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ABSTRACT

The original hybrid-FDTD method developed by Wu and Itoh is extended to handle lossy materials with positive
or negative dielectric constants. Numerical results are given to compare the hybrid-FDTD method and standard
FDTD. The results show that the hybrid-FDTD method is much more accurate than standard FDTD when the
same mesh spacing is used in both methods. In the case of lossy materials with negative dielectric constants, the
hybrid-FDTD method is found to be much more accurate than standard FDTD even when a mesh spacing four times
finer is used in the latter method. These results highlight the importance of modeling curved surfaces accurately in
DUV lithography simulation using the hybrid-FDTD method.
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1. INTRODUCTION

Electromagnetic scattering from nonplanar topography on the mask or wafer can have a significant impact on pho-
tomask performance, linewidth control or alignment precision. Computer simulation is a cost-effective way to assess
the importance of such electromagnetic scattering effects in photolithography. With the scaling of devices to smaller
dimensions, greater demands are placed on the accuracy of the mathematical models used in the electromagnetic
simulators and the efficiency of their numerical implementation.

Over the past many years, the finite-difference time-domain method (FDTD) has become the prevalent method
for solving electromagnetic scattering problems. Not only is it generally applicable to arbitrary geometries, but also
it 1s the most efficient algorithm available, by yielding useful field information at N space points and m time points
in a total of only O(mN) operations. Thus, for example, a single time-domain simulation of the response of an
electromagnetic system to a finite-duration incident pulse can yield the steady-state results for a large number of
different frequencies by Fourier transformation.

The main disadvantage of FDTD is its inefficiency in modeling curved surfaces accurately, since the regular
finite-difference mesh used in FDTD requires that curved surfaces be approximated by staircase models. To achieve
accurate results using the staircase model, one usually has to use a very fine mesh and, therefore, also a very small
time step due to the stability criterion.

Recently, a hybrid-FDTD method appeared in the literature’ which combines the flexibility of the finite-element
method (FEM) in modeling curved surfaces accurately with the computational efficiency of FDTD. Tt appears that
this hybrid-FDTD method, when used in conjunction with high-performance absorbing boundary conditions, is
the 1deal tool for solving three-dimensional electromagnetic scattering problems arising in lithography simulation
accurately and efficiently.

However, the hybrid-FDTD method in its original form is not suitable for DUV lithography simulation. This is
because the original formulation cannot handle lossy materials, especially those with negative dielectric constants,
such as chromium and silicon, which are commonplace in DUV lithography. The goal of this paper is to extend the
orignal hybrid-FDTD formulation to handle lossy materials.

After reviewing the original hybrid-FDTD formulation in Section 2.1, we discuss its extensions to lossy materials
with positive and negative dielectric constants separately in Sections 2.2 and 2.3. The issues of mesh generation are
discussed briefly in Section 3.1. This is followed in Section 3.2 by a presentation of numerical results comparing the
hybrid-FDTD method and standard FDTD for various dielectric materials.



2. THE HYBRID-FDTD METHOD
2.1. The Original Method

The hybrid-FDTD method was originally developed by Wu and Itoh! for lossless dielectric objects. Consider a
dielectric object bounded by a curved surface S as shown in Fig. 1 The computational domain is divided into two
overlapping regions: (i) A regular finite-difference region €, spanning the interior and exterior of the object at some
distance from the surface S, and (ii) an irregular finite-element region 2 spanning the immediate vicinity of S on
both of its sides. The two regions overlap in a single layer of finite-difference cells bounded by staircase surfaces I'y
and I's on each side of S.

Suppose the electric field E™ is known everywhere at time step n. Using the standard Yee algorithm,? the
magnetic field H"+3 at time step n + % in the regular region €21, including the overlap region, can be updated. This
in turn allows the electric field E**! in ;, including the boundary I'y, to be updated. The electric field E**! in
the irregular region €25 is then updated by solving the weighted-residual problem
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using the electric field E**! on I'; as boundary condition and the previous electric fields E® and E*~! in Q, as
initial condition. Once the electric field at time step n 4+ 1 becomes available everywhere, the time-marching can be
continued for the next time step.

To solve the weighted-residual problem Eq. (1), the irregular region Q5 is subdivided into many small tetrahedral
elements and the electric field in the elements is expanded in Whitney vector basis functions W;,> with the electric
field components E; along the element edges j as the expansion coefficients. Next, the time derivative in Eq.
(1) is approximated by the central difference operator and the Newmark-Beta method! is applied to obtain an
unconditionally stable, second-order accurate, implicit time-marching scheme,
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Here the matrices [C] and [D] are given by
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where ¢, is the dielectric constant and E” is the vector of expansion coefficients at time step n.

The above formulation of Wu and Itoh is applicable only to lossless dielectric objects with positive dielectric
constants €,. The objects encountered in lithography simulation, however, are often lossy and, furthermore, may
have negative dielectric constants, especially at DUV wavelengths. We next discuss the extensions of the formulation
of Wu and Itoh to lossy media with positive and negative dielectric constants separately.

2.2. Extension to Lossy Medium with Positive Dielectric Constant

A material with positive dielectric constant is one for which the real part n of its complex refractive index is greater
than the imaginary part k. Such is the case for weakly absorbing materials such as photoresist and silicon nitride.
This kind of material can be modeled in the time domain by adding a conductivity term to the electric-field updating
equation. The dielectric constant ¢, and conductivity ¢ are related to the complex refractive index n + jx by
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where wq 1s the frequency of interest.

By using exponential time stepping,* the updating equation for the electric field in the irregular region becomes
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where the matrices [C1] and [Cy] are given by
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The time-marching scheme Eq. (7) is unconditionally stable as long as ¢, > 0.

2.3. Extension to Lossy Medium with Negative Dielectric Constant

A material for which n < k has a negative dielectric constant according to Eq. (5). Silicon, chromium and tungsten
are examples of such materials at DUV wavelengths. This type of material can be modeled in the time domain by
an unmagnetized plasma,® with a complex dielectric function
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The plasma frequency w, and collision frequency v, appearing in Eq. (10) are related to the complex refractive index
of the material at the frequency wq of interest by
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The weighted-residual problem to be solved in the irregular plasma region is
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in which a convolution term appears due to the frequency dependence of the plasma dielectric function Eq. (10).
Expanding the electric field E in Whitney basis functions and applying the Newmark-Beta method, we obtain the
following second-order accurate, implicit time-marching scheme:
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where [C] is given by Eq. (3) with ¢, = 1 and the matrix [X(l)] is given by
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The vector ¥™ appearing in Eq. (14) is define as
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where the matrix {X,(ﬁ)} is given by
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Using the technique of Luebbers et al.,> the vector U™ can be computed recursively by
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The same plasma model Eq. (10) can be applied to the regular FDTD region in the interior of the object.
However, the traditional FDTD implementation of this model® is only first-order accurate in time, due in part to
the use of the rectangular rule for the convolution integral. Instead, by assuming the electric field to vary linearly
with time between successive time steps and performing the resulting convolution integral exactly, the following
second-order accurate updating equation for the electric field in the interior FDTD region is obtained:
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The vector ®" appearing in Eq. (19) is defined as
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and can be computed recursively by
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To our knowledge, the second-order accurate updating equation Eq. (19) has not appeared before in the literature.

3. RESULTS

We tested the formulations discussed in Sections 2.1 to 2.3 with the problem of electromagnetic scattering by a
dielectric sphere, for which the exact solution is known. The diameter of the sphere was 0.06 ym and the wavelength
was 0.248 pm.

3.1. Mesh Generation

The first step in the computation was to generate a high-quality mesh for the three-dimensional irregular region Q4
shown in Fig. 1. After subdividing the surface of the sphere into a large number of small triangles, an unstruc-
tured tetrahedral mesh was generated in Q5 conforming to the surface triangulation of the sphere and the staircase
boundaries 'y and I's, using our automatic mesh-generation software.

The quality @ of our mesh was measured by the minimum of the sines of all the dihedral angles in the mesh,
where 0 < @ < 1.0. This quality measure was chosen to bias against elements with too large (6min = 180°) or too
small (Omin & 0°) dihedral angles, which would lead to poor accuracy of the finite-element interpolation or poor
conditioning of the finite-element matrix, respectively.® It was found that our as-generated mesh had a quality @
of only 0.073, indicating the presence of poorly shaped elements in the mesh.

To remove the poorly shaped elements, we performed mesh improvement on the as-generated mesh in two steps.
In the first step, the sub-mesh belonging to each edge in the mesh, consisting of all the tetrahedra adjacent to that
edge, was examined. The edge was deleted and replaced by one or more new edges if, by doing so, the quality of
the sub-mesh was improved. In the second step, the cluster belonging to each node, consisting of all the tetrahedra
adjacent to that node and its nearest neighbors, was examined. If the quality of the cluster was below a certain
threshold, the nodes in the cluster were moved to new positions which maximized the quality of the cluster. It was
found that after a single pass through our mesh-improvement routine, the quality of the mesh increased to Q =



0.335, which was deemed satisfactory for our computation. The final mesh is shown in Fig. 2 and consists of 1195

nodes, 7158 edges and 5485 tetrahedra.

The above finite-element mesh was embedded in a regular finite-difference mesh with 20 x 20 x 20 cells. For
simplicity, the first-order Higdon absorbing boundary condition® was used on all six sides of the computational
domain, which measured 0.2uym x0.2um x0.2um. A Huygens surface® located two cells interior to the outermost
boundaries was used to excite the domain with various Gaussian pulses.

3.2. Numerical Results
3.2.1. Lossless Dielectric

We first compared our results with those of Wu and Itoh, who used a lossless dielectric sphere of refractive index ny
= 3.0 and a Gaussian pulse with finite d.c. content,

E’. = 2o [3(-1)] 7 (24)
where ng = 33. The computed results are shown in Fig. 3. Fig. 3a shows the total time-domain waveform at the
center of the sphere, while Fig. 3b shows the scattered waveform at a point 0.09um in front of the sphere. Also
shown in the figures are the exact Mie solution” and the results obtained with standard FDTD using the same mesh
spacing as hybrid-FDTD in the regular region £, namely, 20 x 20 x 20 cells, or roughly 1/8 of the wavelength X,
inside the dielectric. The results of Figs. 3a and 3b are in good agreement with those of Wu and Itoh.! This verifies
the correctness of our computer program.

Next, the frequency-domain scattering cross section was obtained by Fourier transformation of the corresponding
time-domain result. The hybrid-FDTD result is shown in Fig. 3c, together with the exact Mie solution and the
results obtained with standard FDTD using 20 x 20 x 20 and 40 x 40 x 40 cells, respectively. It can be seen that,
compared with the exact result, the hybrid-FDTD method with a coarse mesh spacing of \;/8 gave much better
accuracy than FDTD with the same mesh spacing, and roughly the same accuracy as FDTD with the finer mesh
spacing of A1 /16. The small discrepancy between the hybrid-FDTD result and the exact result is due in part to the
approximate absorbing boundary conditions used.

3.2.2. Lossy Dielectric with Positive Dielectric Constant

We tested the formulation of Section 2.2 by using a lossy dielectric sphere of refractive index ny = 2.0 + 50.5. The
time derivative of a Gaussian pulse was used for excitation to avoid introducing a d.c. offset into the solution,
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where ng = 33. The computed time-domain waveforms are shown in Figs. 4a and 4b, together with the exact results
and the results obtained with standard FDTD using the same mesh spacing as hybrid-FDTD, or roughly 1/12 of the
wavelength inside the dielectric. It can be seen that the hybrid-FDTD and FDTD results are both in good agreement
with the exact results, although the FDTD results have slightly more overshooting at the valleys of the waveforms.

The result for the Fourier transformed scattering cross section is shown in Fig. 4c, together with the FDTD
results obtained with a coarse and a fine mesh spacing. It can be seen that, as in the lossless dielectric case, the
hybrid-FDTD method with a coarse mesh spacing of A1/12 gave much better accuracy than FDTD with the same
mesh spacing, and roughly the same accuracy as FDTD with the finer mesh spacing of Ay /24.

3.2.3. Lossy Dielectric with Negative Dielectric Constant

We tested the formulation of Section 2.3 by using a lossy dielectric sphere of refractive index n; = 0.85 + 52.01,
which is the refactive index of chromium at 0.248 ym.!® The time-derivative Gaussian pulse Eq. (25) with zero d.c.
content was used for excitation to avoid the singularity of the plasma dielectric function Eq. (10) at w = 0.

The computed time-domain waveforms are shown in Figs. ba and 5b, together with the exact results and
the results obtained with standard FDTD using the same mesh spacing as hybrid-FDTD, or roughly 1/29 of the
wavelength inside the dielectric sphere. It can be seen that, whereas the hybrid-FDTD results are in good agreement
with the exact results for all times, the FDTD results show marked departures from the exact results at late times.



The result for the Fourier transformed scattering cross section is shown in Fig. 5c, together with the FDTD
results obtained with a coarse, a fine and a very fine mesh spacing. It can be seen that, whereas the hybrid-FDTD
result is in good agreement with the exact result, the FDTD results for all three mesh spacings, namely, A1 /29, A1/58
and A\ /116, show large departures from the exact result. Since the second-order accurate updating equation Eq.
(19) was used for the FDTD computations, these departures cannot be due to inaccurate implementation of the
plasma dispersion model of Section 2.3, but, rather, must be due to inaccuracy of the staircase model of the spherical
surface used in standard FDTD. These results highlight the need to use the hybrid-FDTD method to model curved
surfaces accurately in the case of lossy dielectric materials with negative dielectric constants.

4. CONCLUSIONS

Extensions of the original hybrid-FDTD method to handle lossy materials with positive and negative dielectric
constants have been discussed separately. The correctness of our computer program has been verified by comparing
our computed results with those in the literature and with the exact results. Our results have shown that, for lossless
dielectric and lossy material with positive dielectric constant, the hybrid-FDTD method is much more accurate than
standard FDTD when the same mesh spacing is used in both methods, while the two methods have roughly the
same accuracy when the mesh spacing used in standard FDTD is half that used in hybrid-FDTD. For lossy material
with negative dielectric constant, the difference between the two methods is much more pronounced. In this case,
the hybrid-FDTD method with a mesh spacing of A is much more accurate than standard FDTD even when a mesh
spacing of iA is used in the latter method. These results indicate that the hybrid-FDTD method is far superior
to standard FDTD for lithography simulation at DUV wavelengths, where lossy materials with negative dielectric
constants are commonplace.

5. ACKNOWLEDGEMENT
This research was supported by AFOSR/DARPA MURI grant no. 98-1-0525.

REFERENCES

1. R. B. Wu and T. Itoh, “Hybrid finite-difference time-domain modeling of curved surfaces using tetrahedral edge
elements”, IEEE Trans. Antennas Propagat., Vol. 45, pp. 1302-1309 (1997).

2. K. S. Yee, “Numerical solution of initial boundary value problems in isotropic media” IEEE Trans. Antennas
Propagat., Vol. 14, pp. 302-307 (1966).

3. A. Bossavit, “Simplicial finite elements for scattering problems in electromagnetism”, Comput. Methods Appl.
Mech. Engrg., Vol. 64, pp. 299-316 (1989).

4. R. Holland, “Finite-difference time-domain (FDTD) analysis of magnetic diffusion”, IEEE Trans. Electromag-
netic Compatibility, Vol. 36, pp. 32-39 (1994).

5. R. J. Luebbers, F. Hunsberger and K. S. Kunz, “A frequency-dependent finite-difference time-domain formula-
tion for transient propagation in plasma”, IEEFE Trans. Antennas Propagat., Vol. 39, pp. 29-34 (1991).

6. 1. Fried, “Condition of finite element matrices generated from nonuniform meshes”, ATAA Journal, Vol. 10, pp.
219-221 (1972).

7. J. A. Stratton, “Electromagnetic Theory” (McGraw-Hill, 1941).

8. R. L. Higdon, “Absorbing boundary conditions for difference approximations to the multi-dimensional wave
equation”, Math. Comp., Vol. 47, pp. 437-459 (1986).

9. R. Holland and J. W. Williams, “Total-field versus scattered-field finite-difference codes: A comparative assess-
ment”, IEEE Trans. Nuclear Science, Vol. 30, pp. 4583-4588 (1983).

10. A. K. Wong and A. R. Neureuther, “Rigorous three-dimensional time-domain finite-difference electromagnetic
simulation for photolithographic applications”, IEEE Trans. Semiconductor Manufacturing, Vol. 8, pp. 419-431
(1995).



T | _L Curved surface

-Exterior FD'I'D mgin"}ﬂ
- Interior FD'I'D region 1
FEM region | {25

—Overlap between FEN
| and FD'I'D regions

~Huygens surface

Figure 1. The hybrid-FDTD computational domain consisting of overlapping FDTD(€;)
and FEM(22) regions. T'; and T’y are the exterior and secondary boundaries, respectively,
of the overlap region. An incident wave is applied to the Huygens surface.
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Figure 2. (a):The surface of a sphere of diameter 0.06 pgm modeled by 352 triangles.
(b):Cutaway view of the FEM mesh used in the hybrid-FDTD method.
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Figure 3. Results for a lossless dielectric sphere of refractive index ny = 3.0. (a)

and (b):

Time-domain waveforms at center of sphere and at a point 0.09 gm in

front of the sphere. (c):Radar cross section obtained by Fourier transformation of
the time-domain results.
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Figure 4. Results for a lossy dielectric sphere of refractive index ny = 2.0 + j0.5.
(a) and (b): Time-domain waveforms at center of sphere and at a point 0.09 pgm in
front of the sphere. (c):Radar cross section obtained by Fourier transformation of

the time-domain results.
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Figure 5. Results for a lossy dielectric sphere of refractive index ny = 0.85 + j2.01.
(a) and (b): Time-domain waveforms at center of sphere and at a point 0.09 pm in
front of the sphere. (c):Radar cross section obtained by Fourier transformation of

the time-domain results.



