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ERC Biosensors Application Area
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/® SPA 2.1 Biosensors Application Area

SPA2.1: *Spectral Reflectance Imaging
Biosensors (SRIB) (Ruane, Unlu, BU)

SPA2.2: *High Throughput Biosensors Using
Plasmonic Nanostructures (Altug, BU)

SPA2.3: *Water Contamination Detection and
Measurement using UV Intrinsic
Fluorescence (Sawyer, RPI)
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Spectral Reflectance Imaging Biosensors

(SRIB)

Selim Unli, Michael Ruane, Pl
Professors, ECE

Boston University
Graduate Students: Margo Monroe, Alexander Reddington
Biological Sensing and Imaging Laboratory
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Spectral Reflectance

Imaging Biosensors (SRIB)

* Point-of-care medicine and public health

« 325 million DALYs per year (disability-adjusted life years)
from the six highest infectious diseases

« More appropriate diagnostic tools for global health
applications, especially point-of-care, developing world
— ELISA (Enzyme-linked Immunosorbent Assay) — labeled, lab, skill

— SPR (surface plasmon resonance) label free, temperature
sensitive, laboratory

— Microarray — label efficiency, quenching, bleaching, probe affinity
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Spectral Reflectance

Imaging Biosensors (SRIB)

SRIB Principles
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Spectral Reflectance

Imaging Biosensors (SRIB)
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Antigen Detection
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Spectral Reflectance
Imaging Biosensors (SRIB) -
Single Particle Detection

Fluorescent 100nm Carboxyl modified beads immobilized on
Lysine surface. Incubation time 15min, 1078 particles/ml
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/e Surface Protocols @

- Epoxysilanization (Control)

= 0.1M NaOH

s 4hr y-GPS(glycidil propyl silane)

(5% in dry toluene) at 37 C

> toluene/methanol wash

= overnight at 100 C
Spotting of Oligonucleotides
o5’-amine-modified and 3’-Cy5-modified

oligos in sodium phosphate buffer, non-
contact microarray spotter.

Be Yy Mg oW Spltting
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* Polymer Coating
0.1M NaOH

30min polymer
extensive wash
Vacuum dry at 80 C
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G. Pirri et al., Anal. Chem. 76, 1352-1358 (2004)
A. Yalcin et al., Anal. Chem. 81, 625-630 (2009)

Incremental surface accumulation (ng/mmz2)

20 40 60 80 100 120 140 160 180
time (min.)

mouse IgG
anti-mouse IgG
rabbit IgG
anti-rabbit IgG
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LED Emission
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High Throughput Biosensors Using

Plasmonic Nanostructures

Hatice Altug, PI
Assistant Professor, ECE
Boston University

Graduate Students: Ahmet Ali Yanik, Alp Artar, Min Huang,
Ronen Adato

Integrated Nanophotonics and Biosensing Systems Lab
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Applications:

|- Life-Science

=» Proteomics

=» Cancer, Alzheimer’s

Il- Bio-defense
=» Infectious Diseases
=»Viral Out-breaks

[lI-Pharmacology
=>» Drug/Vaccine
Discovery
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Plasmonic Nanoholes
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- Nano scaled surface biosensors offers

L ._ — - ,. — ._ _ _ -~ 1)Femto-molar sensitivity label-free detection
". 2)On-chip integration with microfluidics for

---------------------- point of care applications

BUT...
Conventional fluidic channels leads

V V V @ V * 1) Passive delivery

. 2) Formation of depletion zones
3) Mass transport limitation

inlet outlet
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Proposed flow scheme
- Transport solutions at nano-scales - Actively control the fluidic flow
- Overcome mass transport limitations - Apply to highly viscosity solutions

This scheme can be employed at any nano-hole openings based sensors

Photonic cr\&tal structure
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L'GHT'NG Experimental Results

Active delivery in plasmonic sensors  § = e
-Sensitivity reaches 610 nm/RIU ! £ - — Targetted
-14-fold improvement in analyte delivery g :§
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Bulk measurement with photonic crystal
- Sensitivity reaches 510 nm/RIU

Huang et. al, Optics Express 2009

@ Rensselaer

resonance shift

200}
180}
160}
140t

N
N OB ® O ® O
o o o & a &

Experimental Results NS

0.9
air (n=1)

08 — passive flow scheme in water
= active flow scheme in water (n=1.33)
=—|PA (n=1.377)

0.7y = mixed chlororoform (n=1.424)

3 I
s 0.6
=
o
2 0.5+
£
2
s 0.4+
0.3+
-] = - =l 5 =X
0.2 X ™= - X X= L

0'gOO 6350 700 750 800 850 900 950
wavelength (nm)

[
[=]
T

O simulation
%K experiment
= linear fit to experiment

1 105 11 115 12 125 13 135 14
refractive index

'l

nowarn  (ROSE-HULMAN M@%AN

UNIVERSITY = PINSTITUTE OF TECHNOLOGY STATEUNIVERSITY




SMART
LIGHTING

/@

1. Multi-Layered nanohole arrays

Multi-Layered Plasmonic

Structures

Valentine et. al.
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Multi-layered Plasmonic Nano-

Structures

=>» Studied multi-layered structures

=» Demonstrated for the first time

EOT in multi-layer structures

i) Through Fabry-Perot
Resonances

ii) Through grating based SPP

ArtareC 3P RBBI. Phys. Lett. 2009

(top 10 downloaded APL paper in
August 2009)
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=>» We show Fabry-Perot resonances offer superior field-media
Resulting in much higher sensitivity to refractive index changes

=>» Introduced a simple cavity model to account the behavior of
the resonances
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Enhancing Sensitivity

Aep = 2hn
h: spacing between layers
n : effective index

As predicted:

i) Increasing spacing red-shifts FP
mode

ii) Decreasing diameter increases
effective index, thus red-shifts FP
mode

=>» while none effects SPPs
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Ultra-sensitive Vibration

Spectroscopy

Vibrational *Fingerprint* Signatures of Proteins
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Funding Opportunities i i
© Find Funding Opportunities NSF Inf ion Relats

© Upco Due Dates

(highlighted on the cover of NSF)
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Water Contamination Detection and
ldentification using UV Intrinsic

Fluorescence

Shayla Sawyer, Pl
Assistant Professor, ECSE

Rensselaer Polytechnic Institute
Main Project: Undergraduate Students: Renato Li, Nikhil Rao
Microbiologist: Irina Barash
Subproject: Graduate Student Ligiao QIin
Undergraduate Student: Chris Shing
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UV LED based Microbial Contamination

Detection and Identification

— Contamination in waterways is becoming increasingly significant
around the world as populations grow rapidly

— ~ 20 million people become ill yearly from drinking water
containing bacteria and other pathogens often spread by
untreated waste

— Example Hudson River, during wet weather, six communities
discharge raw sewage and bacteria from almost 100 individual
Combined Sewer Overflows (CSO)

— Need to quantify large areas ATreatment Plant
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UV LED based Microbial Contamination

/@ Detection and Identification

= UV LEDs provide compact field deployment monitoring
systems using intrinsic fluorescence within the cell for
Identification and quantification

= Fluorescence advantages
— High sensitivity
— Short collection time
— In situ measurement (no sample contact)
— Reagentless (no consumables)
— Monitoring of large areas/volumes continuously

= Solid state light source enables switch between modes
of quantification (alarm system) and identification
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UV LED based Microbial Contamination

/@ Detection and Identification

Quantification: Concentration of bacteria vs.
Fluorescence Intensity for Tryptophan (280 nm) and
NADH (340 nm) native fluorophores

280nmLED_Photon Counting PMT 340nm LED_ Photon Counting PMT
E-coli dilutions E-coli dilutions
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E-coli diluted samples measured in a quartz cuvette with path length of 3 mm by 280 and 340 nm
UV LEDs and PMT photon counting module. A 340 nm band pass and 400 nm long pass emission
filter was placed in front of the PMT for the 280 nm and 340 nm excitation repectively.
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UV LED based Microbial Contamination

Detection and Identification

= Proof of concept:
ldentification on
traditional system
= Differentiate both
species and strain of
bacteria using PCA
= Preliminary Computer
program based on PCA
— Fluorescence spectra
from 280, 340, and 440
nm excitation
— Small differences in
spectra for each
bacteria are amplified

| Differentiation: Two strains of E-coli
and Enterobacter aerogenes
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Based Detectors

= Intrinsic fluorescence for identification and
guantification requires high UV wavelength
response (responsivity)

= Traditional detectors such as PMTs and Silicon
Photodiodes are limited by:

— Broad spectrum of detection (requires filters)

— Low UV responsivity
— Non-ideal for field deployment of small sensors

= Demonstrate a large area, wavelength selective UV
photodetector for intrinsic fluorescence biological

system

= Bandpass response can be tuned by the substrate
and nanoparticle material properties
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Spectral Responsivity

Biological Detection with Nanoparticle
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Spectral response of ZnO nanoparticles-AlGaN substrate detector a)
Front lighting compared with commercial UV enhanced Si based
photodiode and b) Front and back lighting compared with absorption
spectrum of AlGaN substrate
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Detection of tryptophan enzyme in E-coli (ATCC # 25922) in different
concentration by ZnO nanoparticles-AlGaN substrate detector (back
lighting) when the cells is excited by a 280nm LED.
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Biological Detection with Nanoparticle

Based Detectors

Comparison of Tryptophan Detection in E-coll
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Photovoltage generated by a) commercial UV enhanced Si-PD and b)
Zn0 nanoparticles-AlGaN substrate detector (back lighting) when the
tryptophan enzyme in E-coli(ATCC # 25922) excited by a 280nm LED.
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