dose, which maximizes both utility (maximize health/minimize

side e¤ects) and learning. In this section, I compare the dose choices made by patients in

both treatment groups under two learning assumptions. The dynamic model with "forward

looking" patients does correctly predict that patients in the Topamax group are more likely

to choose higher consumption levels than patient in the placebo group, but the amount

consumed in the Topamax group is overstated and the amount in the placebo group is un-

derstated. The static model with "short sighted" patients also predicts the experimental

group will consume more drugs than the placebo group, but the magnitude of consumption

is understated in both treatment groups. On average, dose consumption is 6.5% higher in

the Topamax group and 9.2% higher in the placebo when comparing forwarding looking

versus myopic patients. This result is consistent with theoretical models of learning with

experimentation. Mirman, Grossman, and Kihlstrom (1977) discuss a theoretical model of

consumer experimentation with a product of unreliable quality, eg. a drug. The authors �nd

that if health increases as dose consumption increases, then the patient chooses a level of

dose that exceeds the optimal single period utility maximizing dose level. By "over dosing" a

patient jointly maximizes learning and utility. The inclusion of patient demographic charac-

teristic as explanatory variables on dose may be used to explain the di¤erence in magnitude
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between predicted and observed dose levels.

Figure 5: Dose Simulation

Treatment Group Beliefs: Simulation

If patients are proactive about learning, then they will tend to vary dose consumption

in such a matter as to maximizes learning. To display this phenomenon, I use the simulated

dataset of health histories and side e¤ects along with the structural parameters to �nd the

evolution of patient group beliefs. In the static model, patients choose dose consumption as

to maximize single period utility conditional on treatment group/drug quality beliefs. In the

dynamic model, patients choose to maximize lifetime utility which is subject to uncertainty.

These forward looking patient take a proactive approach to reducing their uncertainty by

systematically varying dose in each period as to maximize learning. For this reason, aprior

one would expect learning rates to be higher in the dynamic model than the static model.

Figure 6 contains the average belief probability of being in the experimental group for both

treatment groups. As a patient�s belief tends towards one, then the patient believes she

is receiving the experimental. As a patient�s belief tends towards zero, then she believes

she is receiving the placebo pill. In the dynamic model, patients� group beliefs are on

average greater than or equal to 0.5. Forward looking patients place more probability in

believing they are receiving treatment than patients in the static model. Note as well that

patients� beliefs experience larger changes (variation) in the static model than patients�

beliefs. Experimental group patients within the dynamic model converge faster to their
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actual group assignment (by week 6) than experimental patients in the static model (by

week 9). The simulation exercise produces mixed results on learning in the placebo group of

both models. While it appears that the static model has placebo patients�beliefs converging

fast to zero than the dynamic model, it is di¢ cult to determine if these beliefs will remain

there or rise as they did between weeks 3 and 9. Further, it may become increasing di¢ cult for

a placebo patient to distinguish between a poor performing experimental drug (TE = 0) or a

placebo pill. For example, one placebo patient may determine that she is in the experimental

group, but the treatment e¤ect is small. Therefore, it should be quite reasonable to expect

clinical trial exit interviews to report that on average placebo patients could not identify

their treatment group, but could identify that the drug they were consuming provided little

to no bene�t. This result of course ignores the possibility of placebo e¤ects.

Figure 6: Patient Beliefs on Treatment Group Assignment

Caveats

Although there are many advantages to using structural modeling in the analysis of

patient behavior there are some caveats of which the reader should be aware. The model is

only as good as the underlying behavioral assumptions. In this regard, extensions may be

made of this model where patients display alternative preferences such as constant relative

risk aversion or quadratic utility. The model also assumes each patient can update her beliefs

using Bayes�Law. Bayesian learning is currently the standard, but recent developments
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in behavioral economics have identi�ed belief "anchoring" as a potential source of bias.

Anchoring bias occurs when patients are less willing to update their beliefs away from starting

values when presented with new evidence (see Tversky and Kahneman, 1974). Lastly, the

model remains agnostic in regards to "placebo e¤ects." Presumably, placebo e¤ects are

caused by patients believing they are receiving the experimental treatment. A potential

method to capture these e¤ects within the current model structure is to allow treatment

e¤ects in the health equation to be interacted with patient group beliefs.

Conclusion

This paper presents an empirical examination of patient learning and experimentation in

the context of clinical trials. A structural model of patient behavior and learning is proposed

to capture the proactive nature of clinical trial participants when choosing dose consumption.

The structural model is used to test two leading hypotheses, which explain the causes of

patient non-compliance. The �rst hypothesis states that patient non-compliance is derived

from side e¤ect avoidance. The second hypothesis believes that patients are forward looking

and deliberately vary their dose consumption to infer their treatment group assignment.

This work demonstrates the �rst empirical study to capture learning and dose quantity

experimentation in the market for pharmaceutical goods. The structural model is estimated

using data from a clinical trial studying the e¤ects of Topamax on alcoholism. A likelihood

ratio test is used to reject the null hypothesis that patients choose to be noncompliant as

a result of side-e¤ect avoidance only. In addition to the learning results, the model does

identify some evidences of attrition bias caused by learning. The estimated treatment e¤ect

found in the structural model is nearly twice the magnitude of the OLS estimate.

The results found in this study give rise to at least two future lines of research. First,

work is still needed to determine an optimal incentive package to minimize the attrition bias

on treatment e¤ect measures associated with patient learning in clinical trials. For example,

researchers could propose a progressive �nancial reward given to those patients who remain
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compliant each period of the experiment. Second, the interpretation of the discount factor

commonly found in dynamic discrete choice models is 1/(1+r) where r is the real interest rate.

But do unhealthy individuals discount at the same rate as healthy individuals? Considering

the dynamic model (� = 0:98) tends to overstate the e¤ects of experimentation and the static

model (� = 0) tends to understate these e¤ects, it may be fruitful to estimate the discount

factor.

Finally, the subject of learning under ambiguity is not limited to clinical trials, but may

be applied in many other topics of interest to economist. In the area of education, the study

of student attrition from college courses could be viewed as learning ones ability (treatment

e¤ect) in a class given the ambiguity of a teacher�s quality (group assignment). In labor

economics, the performance of a particular employee (treatment e¤ect) is dependent upon

the quality of her manager (group assignment). With respect to quantity experimentation,

the industrial organization literature has many examples. The most notable example is

Mirman, Samuelson, and Urbano (1993) where a monopolist varies quantity to learn demand

even when these quantity choices are not pro�t maximizing with respect to static pro�ts.

These application can further our understanding of how economic agents use and manipulate

signals to verify an unknown quality and accelerate learning.
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Appendix: Additional Figures and Tables

Table 1: Patient Characterisitcs

Variable Placebo Topamax ALL

AGE 42.07 41.51 41.79

BMI 26.57 25.67 26.12

Female 0.27 0.31 0.29

Yrs. School 13.55 13.51 13.53

Income last 30 Days 3279.65 3391.43 3335.54

Base line GGT 65.31 81.8 73.55

End GGT 52.52 57.83 55.18

AVG Survival (weeks) 5.92 6.72 6.32

N 75 75 150
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Table 2: Side E¤ects

Side E¤ect Severity Duration N

Placebo Topamax Placebo Topamax Placebo Topamax

Anorexia 2.1 (0.86) 2.29 (0.79) 5.02 (2.29) 5.48 (2.8) 41 65

Ataxia 1.58 (0.51) 2 (1) 2.56 (1.88) 4.86 (3.76) 12 7

Confusion 1.64 (0.92) 2.04 (0.79) 4.27 (2.9) 4.93 (2.72) 11 25

Depression 2.36 (0.87) 2.19 (0.83) 5.25 (2.7) 5.75 (2.03) 39 54

Dizziness 1.64 (0.84) 1.83 (0.7) 3.54 (2.37) 3.52 (2.38) 14 30

Fatigue 2.16 (0.76) 2.15 (0.78) 4.8 (2.87) 5.58 (2.69) 82 127

Nervousness/Anxiety 2.28 (0.87) 2.12 (0.75) 4.74 (2.51) 4.42 (2.76) 67 67

Nystagmus 1 (0) 1.75 (0.71) 20 (0) 4.75 (2.66) 1 8

Parasthesia 1.96 (0.91) 1.9 (0.78) 3.09 (2.33) 5.31 (2.41) 24 197

Psychomotor slowing 1.92 (0.8) 2.07 (0.64) 4.17 (3.35) 5.59 (2) 12 42

Somnolence 2.15 (0.72) 2.15 (0.74) 4.93 (2.82) 5.16 (2.32) 68 82

Speech disorder 1.43 (0.79) 1.61 (0.61) 3.71 (4.5) 3.89 (3.46) 7 18

Tremor 1.5 (0.52) 1.83 (0.58) 3.92 (2.64) 4.08 (2.91) 12 12

Weight loss 1.57 (0.74) 1.61(0.68) 6.55 (1.95) 6.55 (3.19) 35 93
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Table 3: Tobit Model of Non-Compliance

Variable Coe¢ cient (t-value)

Time 49.48a 10.76

Gender 42.35 0.87

AGE -7.06a -8.41

BMI 0.3014 0.23

Treatment -120.13a -2.76

White -3.38 -0.09

Protestant -250.78a -5.08

Catholic -198.85a -4.48

Education -19.02a -7.20

Skilled 276.13a 3.53

Semi-skilled 207.04a 5.33

Income 0.0008 0.32

(Time)x(Treatment) 6.60 1.12

Constant -140.26a -3.99

�e 750.76a 25.56

LL -4080

Pseudo R2 0.1112

N 1395

Note: Signi�cance level: a =99%, b = 95%, and c = 90%
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Table 4: Sample Selection Health Equation with Dose

Variable (1) (2) (3) (4) (5) (6)

(Constant) �0:1149
(0:0600)

�0:1074
(0:0600)

�0:0922
(0:0617)

Treatment 0:3510
(0:1863)

0:3914
(0:1872)

0:4524
(0:1958)

b

Time �0:0118
(0:0073)

�0:0218
(0:0091)

b �0:0208
(0:0092)

b �0:0192
(0:004)

a �0:034
(0:007)

a �0:0288
(0:008)

a

log(mg) �0:0477
(0:0215)

c �0:0502
(0:0215)

b �0:0637
(0:0249)

b

\log(mg) �0:0213
(0:02)

�0:015
(0:02)

�0:0624
(0:035)

Mills 0:200
(0:1116)

0:1305
(0:1298)

0:297
(0:126)

0:177
(0:145)

(Treatment)x(Mills) 0:2042
(0:1926)

0:357
(0:214)

R2 4.10% 4.9% 5.2%

Patient FE ? no no no yes yes yes

Note: (1) Dependent Variable: LN(GGT); (2) Signi�cance level: a =99%, b = 95%, and c = 90%
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Table 5a: Learning with Experimentation Structural Model Parameters

Variables Dynamic Static

Prior Distribution of Treatment E¤ects (TE)

Prior TE constant -0.1131a (0.0430) -0.9410a (0.0467)

Prior TE dose elasticity -0.1024a (0.0375) -3.8643a (0.1673)

Prior Variance (TE constant) 0.9266a (0.0361) 0.7296a (0.0567)

Prior Variance (TE dose elasticity) 0.9990a (0.0368) 0.6666a (0.0304)

Utility Function Parameters

Utility: Unobserved Heterogeneity 0.8190a (0.0307) 0.8156a (0.0273)

Coef. of Absolute Risk Aversion 0.6773a (0.0260) 0.6096a (0.1798)

Income Elasticity -0.0441 (0.0440) 27.2026a (1.4389)

Side E¤ect 1 Sensitivity -0.1406a (0.0375) -0.5879a (0.0413)

Side E¤ect 2 Sensitivity -0.0107 (0.0375) -0.3781a (0.0386)

Finishing reward 1.6696a (0.0376) 0.0895 (0.1083)

Tau 170.82a (13.9142) 170.82 (�xed)

Outside Option Parameters

Outside Option Constant 1.5890a (0.0379) -2.3766a (0.2007)

Outside Option Time 1.7093a (0.1543) 2.4548a (0.1221)

Outside Option Eit(G = Treat) 0.0031 (0.0762) -1.917a (0.0938)

Outside Option Eit(G = Treat)*Time -6.064a (0.0656) -4.494a (0.1195)

Discount Factor 0.98 (�xed) 0 (�xed)

Log Likelihood Value -698.11 -825.1884

F 254.1568a

N 149

Note: (1) standard errors are in parenthesis; (2) F stat: Likelihood ratio test (dynamic vs static);

(3) Signi�cance level: a =99%, b = 95%, and c = 90%; (4) y evaluated at mean dose = log(3361 mg)
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Table 5b: Learning with Experimentation Structural Model Parameters

Health Outcomes Parameters

Variables Dynamic Static

TE 0.4510a (0.0073) 0.4495c (0.2541)

TE log(dose (mg) elasticity -0.0829a (0.0020) -0.0524c (0.0298)

Placebo constant -0.1399a (0.0368) -0.2513a (0.0511)

Placebo Time 0.0017 (0.0167) -0.0161 (0.0232)

Health Variance 0.0692a (0.0029) 0.0689a (0.0051)

Health: Unobserved Heterogeneity 0.2198a (0.0083) 0.2106a (0.0281)

Placebo Side E¤ect 1 Mean 0.1162a (0.0041) 0.1122 (0.0184)

Placebo Side E¤ect 2 Mean 0.0625a (0.0059) 0.0574a (0.0141)

Topamax Side E¤ect 1 Meany 0.1423a (0.0204) 0.1459a (0.0304)

Topamax Side E¤ect 2 Meany 0.1400a (0.0213) 0.1427a (0.0343)

Variance Side E¤ect 1 0.1115a (0.0219) 0.1103a (0.0204)

Variance Side E¤ect 2 0.0861a (0.0211) 0.0864a (0.0207)

Cov(Health,Side E¤ect 1) 0.0069 (0.0455) 0.0063 (0.0761)

Cov(Health, Side E¤ect 2) -0.0020 (0.0267) -0.0026 (0.0248)

Cov(Side E¤ect 1, Side E¤ect 2) 0.0530c (0.0299) 0.0529c (0.0293)

Note: (1) standard errors are in parenthesis; (2) F stat: Likelihood ratio test (dynamic vs static);

(3) Signi�cance level: a =99%, b = 95%, and c = 90%; (4) y evaluated at mean dose = log(3361 mg)

Appendix I: Discretization Method

The learning model present in this paper requires that patient�s beliefs on health out-

comes follow a normal mixture model24. The model is a linear

GX
j=1

�igt

Z
�2�

� (Hit;Sitj�;
; bg; lg)�
�
�j�igt;�; �igt = 1

�
d� s:t:

GX
j=1

�igt = 1

24This distribution is commonly used by computer scientist in "machine learning" applications. See
"unsupervised learning" for more informaiton.
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combination of G normal distributions where the linear weights, �igt, must sum to one. Un-

fortunately, a closed form solution to the posterior distribution of the unknown distribution

parameters in a normal mixture model does not exist. Still, the posterior distribution may be

approximated by discretizing the probability states space conditional on a patient�s prior be-

liefs. A patient�s prior on treatment group assignment is �ig0 = 1=G, which is provided to the

patient by the clinical trial investigators. The patient also forms priors on the experimental

e¤ect. These priors are assumed to be normally distributed.

(A2) �ig0 =

�
�1i0
�2ig0

�
~N

0B@�
g0
=

�
�10
�2g0

�
;� =

264�2�1 0

0 �2�2

375
1CA

Initially, the priors on the dose e¤ect, �1i0, and the treatment time trend, �2ig0, are as-

sumed to be independent. Therefore, A2 can be decomposed into two univariate normal

distributions. I then select a set of discrete values for �1 and �2; � = [��2; :�0; ::�2] ; where

�i = �10+(i)��1: Each discrete value of the experimental e¤ect is separated by one standard

deviation. The probability mass function of � is de�ned as

Pr(�ij�10; ��1) =
�
��
�i +

��1
2
� �10
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=��1
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� �
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� �
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� �10

�
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�
where � (�) is the normal cumulative density function. An analogous equation de�nes the

probability mass function for �2: These probability mass functions discretize a patient�s prior

belief on the experimental e¤ect and their treatment group assignment.

Given the set of possible experimental e¤ects, equation A1 can be discretize over health

outcomes state space. A patient�s health is de�ned as a vector containing GGT levels, re-

ports of fatigue, and report of parathesia. Initially, the side e¤ect state space takes on a

simple de�nition: 1 if a side e¤ect is experienced and 0 otherwise25. GGT levels are dis-

25This simple de�nition is necessary to increase computation e¢ ciency and decrease memory requirements.
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cretize into 10 equispace values over the sample range. Therefore, the health outcomes state

space for a given value of �; side e¤ect means (s1g; s2g), and treatment group assignment is

S=(10) (2) (2) = 40: The rectangular area de�ned by � (Sj�; bg; lg) is found utilizing the mul-

tivariate normal cumulative density function in the MATLAB programming language. The

joint distribution of health outcomes and beliefs is then found by evaluating the 40 health

outcome states for each experimental e¤ect and treatment group state. The total probabil-

ity space is then (# of health states)x (# of experimental e¤ect states)x (# of Groups) =

2000, which must be carried in memory for each patient and evaluated at each level of dose

in each evaluation period. If there are d discrete values for drug dose in each t periods, then

there are dt potential dose combination over the length of the experiment. Therefore, the

total state space is 2000dt for each patient.

Appendix II: Clinical Trial Documentation

University of Texas Health Science Center at San Antonio

We are asking you to take part in a research study of Topamax for the treatment

of alcohol dependence. Currently, there is no standard treatment for people who are alcohol

dependent. While there are several treatment programs available, it is not clear how well

these programs work. We want to �nd out if a drug called Topamax (Topiramate), a drug

approved by the FDA in December 1996 as adjunctive therapy for all adults with partial

onset seizures (maximum dose 400 mg/day) and Brief Behavioral Compliance Enhancement

Treatment (BBCET) is more e¤ective than BBCET without Topamax (Placebo medication)

for the treatment of alcohol dependence. We are asking you to take part in this study

because you are alcohol dependent and wish to stop drinking alcohol. It is anticipated that

approximately 80 patients will participate in this study.

If you decide to take part in this study, we will conduct an initial screening visit,

in which you will have a complete medical and psychiatric evaluation. If you qualify (you

do not have any medical and/or psychiatric conditions that jeopardize your physical or

mental health) for the study, you will be asked to participate in a 12-week double-blind
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randomized research treatment study. You will be randomized (like �ipping a coin) to one

of the following treatments: a) Topamax up to 400 mg/day + BBCET, or b) Placebo +

BBCET. There is a 50% chance that you will receive Topamax and a 50% chance that you

will receive placebo. This is a double-blind study, which means neither you nor your doctor

will know which treatment you are receiving. However, this information is available if needed

to treat you in an emergency. You will be required to attend the clinic weekly for medication

and BBCET. BBCET sessions are 15-20 minutes in length, and involve you meeting with a

member of the research sta¤ to discuss medication issues and your status in the treatment

program. During the 12-week study you will be required to complete self-report measures

(pencil and paper rating forms) of substance use, craving, withdrawal symptoms, mood,

and other psychological states (e.g., feelings), and provide both urine and blood samples

for drug screening, pregnancy screening, and laboratory evaluations. Your study medication

will be gradually increased during the �rst 10 weeks of the study, to the maximum tolerated

dose (400mg/day or placebo) allowed by the study. Dr. Johnson may adjust your study

medication dose as is necessary.

You will be expected to attend the clinic for an initial screening visit (approximately 6

hours) and a weekly visit (approximately 20-30 minutes) for each of the 12 study weeks.

Drinking levels required for participation in this study are set at > (greater than or

equal to) 14 alcohol units/week for women and > (greater than or equal to) 21 units/week for

men in the last 30 days to avoid enrolling individuals who may experience severe withdrawal

or medical complications. Alcohol units are measured by the amount and type of beverages

you consume (e.g., 12 oz. of beer = 1 alcohol unit, 1.5 oz. of liquor = 1). Individuals who

are experiencing physical signs of withdrawal will be referred for medical care.
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Risks

The most commonly observed side-e¤ects associated with the use of Topamax at

dosages between 200 to 400 mg/day in previous studies are: somnolence (sleepiness), dizzi-

ness, ataxia (problems with coordination), speech disorders and related speech problems,

psychomotor slowing (slowed thinking and movement), nystagmus (eyes jumping), and pares-

thesia (tingling of the skin). These side e¤ects are not related to the dose of Topamax.

In clinical trials, 11% of patients discontinued due to adverse events. Compared

to placebo, 1% of patients treated with Topiramate (Topamax) (200-400 mg) had a greater

incidence of adverse events. Most patients who experienced adverse events during the �rst

8-weeks of treatment, no longer experienced these e¤ects at their last visit.

The most common side e¤ects which may appear as the dose is increased from 200 to

1,000 mg/day are: fatigue, nervousness, di¢ culty with concentration or attention, confusion,

depression, anorexia (i.e., loss of appetite), language problems, anxiety, mood problems,

cognitive problems not otherwise speci�ed, weight decrease, and tremor. In addition, a total

of 1.5% of patients exposed to Topamax can develop kidney stones. The use of Topamax at

the same time as other carbonic anhydrase inhibitors, such as acetazolamide and zonisamide,

may increase the risk of kidney stone formation, and should therefore be avoided. Drinking

plenty of liquids is recommended to reduce new stone formation. You will be monitored

weekly for the occurrence of side e¤ects and other potential di¢ culties associated with this

treatment study.

The use of antiepileptic (anti-seizure) drugs (i.e., Topamax) during pregnancy has

the potential for causing serous birth defects in o¤spring (children). If you become pregnant

during this study, you will be discontinued from the study and the medication will be stopped

after a tapering (lowering of the medication dose) period, if necessary. If you are pregnant,

you cannot take part in this study. We will perform a pregnancy test at screening (beginning

of study), and weeks 3, 5, 7, 9, 11 & 13 to make sure that you are not pregnant. You should

use an e¤ective method of birth control (i.e., spermicide + barrier, pill, or hormonal implants)
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while you are taking part in the study. The interaction of Topamax and oral contraceptives

(the pill) may render them less e¤ective. Thus, if you are taking the oral contraceptive pill,

you should consider utilizing an additional acceptable method of contraception. If you think

you might be pregnant at any time during the study, you must tell us, and a pregnancy test

will be performed. Your physician will explain the potential hazards (dangers) which may

a¤ect the fetus and possible alternatives, which may include ending the pregnancy.

There is the possibility of bruising, swelling and/or infection at the site of the

venipuncture which is needed for the collection of blood samples.

Due to the possibility of dizziness or drowsiness, you will be cautioned regarding

operating a vehicle or operating heavy machinery while in this study. The interaction be-

tween Topamax and central nervous system depressants such as alcohol may lead to excessive

sedation. If you experience excessive somnolence (sleepiness), sedation, dizziness, or ataxia

(problems with coordination), you should contact your study doctor immediately.

There is the possibility of feeling distressed or uncomfortable which can occur as

part of the clinical interview, or completing self-report ratings and questionnaires. While

the possibility of such events is low, our research sta¤ is trained to look for these situations

and provide a needed level of support.

Not all of the e¤ects of Topamax are known at this time. There may be risks

involved which are currently unforeseeable. You will be noti�ed if signi�cant new �ndings

become known that may a¤ect your willingness to continue participating in the study.

Bene�ts

At screening, you will receive a medical and psychiatric evaluation at no cost. You

will also receive study medication and BBCET for 12-weeks at no cost. Your participation

in this study may lead to the development of new treatments for alcohol dependence. We

do not guarantee that you will bene�t from taking part in this study.

Alternatives

You do not have to participate in this research study. Your alternatives would be
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to be referred to another alcohol treatment program in the San Antonio area. In the San

Antonio area, there are numerous medically (e.g., inpatient, day hospital) and psychologically

(e.g., Alcoholics and Narcotics Anonymous) focused alternative treatment programs for the

treatment of alcohol dependence and abuse. If you do not wish to enroll in the alcohol

treatment research program described in this document, then we will refer you to these

alternative programs.

You will be paid for your participation in the 12-week study at a rate of $20/week

for a total of $240, if you complete all of the study visits. You will only be paid for the visits

that you complete. You will also be paid for parking and/or transportation to the clinic for

study visits.

Everything we learn about you in the study will be con�dential. If we publish the

results of the study in a scienti�c magazine or book, we will not identify you in any way. This

study is being supported by Ortho-McNeil Pharmaceutical. The results of the study will be

given to Ortho-McNeil Pharmaceutical, the company that makes Topamax. The Food and

Drug Administration of the U.S. Government and Ortho-McNeil Pharmaceutical may need

to see your records which identify you as a subject in this study, usually to con�rm study

participation.

Your decision to take part in the study is voluntary. You are free to choose not to

take part in the study or to stop taking part at any time. If you choose not to take part

or decide to stop at any time, it will not a¤ect your future medical care at the University

of Texas Health Science Center at San Antonio. We will tell you about any signi�cant new

�ndings which develop during the course of this research which may relate to your willingness

to continue taking part.

Your participation in this study may be discontinued without your consent if: you

do not follow the study procedures, you develop any serious medical or psychiatric compli-

cations, or you break any of the clinic guidelines for appropriate conduct. If this occurs, you

must understand that it is important to notify your doctor so that he may plan for your
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continuing medical care. This may involve gradually decreasing the dosage of Topamax, and

visits to the clinic until you are no longer taking Topamax.

If you are injured as a result of the research procedures, medical care will be pro-

vided. You will be responsible for all charges. We are not able to give you money if you are

injured. You or your insurance company will have to pay for all costs of care related to any

injuries resulting from your participation in this research study. Insurance companies and

Medicare may not pay for the costs of some research studies like this one. If your insurance

company does not cover the costs of care, then you will have to pay these costs. You have

the right to ask what it will cost you to take part in this study or to have other treatments.

If you have questions now, please do not hesitate to ask us. If you have additional

questions later or you wish to report a medical problem which may be related to this study,

Dr. Bankole Johnson can be reached at (210) 567-5475. If he is not available, Dr. Bordnick

may be reached at (210) 567-5475. If you encounter any problems or need assistance after

clinic hours, please page our Clinic Director (Dr. Alison Jones) at (210) 235-2435 or Rene�

Beauregard, M.Ed. at (210) 230-4263 who will assist you. To use the pager, you need

a touch tone (push button) telephone. Dial the pager number as you would any phone

number. When you hear 3 short high-pitched beeps, dial the number where you want the

doctor to call you back. Push the # button, hang up and wait for the doctor to return your

call. The University of Texas Health Science Center at San Antonio committee that reviews

research on human subjects (Institutional Review Board) will answer any questions about

your rights as a research subject (210-567-2351).
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We will give you a signed copy of this form to keep.

YOUR SIGNATURE INDICATES THATYOUHAVEDECIDEDTOTAKEPART

IN THIS RESEARCH STUDYAND THAT YOUHAVE READANDUNDERSTAND THE

INFORMATION GIVEN ABOVE AND EXPLAINED TO YOU.

________________________________ ________________________________

Signature of Subject Signature of Witness

_____________/______________ ________________________________

Date/Time Signature of Investigator

___________________________________

Signature of Person Enrolling Subject

(If other than Investigator)
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