Performance Analysis of Multi-pulse PPM for Optical Wireless Hierarchical Transmission System

Yusuke Kozawa, Tokyo university of Science, japan
Hiromasa Habuchi, Ibaraki university, japan

3 December 2012
Contents

* Optical wireless broadcasting
* Hierarchical transmission system
* Proposed hierarchical MPPM system
 • Transmitter and symbol structure
 • PN Codes for MPPM and CNK
 • Receiver and symbol detection
* Evaluation
 • Data transmission rate(DTR)
 • Symbol error rate(SER)
* Conclusion
Contents

* Optical wireless broadcasting
* Hierarchical transmission system
 * Proposed hierarchical MPPM system
 • Transmitter and symbol structure
 • PN Codes for MPPM and CNK
 • Receiver and symbol detection
* Evaluation
 • Data transmission rate (DTR)
 • Symbol error rate (SER)
* Conclusion
Optical wireless (OW) broadcasting

• Advantages
 ✓ High information capacity
 ✓ Worldwide available and unlicensed bandwidth
 ✓ Does not interfere with radio bands

Promising supplement to already existing wireless RF technologies.

• OW hierarchical Transmission system for ITS
 [Yamazato, 2007][Oka, 2008]
 - the broadcasted messages can be divided into two or more classes according to its importance.

✓ The important information (Data1) must be recovered by all receivers.
✓ The less important information (Data2) can only be recovered by the “fortunate” receivers.
Hierarchical transmission system

Ways to realize the Optical wireless Hierarchical transmission

- **Fusion modulation using Intensity Modulation (IM)**
 - Compatible with on-off signaling
 - Low immunity against ambient noise
 - Photo-Diode (PD)

- **Hierarchical Constellations using subcarrier IM**
 - Robust system for ambient noise
 - Requires higher optical clock rate
 - PD and Image sensor

- **Hierarchical coding using Image enhancement**
 - Robust system for ambient noise
 - Parallel processing
 - Image sensor

We focus on the Fusion modulation (most simple way).

*We propose **new hierarchical MPPM** modulation.*

Moreover, we evaluate the proposed system taking into account optical wireless noises.

MPPM : Multi-pulse Pulse Position Modulation
Contents

* Optical wireless broadcasting
* Hierarchical modulations
* Proposed hierarchical MPPM system
 • Transmitter and symbol structure
 • PN Codes for MPPM and CNK
 • Receiver and symbol detection
* Evaluation
 • Data transmission rate (DTR)
 • Symbol error rate (SER)
* Conclusion
Transmitter and symbol structure

- Combine multi-pulse PPM (MPPM) with code number keying (CNK)

Input bits (Data 1)
...0110110

Input bits (Data 2)
...11101101

1st modulation
MPPM

- 00 ➔
- 01 ➔ 0
- 11 ➔ 1
- 10 ➔ n=0 code

2nd modulation
CNK

- 0 ➔ n=0 code
- 1 ➔ n=1 code

MPPM Code: 1010
CNK Code: 0101

Optical signal

Tx1

Step 1) According to data1, *m slots are selected* from *M* slots.

Step 2) According to data2, *n slots are selected from M-m slots* (no overlap).

Step 3) *m MPPM codes are generated in the m slots*, while *n CNK codes are generated in the n slots.*
Conventional MPPM system (M=16, m=8) PN for MPPM (11101000)

Proposed system (M=16, m=8, N=4) PN for MPPM (11101000), PN for CNK (00010111)
Codes for MPPM and CNK

- Modified pseudo orthogonal M-sequence sets (kozawa 2007)
 - For example when code length, L, is 4,

\[
\begin{align*}
\mathbf{PN} &= \begin{bmatrix} PN_1 \\ PN_2 \\ PN_3 \end{bmatrix} = \begin{bmatrix} 1,0,1,0 \\ 1,1,0,0 \\ 1,0,0,1 \end{bmatrix}, \\
\overline{\mathbf{PN}} &= \begin{bmatrix} PN_1 \\ PN_2 \\ PN_3 \end{bmatrix} = \begin{bmatrix} 0,1,0,1 \\ 0,0,1,1 \\ 0,1,1,0 \end{bmatrix}, \\
\mathbf{RC} &= \mathbf{PN} - \overline{\mathbf{PN}} = \begin{bmatrix} +1,-1,+1,-1 \\ +1,+1,-1,-1 \\ +1,-1,-1,+1 \end{bmatrix}
\end{align*}
\]

- Code characteristics

\[
\begin{align*}
\mathbf{PN} \mathbf{RC}^{-1} &= \frac{L}{2} \mathbf{E}, \\
\overline{\mathbf{PN}} \mathbf{RC}^{-1} &= -\frac{L}{2} \mathbf{E}
\end{align*}
\]

$L : \text{code length} \\
\mathbf{E} : \text{unit matrix}$

- Code for MPPM and CNK ;
 - \mathbf{PN} is used for MPPM
 - $\overline{\mathbf{PN}}$ is used for CNK
 - \mathbf{RC} is used for the reference code at the receiver
Receiver and symbol detection

- Demodulate MPPM data and CNK data individually

Step 1) Received signal is correlated by the reference code in each slot.

Step 2) MPPM symbol is declared by selecting *m* correlation values, which are larger than the other *M-m* correlation values.

Step 3) CNK symbol is declared by threshold detection with the magnitude of sum of *M* correlation values.

Reference code

RC : +1-1+1-1

MPPM demodulator

\[
(q_1, q_2) > (q_3, q_4) \rightarrow 00 \\
(q_1, q_3) > (q_2, q_4) \rightarrow 01 \\
(q_1, q_4) > (q_2, q_3) \rightarrow 11 \\
(q_2, q_3) > (q_1, q_4) \rightarrow 10
\]

CNK demodulator

\[
q_1 + q_2 + q_3 + q_4 \geq T_h \rightarrow 0 \\
q_1 + q_2 + q_3 + q_4 < T_h \rightarrow 1
\]

Diagram

- **Rx** (Received optical signal)
- **APD**
- **Correlation value**
- **Data**

10
Symbol detection

Proposed system (M=16,m=8,N=4) PN for MPPM (11101000), PN for CNK (00010111)

- CNK data "01" (n=1)
- CNK data "11" (n=2)

4×8-4×1=28
4×8-4×2=24
Contents

* Optical wireless broadcasting
* Hierarchical modulations
* Proposed hierarchical MPPM system
 • Transmitter and symbol structure
 • PN Codes for MPPM and CNK
 • Receiver and symbol detection
* Evaluation
 • Data transmission rate (DTR)
 • Symbol error rate (SER)
* Conclusion
Evaluation : DTR and SER

- Comparing the proposed system with the conventional MPPM system

Transmitter

- Laser wavelength: 830 [nm]
- Optical clock rate: 120 [MHz]
- Code length: \(L = 16 \)
- Modulation extinction ratio: 100
- The num. of MPPM slots: \(M = 16, 32 \)
- The num. of selected slots: \(m, 1, \ldots, M-1 \)
- The maximum num. of selected slots: \(N = M-m+1 \)

Receiver

- APD Gain: 100
- Quantum efficiency: 0.6
- Receiver load resistor: 1030 [Ω]
- Receiver noise temperature: 1100 [°K]

Numerical conditions

OW channel

- Scintillation model
- Log-normal Turbulence
- Scintillation logarithm variance: \(\sigma_s^2 = 0.01 \)
- Background noise: \(P_b = -45 \text{ [dBm]} \)

Comparing the proposed system with the conventional MPPM system

- **Proposed system**
 - MPPM
 - CNK
 - MPPM Code
 - CNK Code

- **Conventional MPPM/SS system**
 - MPPM
 - MPPM Code

Data 1

- MPPM

Data 2

- CNK

Proposed system

- MPPM Code

Conventional MPPM/SS system

- MPPM Code
Result: DTR

- DTR of the proposed system is better than that of the conventional MPPM system.
- DTR can achieve upper bound when the m is half of M.
- DTR of the conventional MPPM system is decreases when m is larger than half of M.

Fig. 1, DTR vs. m
Result: SER vs. P_{bit} (M=16, m=8)

- **Conventional system (M=4)**

 - Received signal
 - Ref. code
 - Correlation value:
 - q_1, q_2, q_3, q_4
 - Difference between q_2, q_3 and q_1, q_4 is 2.

- **Proposed system (M=4)**

 - Received signal
 - Ref. code
 - Correlation value:
 - q_1, q_2, q_3, q_4
 - Difference between q_2, q_3 and q_1, q_4 is 4.

Fig. 2, SER vs. P_{bit}

- Symbol Error Rate
- Averaged received laser power per bit [dBm]

\[
\begin{align*}
\sigma^2 & = 0.01 \\
M & = 16, \ m = 8, \ L = 16 \\
P_b & = -45 \text{ [dBm]}
\end{align*}
\]
Result: SER vs. P_{bit}/P_b ($M=16$, $m=8$)

Fig. 3, SER vs. P_{bit}/P_b w/ scintillation

Fig. 4, SER vs. P_{bit}/P_b w/o scintillation
Conclusion

- We proposed the hierarchical MPPM system using PN codes.
- We analyzed and evaluated the proposed system from theoretical analysis.

- The proposed system can:
 - Improve the data transmission rate compared with the conventional MPPM system.
 - Achieve to SER of conventional MPPM.
 - Transmit MPPM data and CNK data hierarchical because there is the difference between SER of MPPM and SER of CNK.

- Future works:
 - Evaluation of the system in the parallel transmitter case.
 - Comparing with conventional hierarchical systems.
Thank you.