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Thermal properties of acceleration have been investigated in the past for both quantum-
mechanical and classical pointlike systems. Here, for the first time, a spatially extended elec-
tromagnetic system is examined. This system consists of two spatially separated classical dipole
simple harmonic oscillators that are uniformly accelerated through classical electromagnetic zero-
point radiation and that interact with each other through emitted electromagnetic radiation. The
two oscillators are assumed to be oriented such that their centers lie in a plane perpendicular to the
direction of acceleration; no restrictions are placed upon the direction of oscillations. The behavior
of this system is analyzed under the conditions of a small-oscillator assumption, the narrow-
linewidth approximation, a small-laboratory approximation, and the unretarded van der Waals con-
dition. The statistical properties investigated for this accelerated spatially extended system are

“found to agree with the corresponding statistical properties of a pair of similarly constructed, but
unaccelerated oscillators that are bathed in a classical electromagnetic Planckian radiation spectrum
characterized by the Unruh-Davies temperature of T=#a /2mck. The properties examined include
the van der Waals force acting between the two oscillators and the correlation functions of the oscil-
lators’ positions and their time derivatives. During the course of obtaining these properties, a set of
exact relationships are deduced involving the electromagnetic fields of a uniformly accelerated elec-
tric dipole and the correlation functions of classical electromagnetic zero-point fields, evaluated
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along relativistic hyperbolic trajectories.

I. INTRODUCTION

Recently, the behavior has been analyzed for certain
classical electromagnetic dipole systems that are relativis-
tically, uniformly accelerated through classical elec-
tromagnetic zero-point radiation.’™3 Under the assump-
tion of a narrow-linewidth approximation, the statistical
properties of these accelerated pointlike electromagnetic
systems have been found to agree with the corresponding
statistical properties of similarly constructed, but unac-
celerated systems that are bathed in a classical elec-
tromagnetic Planckian radiation spectrum. This agree-
ment occurs when the temperature T that characterizes
the thermal radiation is related to the acceleration a of the
accelerated systems by the Unruh-Davies relationship of
T =fia /27ck (Refs. 4 and 5).

For the first time in either the classical or quantum
literature, the thermal effects of acceleration described
above for pointlike electromagnetic systems are shown
within this article to also hold for a particular spatially
extended situation. Detailed calculations are carried out
here for a special case of a spatially extended electromag-
netic system that is relativistically, uniformly accelerated
through classical electromagnetic zero-point radiation.
Under certain specified conditions examined in this arti-
cle, an equivalency in statistical behavior is shown to
occur between this uniformly accelerated spatially extend-
ed system and a similar unaccelerated-thermal system. In
the process of demonstrating this equivalency in behavior,
a set of exact relationships are deduced between the elec-
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tromagnetic fields of a time-varying electric dipole under-
going uniform acceleration and the two-point correlation
functions of classical electromagnetic zero-point fields, as
calculated along relativistic hyperbolic trajectories in
space-time. ®

The spatially extended electromagnetic system con-
sidered in this article consists of two classical dipole sim-
ple harmonic oscillators, oriented such that their equilibri-
um positions lie in a plane perpendicular to the direction
of acceleration. These two spatially separated systems in-
teract with each other via the electromagnetic radiation
that each one emits. Hence, the statistical behavior of
these two oscillators are correlated because of this interac-
tion and because the two oscillators are being driven at
different points in space by correlated values of classical
electromagnetic zero-point fields.

The theoretical basis that will be used here for analyz-
ing this electromagnetic system is that of classical electro-
dynamics with classical electromagnetic zero-point radia-
tion, which has often been termed stochastic electro-
dynamics. (See Refs. 7—11 for reviews on this field of
research.) The van der Waals force between two nonrela-
tivistic classical dipole harmonic oscillators has been pre-
viously calculated within the context of stochastic electro-
dynamics when the temperature equals zero.'? The result
was found to agree with the corresponding result of quan-
tum electrodynamics to all orders in the electronic
charge.'>!® This calculation was generalized, within the
domain of stochastic electrodynamics, to include the case
where the two oscillators were situated in a thermal plus
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zero-point classical electromagnetic radiation spectrum. '

From the standpoint of stochastic electrodynamics, the
van der Waals force is simply the expectation value of the
total Lorentz force acting on one of the charged oscilla-
tors. Hence, the results of the calculations of Ref. 14 may
be compared to 1he expectation value of the force between
the two accelerated oscillators considered in this article,
thereby presenting a starting point for a comparison of
the statistical properties of the accelerated and
unaccelerated-thermal pair of oscillators. These. calcula-
tions are carried out for a special oscillator system with
restricted oscillatory motion in Sec. III B and for the gen-
eral oscillator system in Sec. IV A. )

Additional statistical propemes for the accelerated os-
cillator system are considered in Secs. III C and IV B for
the special and general oscillator systems, respectively.
These properties consist of the correlation functions of the
coordinate positions of each oscillator, as well as correla-
tion functions of higher time derivatives of each
oscillator’s position.

Certain assumptions and approximations will be made
in the analysis presented here. First, the small-oscillator
assumption will ‘be imposed (see Refs. 1 and 3), which en-
ables the equaticns of motion to be linearized in the ap-
propriate Fermi-Walker transported coordinate system.’_
Second, the radiation reaction damping constant of

=2(e%/mc?) will be taken to be small compared to the
other time constants of the system, thereby enabling the
narrow-linewidtl: approximation to be employed when
evaluating integral expressions for the expectation values
of certain stochzstic quantities. This approx1mat10n was
also used in Refs. 1--3.

Two additional approximations will be made here that
did not enter into the work of Refs. 1-3, which con-
sidered only the ehavior of single accelerated electromag-
netic dipole systzms. Both of these assumptions involve
the spatial separation R between the equilibrium points of
the pair of oscillators discussed in the present article.

First, a “small-laboratory” condition will be imposed of

2 o

R« -1

a

In a time of (R /c), an oscillator will accelerate an ap-
proximate distarce of %a(R /c)®. Consequently, a light
ray travels this distance along the direction of acceleration .
when propagatin); from one oscillator to the other. Equa-
|

THERMAL EFFECTS OF. ACCELERATION FOR A SPATIALLY .

_ positions of the two oscillators.
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tion (1) ensures that +a (R /c)? is much less than the dis-
tance ¢%/a to the event horizon. Moreover, on account of
Eq. (1), =a(R/c)*<<R. Therefore, the light ray
described above will make a small angle to the plane per-
pendicular to the direction of acceleration. Thus, the con-
dition of Eq. (1) reduces the physical distinguishability be-
tween an accelerated and unaccelerated pair of charged
oscillators interacting via the electromagnetic radiation

- emitted from each oscillator.

The second approximation that will be imposed here in-
volving the distance R consists of the condition

woR

p «<1, | 2)
where w, is the resonant frequency of each oscillator.
This condition is traditionally termed the unretarded van
der Waals condition. Possibly, the general results of this
article hold when this condition is relaxed; this possibility
will not be examined here, however.

Experimentally, the unretarded van der Waals condi-

- tion of Eq. (2) is of interest because it describes the region

in which one would be most likely to physically discern
the thermal effects of acceleration for the extended system
considered here. Roughly speaking, one would expect
these thermal-like properties to be discernable from the

_ zero-point motion of each oscillator when

fia_

Fiwg <kT = .
2me

(3)

Combining Egs. (1) and (3) results in Eq. (2): namely, the
unretarded van der Waals condition.

II. DESCRIPTION OF ACCELERATING SYSTEM

The accelerated classical dipole harmonic oscillators

~ considered here are assumed to have equilibrium positions

lying in a plane undergoing constant proper acceleration a
along the normal to the plane. As was done in Refs. 1
and 3, a set of inertial reference frames I will be intro-

~ duced here such that the I frame constltutes the instan-

taneous rest frame at proper time 7, for the equlhbnum
Figure 1 illustrates the
configuration assumed for the two oscillators. As dis-
cussed in Ref. 3, the equilibrium position of each oscilla-
tor is given in the I inertial frame at proper time 7, by

Xy, (1) =T gy, (T)iX g (72)) .
2 2
[ a, ., c a,., R
= [7 sinh ?(‘Te —Te) ;7 cosh ?(Te"—Te) ,i?,O] . 4)
I . N
A Fermi-Walker transported coordinate system will be in- . 2 a
troduced (see Ref. 3) that is described by the coordinates Xy =%, = §1+7 cosh | =(7,—7.) |, (5b)
§#=(c7,;8). Thsse coordinates are related to the coordi- ¢
nates x* of an inertial frame I, by . )
Te xTI =y =§2 P (50)
2 . e
o =Ct = I nh - ’ 5 i
Xy =ct, gl * St ( Te)] (52) X} =z, =E, (5d)
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FIG. 1. Trajectories followed by the equilibrium positions of
oscillators A and B within an inertial frame I,.e.

where x!, =x _,, and §'=§; for i =1,2,3.

The model assumed for the classical dipole harmonic
oscillator consists of a classical charged particle of rest
mass m and charge +e that is attracted to a uniformly
accelerating equilibrium point by a simple harmonic po-
tential, as measured in the instantaneous rest frame of the
equilibrium point of the oscillator (see Ref. 3). As an aid
in picturing a specific oscillator model, a continuous neg-
ative charge distribution with net charge — e will be as-
sumed to surround the equilibrium point of the oscillator.
This charge distribution will be taken to be stationary in
the Fermi-Walker transported coordinate system and to
possess axes of symmetry along the i =1,2,3 coordinate
axes. The -+ e charged particle will be assumed to oscil-
late inside this cloud distribution of negative charge,
which can be constructed to be the source of the simple
harmonic oscillator potential. For a sufficiently small
volume of negative charge, the total oscillator system ap-
- proximates an electric dipole in the instantaneous rest
frame of the oscillator’s equilibrium point.

The ith component of this electric dipole in the rest
frame of the oscillator’s equilibrium point is given by
eby;(7,), where £;,(r,) is the distance along the rest
frame’s ith axis from the oscillator’s equilibrium point to
the oscillating particle at proper time 7, of the oscillator’s
equilibrium point. Here, L is a label that takes on the
values A or B. (It should be noted that a distinction is be-
ing made between the general coordinate &; along the ith
spatial axis in the Fermi-Walker transported coordinate
system and the quantity &;; described above.)

The equations of motion for the two oscillators may be

readily deduced by applying the smali-oscillator approxi-
mation discussed in Refs. 1 and 3. The dipole fields EPL
and BPL of each oscillator system will be shown later to
depend linearly upon the quantities &;;, d&y;/d7., and
d*;;/dr,%. Equation (38) of Ref. 3 may then be general-
ized to the following set of equations:

d% ,; d3 2de
5,421 :_(mi)ngi+r g/;l _ e §Az
dr, dr, c | dr,
e AR R
+; Eaz'ﬁ +??’Te +E£§ ""?_Z"Te ’
(6a)
d%p d3g 2deg
gliz =—(wi)2§BI+F §B3: _la §Bx
drt, dr, c | dr,
e R ~R
v |5z | R o | mnt| 92, ]

(6b)

The argument [+9(R /2),7.] is used to indicate that the
fields are to be evaluated at proper time 7, along the tra-
jectory of the equilibrium point of the indicated oscillator.
The quantity Efﬁ denotes the zero-point electric fields,

while E ,1.)2 4and E fﬁ represent the electric dipole fields of
the two oscillators; the subscript 7, indicates the fields are
evaluated in the inertial frame I, . These fields are readi-

ly expressed in terms of the fields of another inertial
frame I, via the Lorentz transformation

e

Ere =x'E'r:1 +?Y(T¢—TL)(ET;2_B< B.:3)

14 !
Te—Te) T3

2y By B _uBra) s @
B, =%B,+9V, _)Buy+B, _p )
T2y )\ Brs—B i Euy) @)
where
Vi, —ay=cosh | Zlr, —7})
and
B, _p)=tanh 2‘(7'3 —75)
e—Te c

In order to solve Egs. (6a) and (6b), expressions for the
dipole fields E fff and E E, 4 must be obtained. This work

is carried out in Appendix A and will simply be summa-
rized here.

Consider a time-varying electric dipole that is uniform-
ly accelerated and that possesses a spatial position in the
associated Fermi-Walker transported coordinate system
given by £=§Z#;. From Appendix A, the electromagnet-
ic fields at the coordinate position £*=(c1,;¥%), due to
this L labeled accelerating electric dipole, are given by



DL & 1 @ =DLia . B

EZi(§%,7e)=~75= [ EP9Z,Q)exp(—iQr,)dQ
o)

B3, Te)——_ﬂ‘ [ BP9, Qexpl—iQ7,)d0

7 (10)
where )

EPL§,Q, = 2 NHRa,HF —R L), WeE; ()],

i=1
(11)

-~ 3 -~
BY#,Q)= 3, ph(Ra, YR~ 1), Q)e&;(Q)] .
i=1

12

The electric dipole, as measured in its instantaneous rest
frame, is expressed here by
1 © .
leéni(re)]=—75= [ le&riQ)]exp(—iQr,)dQ . 13y
The quantities 7%3; 2 and p,, that occur in Eqgs. (11) and (12)
are rather complicated functions of the acceleration q,
coordinate difference (# —%p), and frequency Q [see
Egs. (A37)—(A44)].
In correspondence with Eq. (9), let the zero- pomt elec-
tric fields be written as -

E')z'el:'(?'%sTe)= -

(14)

Substituting Eqgs. (9), (11), (13), and (14) into Egs. (6a)
and (6b), yields the following set of equations:

— 3 ' —_—
Ci(a, Q)& 4;( Q)+ 2 ’Tlij(ﬁa, +?R»Q)§Bj(9)
j=1

sz J__EFez.Qesp(—i0r)da.

25758 al, usa
m 2
o 3 —~
Ci(a,Q)E5,(Q)+ 2. nij(ﬁa, —?R,Q)gAj(Q)
. j=1
—egz|_oR ol (15p)
m 2
' |
€ |gze| R 1 1
TS A A | Fere e
R 1 1
Q)=—|E¥ |+9—,0 : :
S i AR | = e s

where C3(2,Q) and 733(Ra, +9R, Q) have been abbreviated by C§ and 73;.
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where

Ci(a,Q)=—Q%*(w;)*—il

2
QB4+0 [%] ] (16)

- and

2
ny(%a, 29R, Q)= — e—nf}@a, +9R,Q) . (17)

. The quantity Ny Was introduced here simply for notation-

al reasonms, since otherwise the factor of e?/m would
occur repeatedly in subsequent calculations.

Equations (15a) and (15b) may be simplified somewhat
by noting from Egs. (A37)—(A41) that

775(%‘1, +?R9Q) =77£(ﬁa: —?R,Q) ’

- M(%a, +9R, Q)= —n](Re, —FR,Q) for i,

7]?2- —1721, and 17,3-773, =0 for i£3. Using convention-
= al matrix methods, Eqgs. (15a) and (15b) can then be solved

==—for £,,(Q) and £5(Q) in terms of E Z[+$(R /2),Q] and

ZP[ —$(R /2),Q2]. These solutions will be used in Secs.
IIT and IV to deduce certain statistical properties of the
accelerating oscillator system.

III. SPECIAL CASE OF TWO .
ACCELERATING DIPOLE OSCILLATORS

A. Description of a special case

The full calculations involved in obtaining the statisti-
cal properties of the accelerating dipole oscillators are
rather long. Consequently, it seems appropriate to exam-
ine the simplest case possible that illustrates the essential
physics of the system before proceeding with the general
situation in Sec. IV. Such a case arises due to the fact
that the i =3 set of equations obtained from Egs. (15a)

and (15b) are not coupled to the corresponding i =1,2 set
~ of equations, since 1;3="73 =0 for i5£3. .Hence, the spe-
~cial case of two accelerating electric dipole oscillators,
with oscillatory motion confined to only the Z direction,
may be safely studied for the main underlying physics of
the accelerating system.
. From Egs. (15a) and (15b)
= R —1 1
— |+ET° |-925.0 +— || (18a)
] 2 Ci+m3  Ci+n5;
1 ~ R 1 1
— |+EFF |—95-.0 —+ , (18b)
P72 Ci—n5  Ci+n5; '

B. Expectation value of Lorentz force

Let F,. (z; ) be the Lorentz force on a uniformly accelerating dipole oscillator at time #, in the I r, inertial frame. Ac-
e

cording to the construction of the set of inertial reference frames I,

in Ref. 3, F, (¢ =0) represents the force in the rest

frame of the equilibrium point of the oscillator at proper time 7,. From Eq. (B3),
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3
F,r i(tf =O)=e 2 Ax, ](O)LE
e e =1 e axrl

ToJ (Xre’t

e
T, ) Xr¢(0)70+?
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= (19)

—d—[Ax, (2, )8B, (X(t; )t )i | =0
de, " Te T e e i i

where E, and B, are the total electric and magnetic fields due to the zero-point radiation fields and the fields of the op-~

posite accelerating oscillator.

The zero-point electromagnetic fields will be specified in an inertial frame I
Egs. (7) and (8), these fields may then be obtained in all I,

7, Using the Lorentz transformation of

inertial frames. The functional form that will be used for the

zero-point fields will consist of the following relationships, which have frequently been used in performing calculations

in stochastic electrodynamics:'®

2
EX (x, tr,, )= ;; [ d*kh(w)elk, Mcos[k-x,,
=1

BZP (%, s

The polarization vectors satisfy the identities
e(k,A)€(k,A" ) =8y , (22)
k-e(k,A)= (23)

The phase angle 8(k,A) is a random variable, independent-
ly distributed for each k and A, that ranges between 0 and
27 with uniform probability density. The function #(w)
is given by .

ho) =T
h4w)= o
The expectation value of the force component along the
direction of separation (i =2) between the two oscillators
will be calculated in this article. According to the con-
struction of the Fermi-Walker transported coordinate sys-
tem in Ref. 3, the quantity Ax, ,(0) in the first term of

Eq. (19) may be replaced by §4;(7,). From Eq. (5c),

(24)

j

<FA7¢2(79)>=6<§A3(7'¢)'a—z,“EiPB(é‘:Te) >+e<§A3(Te
2 E=§(R/2)

d , -

+;T<§A 3(Te ?'—_rTe +BDB R

—ot,  +6(k\)],

2 ~
=2 f d3kh(w)(k®?(k,l))cos[k-x,‘* —w
A=t

—,T,

(20)

t,, +OkA)]. (21)

[

&,=x, »; hence, the operator 3/9x. , may be replaced by
9/0&;. Let F, (¢, ) be relabeled by F.,.‘(T; ), where z is
related to the proper time 7, by (assuming & 4,=0)

o C . a,,
t; (7 = sinh :(Te--re)l . (25)
Consequently
dre 1 (26)
d, |,
€ |Te=T7e

For the special case being considered in this section of

AX(A [Z (Te )]—zg(A)g,(Te) ’ (27)

the expectation value of Eq. (19), when i =2, is given by

)

Ei’%(g,n

)

G

£=F(R/2)

’

(28)

!
Te=Te

The arguments in the fields have been relabeled here in terms of the & coordinates.
From Eqs. (13), (18), and the inverse of (14), the first term in Eq. (28) becomes

e(£astre) 3 EZErm)

E=V(R /2)>

exp(—iQ'r, )<§ 3(Q) %
2

9 EZ;(g’Te)

)

£=F(R/2)

ey f_ dQ' exp(—iQ'7,) f d7, expliQ'r,)

1 1 zp | R 3 ,zp
o EZ 32 7 | 2 EZ(£,r,)
Cy —n5  CY+7% < e |72 G132 el ¢ E=$(R/2)
—1 1 zp ~R
+ ar ar + ar ar E —Y 57 ; gyTe *
Cy'—m3 - C3 4733 < 763 2 a§ §='§(R/2)>

(29)
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The two quantities involving the expectation values in Eq. (29) are related to the first of the two-point field correlation
functions listed helow:

(EZUGR'7)EL (R",7,))
<BZ}’,(?R*,7;)BZ,‘7 ($R", 7)),
<BZ"(9R A )E JIR",T, )) .

These correlation functions are evaluated in Appendix C jybere they are shown to be g1ven by the cosine and sine expan-
sions of Egs. (Cl) and (C2). From the work of Appendixes A and C, the quantities f,] and g,] appearmg in these ex-
pans1ons are found to obey interesting relationships [see Eqs. (C3) and (C4)] to the functions 7),] and p,J that appear
in the dipole fields of Eqgs. (11) and (12). Equation (C3) turns out to be the main property that enables the spatially ex-
tended accelerated system described in this article to be related to an analogous unaccelerated-thermal system.

Equations (C35) and (C37) relate the expectation values of the two quantities in Eq. (29) to the first of the correlation

functions listed above. Hence, one obtains

<§A3 Te)5e ag (e §=’§(R/2)) N

2 .

e 1 @ , v © p LA
=5 Ef_wdﬂ exp(—zQTe)f_wdTeexp(z_QTe)

P — 17 402 2 2a,9R, Q)cost O, —7,)

3 —n% 5 +m% 0 aR” % ¥ sLt7e =]

(-] __1 1 . ‘ :
dQ (3a,5R,Q) [~ do b |82 — Q) +-5(Q'+ Q)] . (30)
f f C5 —n5; 3 +m% ]

From Egq. (16),
Cila,—Q)=C{(a,Q) . - ' . (31)-

This same property holds for 773" [see Eq. (A45)]. Hence,
>=i? “ 0 {_ Re(C§—n%)  Re(C§+1%)
|C5—n% 1% |CS+n%)? B3

<§A3(Te a z g’Te (A ,/)}R Q). (32)

2m

E=F(R/2)

The second term in Eq. (28) can be calculated in a similar manner. From Egs. (9), (11), and (13), one obtains

e(8astre) 3 EA(m.)

} py f dQ'exp(——zQ,Te f dQ”exp(—zQ"Te) —ﬁ]
£=$(R/2) G R

5%7733(30,?R,Q") ’(EA 2(Q)ER(Q)) . (33)

From Egs. (18), (C1), (C34), and the inverse of (14), one can prove that

<g(:} )3(0')5(5;)3(Q )= <§<g>3(9')§<g W@
2
217'f dO[8(Q —Q)8(Q" +Q)+8(Q'+0)8(Q" — Q)]

_2__
x[ 3 (%a,0,0)—f3;(%a,§R, Q) fF(Ra,0,Q)+f3(%a,9R,Q) 0
|Ci—n% 2 |CS+m512 .
Consequently,
—Uf4(24,0,0)— 2 (Ra,9R, Q)
efentr 3 EREn)|  )=5n [ e ]
E=F(R/2) | C5—n% |
f (%¢,0,Q)+ 5 (Ra,9R,Q) | 3 Rens 3
. 5
| CSs+n% |2 aR )
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The third term in Eq. (28), which came from the second
term of Eq. (19), is easily shown to equal zero. From Egq.
(8), BT¢1(§,T',)=BT, 1(&,7¢). This means that all quantities

inside the expectation value signs in the third term of Eq.
(28) depend only upon 7. Using Egs. (18), (A36), (Cl),
and (C2), explicit calculations can then be carried out to
demonstrate that upon taking the expectation value, a re-
sult is obtained that is totally independent of the value of
7,. Alternatively, this demonstration follows more gen-
erally from the physical demand that the act of accelerat-
ing through the zero-point fields must yield statistical
properties that are stationary in the proper time 7,. Using
either argument, however, the net result is that the third
term of Eq. (28) is exactly equal to zero.

A few relationships will now be established that will be

useful in simplifying the results of both this section and
Sec. IV. The series expansion of Eq. (A22) given by

c .
A7_=—arcsinh
a

c
c |aR_ 1 aR_
| | e l oo

along with Egs. (A19) and (A20), enable the following
identities to be verified:

cAT_

lim |-
R—0

=1. (38)

From Egs. (37), (38), (A37)—(A39), and (17), one can show
that when QR /c <<1 and aR /c? << 1, then

2
a/
={X;—iTO% |1+ QC }
140 "R +0 QR , (39)
where
3
1 3
X11=X33=~7X22=+5F — (40)

[In order to verify the imaginary part of Eq. (39), a
Taylor-series expansion of exp(iQA7_) should be made,
with terms up to the third power in A7_ retained.] From
Eqgs. (A40), (A41), and (16), as well as the above results,

I]{imo Immj(ia,?R,Q )= +8,J ImCi(a,Q)

2
— 3 2.
cAT = —5,;1" 0°4+0 41)
lim __R- ~Llla 2 (37)  Finally, one can show that
lim RZ =517 inally, one
f .
TEBIR, D) | 0 co=735(RE,IR, Q) | o= —TQ3 |1 p—E L _erpiikr), 42)
2 kR * (kR}*  (kR)’ ‘
—i 1 ’
(Ra,9R, Q) | g o= —3TQ3 | — (ikR) , 43
N22 ? la=0 (kR)2+(kR)3 exp(i (43)
Cla, )| g mo=—0%+(0;)*—iTQ* . (44)
Returning to the evaluation of Eq. (28), Egs. (32) and (35) can be combined to obtain
Re(C} +7]33) Im(C; +77§3)—Im( §+7I‘;3)5§R; Re(C5+753)
(Firptr))=—7 ["E2h0) ; '
T =tia /2mck | C5+m3s ]
Re(CS —78s) 2 Tm(C3 — %)~ Im(C3 — ) - Re(CS —nf)
+ -
[C3—n3| 2
(45)
Use was made here of Egs. (C3) and (41). Using Eq. (C5) and the algebraic relationship of
Re( C§ £7%5) - Tm(CE78s) — Im(C )2 Re(CE £8y)
| CSan] 2 -
1 3 3 U
=Im | ——— 2= (Citn%) |==—=Imln [1£—> |,
(Cixni,) OR 3E733) 3R n|l ce (46)
yields
(Farglr)) == URa9R) , @7)
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where

7733

U(Ra,9R)= —f dQco Imln[l— c?

2
J . (48)

2kT T =tia /2wck

An analogous calculation has previously been carried out  functions 1/| Cf+n% | % for i =3, will be replaced by

for the retarded van der Waals force between two unac- 1 ' 1

celerated, nonrelativistic classical dipole oscillators that T ar 5

are bathed in classical electromagnetic thermal plus zero- |CiEmi |* (0—0;)%20;1 P +[Im(CPEnf) |4, ]

point radiation [see Ref. 14, Egs. (8) and ( 9)!6], This re-

sult is valid for all values of the separation distance R and

for all orders in the electronic charge. where
As one will note, the force expression for the 7 )

unaccelerated-thermal oscillator system of Ref. 14 differs . “"+—[ * Renii | o, .

(50)

(DiR

<«<1. - (52)

c
I“R

from the above force expression for the analogous ac- { Xy

celerated system. Full agreement between the two expres- ~o;E— (51)

sions may be otitained by replacing the quantities of 73; 2 o

and C3 in Eq. (48) by their a—0 counterparts of Egs. (42)  The second part of Eq. (51) follows from Egs. (1), (2),

and (44). Thus, there exists a direct correspondence, but.. (39), and the assumption that

distinct differerice, between the two force expressions. -

The main reason for this direct correspondence is due to 1

the identities of Egs. (C1), (C3), and (C5), which relate the ;7 | X | = /

n,j“ function that appears in the expression for the electric !

dipole fields to the cosine transform.of the correlation  All quantities in the integrand of Eq. (45) that do not in-

function of the zero-point fields. From these equations ~ volve (Q—w;4) will be replaced by their values at wj..

comes the coth(mc /a) factor, which is the distinguishing ~ The lower limit of integration will be replaced by — oo, as

factor that relates the accelerating situation to the  the additional contribution to the integral is negligible

unaccelerated-thermal case, when T =#a /2mck. compared to the resonant part. The two terms in the in-
Full agreemerit between the two force expressions can_ tegrand that contain the quantities

be obtained when the conditions discussed in Sec. I are. : 3

imposed. The form of Eq. (45) for the force expression_ Re( Cgings)ﬁ Im(C35£75;)

will be used for this demonstration. Since Im(C{+nf;)

and Re(n,,) are - proportional to the damping tlme | C5+m3s |2
—2(p2 3 .. . . .
I'=%(e?/mc?), then the quantity - _are of negligible contribution to the integral, because
! 1 Re(C5£m53)=0 when Q=ws3+. [These two terms come

===+ from Eq. (32); hence, .under the resonant a imati

ay a2 2 2 2 Y0 ; 2 pproximation
| Gt | [ — Q%+ (0;)*+ Reny P+ [Im(Cf £n§)] the first term of Eq. (28) is negligible compared to the
second one.] Using the integral

(49)

becomes a sharply peaked function near w; for small f s +B2 IAFB[ (53)

values of I'. Consequently, a resonant approximation will
be employed in evaluating the integral in Eq. (45). The  the two main contrlbutlng terms in Eq. (45) become |

o
a L .a a a a V
Im(C$§ iﬂ33)§ Re(C31773;)
’ﬂ'f “—‘hTZ(\(" T, .a 12 a3
T =#a 2wk [ C31m5s |
hA(Q) L9 dQ
~(t1)r Im(C4+%%;) == Renj
O |tz SRR T g f—w (Q— w3+)2(2w3+)2+[1m(c"+"733)ln~m3+]
hr¥(Q) T
=(t1)r v Im(C5£15;) Ren :
T =tia /2mck BEMEIAR T Jameys 2wy | Im(CE+3) \n—m3+
—# fiws+ 3
=~(x1) coth = -—-—X ‘ :
4wz | 2kT | |7 =#ia/2mck OR B G4

Thus, under the resonant approximation, the factor of I}n(vé;’;ﬁg) is removed by cancellation in Eq. (54). Hence, the
distinguishing character, namely, 73; and C4 versus their a—0 counterparts, no longer arises between the two force ex-
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pressions for the accelerated-zero-point (ZP) and unaccelerated-thermal situations. Using Eq. (51) and expanding the re-
sult found in Eq. (54) about the point 3 yields
l'. (55
Q=a,

Equation (55) agrees exactly with Eq. (38) in Ref. 14. Hence, regarding the expectation value of the force between two
dipole linear oscillators, an equivalence has been demonstrated for (1) the special uniformly accelerated dipole oscillator
system discussed in this section and (2) a similar unaccelerated oscillator system held fixed in an inertial frame, but
bathed with zero-point plus thermal electromagnetic radiation characterized by the temperature of T =#a /2mck.

—(—1{ coth

#Q
2kT

dR 8w 3

9 # d
(FA 2(7' )~ — _{_(X33)2—‘
et GlY T =2 /2mck

C. Other properties of special system

Additional properties of the two-oscillator system will be examined in this section in order to determine to what extent
the accelerated-ZP and unaccelerated-thermal systems possess identical statistical properties, as observed in their respec-
tive coordinate systems. The quantities that will be examined here are the correlation functions of the position and the
time derivatives of the position for the two oscillating particles.

From Eq. (34), one can obtain

dm
( ar o |,

> " £ d" £ >
(Te0+Te) _< d,r:” (5)3 Te dT); (3)3 (T¢0+T¢)

dn
d,rgg(',f).’»
L Im(CE—n%) | Im(C5+5)
C1CE =51 1Cs 452
(—1)r=m72005(Q7,) [(m +n) even]
(—1)r=m+D726in(Qr,) [(m +n) odd] | *

N U (m4n—1)g 2
== fo dnQ hT(Q)l

T =fa /2wck

X (56)

A distinct difference exists between Eq. (56) and the analogous unaccelerated-thermal expression. One can show that the
latter result is correctly given when 7%; and C%; in Eq. (56) are replaced by their @ —0 limits, and when, of course, the &*
coordinates are replaced by the coordinates in the rest frame of the oscillator’s equilibrium point.

Full agreement between the accelerated-ZP and unaccelerated-thermal systems is again obtained when the resonant ap-
proximation is applied to the unretarded van der Waals situation. The width of the resonant peaks in Eq. (56) is approxi-
mately given by the left-hand side of the relationship below, while the right-hand side follows from Egs. (16) and (39):

1 2 a/c
w—3 ] Im(C‘;’in‘g';;) | w3521‘(w3) 14 73‘ (57)
Hence, when the condition of
2w, )? [l—i— ale [Te | <1 _ : (58)
i ,

applies, then the factors of cos(Q7,) and sin(Qr,) in Eq. (56) may be treated as being approximately constant over the
width of the resonant peak. The assumption will be made here that a physical mechanism exists that allows the neglect
of high-frequency contributions to the integral in Eq. (56), when the oscillator’s behavior is fully analyzed.!” Hence, ap-
plying the previously described resonant approximation yields

< d™643 | d"43 >_< d™p3 | d"€ps )
dT:l Te0 dT: Teot 7, dT;n Te0 dTg TeotTe
B o [ 725 coslose)
2m 2T | |7 pasmen [SI0(@3Te)

r 2 : .
1 (X 18, 8 | [ominn . |50 cos(r,) ]
+ pe [ [— 0, 30 -+ 202 Q coth 2KT | |1 o pomeie (ST(Q37e) P
((—1)(" =m72 [(m 4n) even]
X [(—1)™ _"""1)/? [(m+n)odd] |’ (59)
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(dmgAa d"Ep3 )z_ﬁ_ X33 | 3 Qlm+n =1 gop #Q C?S(QTe)
drl |ro d7% |rtrd Am | @3 |3Q 2T | | s pomec sin(Qr,) 0o,
(60)
(—1)"=m™72 [(m +n) even]
X (=1)m=m+D2 [(m 4n) odd] | -

[In order to obtain the second term in Eq. (59), the expan-
sion in Eq. (51) must be carried one term further.] The
above results are given to lowest orderin I".

Equations (59) and (60) hold for both the accelerated- _ .

charged oscillators separated by a distance R that is large
compared to the approximate size of each oscillator, so
that their wave functions do not overlap.

ZP and unaccelerated-thermal systems. Again, the distin-
guishing factors of 7%; and C3 in Eq. (56) are removed by

the resonant approximation. Moreover, since higher-order

moments of the time derivatives of £ 43 and £33 can be ex-
pressed in terms of the two-point correlation functions of
Eq. (56), then a similar analysis also holds for these quan-
tities. '8

When the limit of I'—0 is taken, only the first term in

Eg. (59) remains, which equals the result one would obtain
. of motion is given by Egs. (18a) and (18b). Turning to the

for a single oscillator. This correlation function for a sin-
gle oscillator generahzes the work of Ref. 1. Also, when
I'—0, a value of zero is obtained for Eq. (60). This result
corresponds to the quantum-mechanical case of two un-

I

IV. GENERAL CASE OF TWO
ACCELERATING DIPOLE OSCILLATORS

A. Expectation value of force

. The situation will now be investigated where all restric-
tions are removed as to the direction in which oscillations
are allowed to occur. The solution to the i =3 equation

i =1,2 equations of motion, use of the symmetries men-

" tioned at the end of Sec. II results in the following matrix

equation:

By +?§,
ci o 18 0| |Ea(Q) ~z¢| R
0 ¢ —nf uh||Ee| | (T2
7 = € 0 [ |&(Q)| m |.zp| _R
102 1% 0 C3||Ep(Q N R
B |-97,

where 7;;(Xa, + R, () has been abbreviated by Nij

=

=

(61)

o}

=]

Equation (61) can be immediately solved simply by obtaining the inverse of the matrix on the left-hand side. The
Lorentz force acting between the two oscillators can then be calculated in the same manner as in Sec. III. Similar results

to those of Sec. III are found, except that additional terms

of order aR /c? now exist. The source of these additional

terms arise from the components of the matrix in Eq. (61) given by +79,, which couple the i =1 and i =2 set of equa-
tions. As can be seen from Eqgs. (A37)—(A40), 07, is of order aR /c? times the magnitude of 7%, 11%,, and 7%.

Assuming the condition of Eq. (1) is satisfied, then the 57,

terms in the matrix of Eq. (61) may be ignored. This effec-

tively decouples the i =1,2 set of equations and allows the form of the solution for i =3 to be applied here also. Hence

E(@)=55- [1+(1-8:0 |45
~ze [ R { 1 | =z| R —1 1
X B |§,0 — | +ET |-9,0 , , (622)
{ 2 Ca 7711 Cia+77?i C’fl Nii C‘a+'77iz '
-~ e aR
§B;(Q)=Zl- 14+(1-5;3)0 ?
|'~zp R —1 1 7P R 1 1
X E; 5,0 +E; |—-95,Q + . (62b)
I P T e H
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Physically, this decoupling of the i =1,2 set of equations occurs when the distance aR _ =(aR /2¢*)R _, which an os-
cillator accelerates in time (R_ /c) (see Appendix A), is small compared to R _; this condition is equivalent to Eq. (1).
Under this condition, the angle is small that a light ray would make to the y axis when propagating from one oscillator
to the other. For very small angles, the following quantity becomes negligible: namely, the electromagnetic force acting
on one of the oscillating particles in the % (§) direction due to the oscillations in the ¥ (X) direction of the other oscilla-

tor. These two sets of oscillations then become independent.
Using Egs. (19) and (62), one obtains

3
+3 (gAj(fe)-—a EPB(£,r,)
a5, e

: )
E=F(R/2) j=1

3
(Farglrev=e 3 (E4r) BB Erm2)

" >+(A2) . 63)
j=1

E=F(R/2)

Here, A, represents the i =2 component of the second term of Eq. (19).

Ignoring the O (aR /c?) terms in Eqs. (62a) and (62b) results in the first term of Eq. (63) being of the same form as Eq.
(32), but with a subscript j summed from j =1 to j =3. In order to obtain the second term of Eq. (63), Egs. (9) and (11)
must be used. The i4j terms in Eq. (11) will be ignored here also, as they are only (aR /c?) times the size of the i =j
terms. The second term in Eq. (63) then becomes of the same form as Eq. (35), summed over subscript j. The third term
in Eq. (63) is evaluated in Appendix D; when the resonant condition is applied, this term becomes negligible.

Following the same steps as led from Eq. (45) to Egs. (47) and (48) and using Eq. (D11), then yields

(Fyrplre)) m— —a‘; U(%a,9R)+ j—‘j(gA (T NEZ+EDS) lor s ) » (64)
# o ﬁQ. ’ \ Ui 2 122 1 753 2
URa,yR)=— dQcoth |—— Iml 1— 1— 1— it (65)
YR)=o . Js 26T || gt “H c? { cs [ cs J :

Besides the additional terms of order O(aR /c?) that have been dropped, Eqgs. (64) and (65) do not agree with their
unaccelerated-thermal counterparts due to the second term in Eq. (64) and the 7§ and Cf terms in Eq. (65) [see Egs. (8)
and (9) of Ref. 14]. ‘

Agreement is again obtained when the resonant approximation is made in the case of the unretarded van der Waals sit-
uation, where

(z),'R
-—c—<<1 fori=1,2,3. (66)

From Appendix D, the second term in Eq. (64) is at most of order (aR /c?)* times the first term. Writing the first term
as a sum of three terms of the form as Eq. (45), and following the steps leading up to Eq. (55), yields

. } 7
().=m]

This expression agrees precisely with the corresponding unaccelerated-thermal force expression [see Eq. (39) of Ref. 14].

é coth

A
8Cl)j

#(
2kT

' 3 28
(Furolte)) = — 3R jél (X 30

T =#ia /2wck

B. Other statistical properties of general system

Using Egs. (62), (C1), and (C3), and recognizing that 7{; ~(aR /c?)n% for is~j, enables Eq. (34) and, consequently, Eq.
(56) to be readily generalized. The latter result becomes

( dr . dm d”
dT:n (ﬁ)l Te0 d”'g (g)j T¢0+T¢>—-< dTgl g(g " Te0 dT": §(g)j T‘0+T'>
aR T
= 5,-1-+O —;2— (1-—61-3)];

Im(CP—ng) | Im(CP+7f)
[Ci—ni|* * [CP+m |
(=1)"=m2c05(Qr,) [(m +n) even] ;
(—1)r=m+0246in(Qr,) [(m +n) odd]J '

Xfowdﬂﬂ(m+n—l)h%(ﬂ)'T=ﬁa/21rck +

X (68)

t
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The exact expression for the unaccelerated-thermal situa-
tion is given by dropping the O (aR /c?) terms in Eq. (68)
and changing the 5% and Cf terms to their ¢ —0 values.
Agreement is again obtained between the accelerated-
ZP and unaccelerated-thermal expressions when the
resonant approximation is applied in the case of the unre-
tarded van der Waals situation. Equation (68) then
reduces to the same form as that of Egs. (59) and (60), ex-
cept that all i =3 subscripts on the right-hand side of the
latter two equations should be replaced by a general sub-
script i, and a factor of -
R
2

a.
c

[8,7+0 (1——5,-3)(1—6_,3)

should be included.

V. CLOSING REMARKS

During recent years, a close connection in physical
behavior has been established between (1) pointlike elec-
tromagnetic systems undergoing relativistic hyperbolic
motion through electromagnetic zero-point radiation and
(2) similar electromagnetic systems, held fixed in an iner-
tial frame, but bathed in zero-point plus thermal elec-
tromagnetic radiation, characterized by the temperature
T =#a /2mck. This  connection  between  these
accelerated-zero-point and unaccelerated-thermal elec-
tromagnetic systems consist of the agreement in their sto-
chastic propertics, when the former accelerated systems
are described in a Fermi-Walker transported coordinate
reference frame and the latter unaccelerated-thermal sys-
tems are described in their inertial rest frame.

The calculations of this article demonstrate that the
connection just mentioned for pointlike electromagnetic
systems also applies to the spatially extended electromag-
. netic system considered here: namely, two spatially
separated charged simple harmonic oscillators, each taken
in the electric dipole limit. Under the four conditions
described in Sec. I, a number of stochastic properties were
compared between the accelerated-ZP and unaccelerated-
thermal situations for such a pair of oscillators. The ex-
pectation value of the component of the Lorentz force
along the axis separating the two accelerating oscillators
was calculated and found to agree with the van der Waals
force of a similar unaccelerated, but thermally situated

pair of oscillators. Also, agreement was shown to occur. .

for all combinations of the N-point correlation functions
of the time derivatives of each oscillator’s position.

A set of exact relationships, namely, Egs. (C1)—(C4),
were obtained in Appendixes A and C; these identities re-
late the fields of an accelerating electric dipole to the
correlation functions of classical electromagnetic zero-
point fields, evaluated along trajectories described by uni-

form acceleraticn. These relationships are what enabled -

(R;_R;B;)(1eﬁ;2)
(R, —B4 R, )

, T+
v, ¢

E(‘I’e —AT_)(§7Te )=e

(R_—B_-R_Y®

_e[(R'_—R'_BL)(i~B'_2)| e
t!

2
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the connections to be made between the accelerated-ZP
and unaccelerated-thermal systems studied in this article.
They should prove to be of aid to researchers in quantum
electrodynamics attempting similar work. Appropriate
generalizations of these relationships should be helpful to
researchers in possible future work involving the thermo-
dynamics of electromagnetic systems suspended in gravi-
tational fields.
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APPENDIX A: FIELDS OF A
UNIFORMLY ACCELERATING FLUCTUATING
ELECTRIC DIPOLE

This appendix contains a calculation of the electric and
magnetic fields due to a uniformly accelerating electric di-
pole, which is assumed to be time varying. These fields
will be evaluated at the position of the second accelerating
oscillator being considered in this article. The electric di-
pole limit of the oscillator model described in Sec. II will
be assumed. ‘

The electric and magnetic fields will first be found in
an inertial frame I, _ar_), where A7_ is defined to be

the difference in proper time of the oscillator’s equilibri-
um point for a light signal to travel from the equilibrium
point to the space-time point (¢7.;§). A simple Lorentz
transformation of the fields to the rest frame I, of the

other oscillator will then yield the fields that will be used
in Eqs. (6a) and (6b) of this article. This indirect method
of calculation significantly reduces the algebraic compli-
cations that a direct calculation would involve.

According to the above construction, 7, —A7_ equals
the proper time for the start of the light signal just men-
tioned. Consequently, the inertial coordinate time for the
same event is given by (. _ar,)=0 [see Eq. (5a), with
§:1=01].

For notational purposes, let all quantities in the
I(; _ar_) frame be indicated by a prime. Let the space-
time point x{; _a, )=(ct’;x’) be given in the Fermi-
Walker transported coordinate system by &#=(c7,;€). At

_large distances compared to the size of the oscillator,
treatment of the oscillator’s electric field as being due to a
positive and negative charge results in the following ex-
pression for the electric field of an accelerating dipole os-
cillator in the I(, _a,_) frame, evaluated at point (c7,;8):

R, @[(R} —R' B})9B"]

Ry —BL R,
R_e{(R_—R_B)eB"} }

(R —B_R_)Y

% (A1)
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Here, #;_and t, are the retarded times associated with
the negative charge and the oscillating positive charge,
respectively. The other quantxtles in Eq. (A1) follow the
form of conventional usage;'® their exact functional forms
will be specified shortly.

Let AE' be equal to the top two terms of Eq. (A1)
minus the same two terms evaluated at the retarded time
t, rather than t,’+. Then, Eq. (A1) can be expressed as

the four terms of Eq. (A1), all evaluated at ¢, , plus AE'.
The latter term will be evaluated later by using a Taylor-

Equations (A4) and (A6) follow from Eq. (2) of Ref. 3.
As explained earlier, #;_=0; hence, (B_), =0, which

was the main reason for choosing I (r,—Ar_) in which to

first evaluate the dipole fields.
All of the terms in Eq. (Al) that are evaluated at
—AT_ may be expressed in terms of the quantities in
Egs. (A2)—(A7). In keeping with the small-oscillator as-
sumption, all quantities in Eq. (A1) will be evaluated only
to first order in Ax’, Ax’, and AX’. The following expres-
sions are then obtained:

series expansion in (¢, ry —t ) Ax' R
Let X', X'+Ax’, and x' be the vector positions of the ~ (R" ), =|x'—X'—Ax'|, ~ |R_ ——X%:- ,
negative charge, the oscillating positive charge, and the - - R r_
point at which the fields are to be evaluated, respectively, (A8)
as expressed in the I, _a,_ frame. Let the symbol |,_
be a shortened notation for evaluating all quantities at Ax'-R’ .,
t; . The following notation should then be fairly obvious: (R, —B,'R}), ~ |R’ - _Ax - ] ,
- - R ¢ r_
(RL), =(x'-X"), , (A2
r_ =X r_ ) (A9)
(R}), =(x'-X'—-Ax"), =(R_L—-Ax), , (A3) A v 2
Ax’
r 2 —1_ |24 —
. 1 dX' (at'/c)R [1—(BL)r],_=1 r =1, (A10)
B = || = 7172 =0, -
¢ at |r_ at’
1+ . I ’ r r —3
=0 (RL —B4+ Ry ),
(Ad4) 1 [1+ Y RL 3AR“RL ] ] 1D
= r 3 r 2 ’ 4
@, =L l Lixpan| =|tax]| (AS5) R R- cR_J]r-
- ¢ | dt r (44 r_
. 1 da%X’ (@a/c) a. [(R““_R*B*')@?*]'— 7
(BL)_=|— 2 = 327373 =X, o
¢ dt - at’ ¢ : Ax’ | -
I+ 17 ] ~ [ [R'_—Ax’—R'_——L EY: 3
t'=0 C _
(A6) Y
1 " ) + [R_e=E (A12)
(B ar 12 (X’-{—Ax ) =:’i+ ?A'i’ r-
- - Other quantities may be linearized in the same way.
(A7) Hence, Eq. (A1) becomes
I
3(Ax"R_)R_ 3(Ax"-R.) Ax’  Ax' 1
B, - T yle )™ ’-— -
tre—ar_6:7e) e[ R_® cR_* R} ¢ R.2|r
e ' ’ A.X" ' ’ 7 7 ’ ! ’ ' Ai, 0
+ R.® [RL®— [-Ax'®(R_®B_)—R_®(Ax'®B8"_)—R_® R‘T®ﬁ‘
+[R_®(R_8B")] SAxR- +[R_&(R_&B’ )]3Ai’.RL 1 AE' (A13)
S-S TR SR TP B U | S

In order to evaluate AE’, the difference in the retarded times must be found to lowest order in Ax;. Let
X'=(X"Y,Z'), Ax'=(Ax',Ay’,Az’), and x'=(x",",z'). Corresponding to the geometrical configuration shown in Fig.

1, let z’=(Z’), . One can then show from a simple geometrical picture that
1 _ YI x I _XI
et —t Ym+ | Ay'| =] 4aAx
Ty T Y | R |, + | R

] . (A14)



35 THERMAL EFFECTS OF ACCELERATION FOR A SPATIALLY . . 575

Using a Taylor-series expansion of the top two terms of Eq (A1) in terms of the difference in the retarded times of

Eq. (A14), yields

—B" 3R_(B_R.)

R_®(R_8B")

AE'~

R".2 R"* .

where AFE' is given to first order in the Ax; coordinates.
Here, the coefficient of (¢, 1 ) was obtained by dlf—
ferentiating the top two terms in Eg. (A1) by and
evaluating them at ¢, . The dependence of this coeffl-r
cient upon the Ax; coordinates was able to be 1gnored be-
cause, from Eq, (A14), (t ~—t, ) is first order in Ax;.
This fact allowed the Taylor-senes expansion to be carried.
out to only first order in (z; —t; ). Finally, the follow-

ing expressions were used in obtaining Eq. (A15):

dR- (B_),_ =0 16
dt, |r_ TR T :
3
—3% [3 ¢
., c
(B_)_= - 27572 =0. (A1D) .
=0 ——

Equations (A 13)-—(A15) will now be used to obtain the
electric field at the space-time point &*=[c7,;§(# 1 £R)]
due to an accelerated dipole oscillator at £=§%# . Let

R 3

(A15)

3_-R_ .
Jr_' (tr+ _tr_ ) ’

Rl

I ‘
respectively. The following simple relationship then

_ holds: _
(R_P=(t'—t; )c?
., 21172
a c
2 at, 2P '
—— {14 |— . (A18)
a .

Substituting in #;_ =0 and solving for ¢’ results in
R_=ct'=R(1+a?)'?, (A19)
a=R | (A20)

2e%°
R_=%aR+§R, (A21)
aR _
Ar_=< arcsinh 5 {A22)
T a c

Combining Eqgs. (A13)—(A15) and (A19)—(A21) then
yields the following, where the superscript DL indicates

(R_), and (RL_)._ be abbreviated by R_ gq_d”R_, dipole fields due to oscillator L:
| :
. 2 ) A)é ’ 2 A.., 2
E(D,,-f_AT_)(?(-%L iR)’Te)=Xe [—Axi RI 3 (1+6a2+8a4)——L RIQ, (1+4 2)_ xZL RR’ - ]
_ — c -
_ _R* ) AJ?’L R? W, AL | R?
FAy; R all+4a%)F R a(l-2 )+c—2 O a
) ,
R2 2 4 AX'L RZ 'L R2
+¥e| +Ax; R a(1+10a°+120%) £ — R 3(142a2) g |
, Rz A (] 2 A.., 9
oy | B 2492+ 100h + 25 | B |0 302 gty - 2L | R0
R’ _ R_ C2 RI_3 r
Azl 1 Ai" 1
+%e | Az}, ——(142a 2)- (14-202)— —2——
w7 ®opT)TTE R (A23)
The magnetic field due to the accelerating charged oscillator can be obtained by using
BY: s (§(#L£R),7,)=0",8E,), +(@_EL),_ (A24)
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where (E',), _consists of the first two terms of Eq. (A1), (E_),_ consists of the second two terms, and

(8.), =(R_/R_), | , (A25)
N R —Axj R —Ax
(n+)f+= ’ ' = 12 ’

‘ |R_—Axj | |R_—Ax] |

R_ Ax; R._(Ax;-R.)
RI

~

. {A26)

TR T R

The first approximation sign in Eq. (A26) follows from making a Taylor-series expansion in (z, L t; ), using Eq. (A16),

and retaining terms only to first order in Ax;;. Because of Eq. (A16), the second term in the Taylor-series expansion
does not contain terms linear in Ax;;; higher-order terms in the Taylor-series expansion are not linear in Ax;; due to Eq.
(A14).

Let EPX be an abbreviated form for the electric field in Eq. (A23). From Egs. (Al) and (A23),
(Ey),, ~E PL'—(BL),_, where EP" is given by Eq. (A23) to first order in Ax;;. Hence, to this same degree of approxi-
mation,

R_®BPY Ax;®E_ (R_®E_)Ax}-R.)
B _ar (P ER),7,)~ - , A2
(r, Ar_)‘(y( L )Tc) R R R . (A27)
where (EL), is given by
(EL), =x 142402 (A28
- (R )3+?(R )3( +2a) . . )
From Egs. (A23), (A27), and (A28), the following expression may be obtained:
Bg’f—Ar_)(?('g?LiR)?Te)zﬁe +— I,z:; (1+2a2)§3 = %‘
R R_2 ||,
R Azp [ R Az; | R
Az; 1+ad)+—= 14202+ —=
+9e | +Az; R 20(1+a?)+ . 3 }a( +2a?)+ ol v alr_
A% )
+2e | £Ax; [le4 (6a?+ 120+ =L | R 114 6025 =
.| R 5 L[ R » &L | R
+Ay; ‘R’_"’ J(4a+10a )+-—-———C R a(3—2a )—————-—c2 R a . . (A29)

The fields EDL and BDL in the I frame may be obtained by substituting E(,. —ar_)and B(T —ar_) into the right-hand
sides of Egs. (7) and (8). The quantmes Yar_and By, that will appear in these equatlons are given by

=(1+2a%), (A30)

Yar_=cosh

=2a(l+a?)'2, (A31)

Ar_
Bar_var_=sinh {a—t"

Because of Eqgs. (A23) and (A29), the expressions for EDf and BDL will contain the variables Ax;, Ax;, and AX}, all
evaluated at ¢, _a, )=0. From the discussion in Appendix D [see, in particular, Egs. (D6) and (D8)], one can show
that

(AXp(r,—ar_)) [:(TG_A,,_,=0=§'L [ (r,—ar_) > 7 , (A32)

d(AxL(rz—A‘r_)) dé‘L

t(fe—Af_)=0 d'r,

(A33)

* b
dt('r‘ —Ar_) (re—AT_)
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dz(AxL(.,-e_.Af__)) dszI 2§_ " d2§L2 N d2§L3
dtis, —ar_)’ tr,—Ar)=0 | dr,? Li (r,—Ar_) y dr,? |r,—Ar_) z dr,? |r,-ar_) (A34?
Combining Egs. (7), (8), (13), (A23), and (A29)—(A34), yields the following results:
Efj(?(@L;tR),fe)_ f dQ exp(—iQr,) 2 7(Ra, +IR, Q) ef1,(0)] (A35)
BPL§(R, kR), 7, ) =—= ‘/_ f a0 exp(—lﬂre 2 p(Ra, 29R, Q)[e&;(Q)] (A36)
j=
where o
R? 1 i(144a%) (142a%+4a%) . :
D(Ra, §F,Q)=k> —
79 (Ra, 9 ) 27 | |%R_ + IR R exp(iQAT_), \ (A37)
2 2 . 2 4 2 .
D Ra, +9R, Q) =k R o i2+at42a7) | (2+45a7) . *
12(Ra, TYR, Q) R_? R R T (kR_) exp(iQAT_) , (A38)
1 i(14+20%) 1 ) - .
D (Ra, +9F,Q)=k3 ‘ e
733(Ra, +FR,Q)=k XR_ + IR R exp(iQAT_), (A39)

' R? 1 i(1=203)  (1+4a?) -
D o Do o 3
(Ra, +$R, Q)= —n3,(Ra, =§R,Q) =+k — — 1
12 y. 721(Xa, Y. 2 kR _ (kR )2 KR} exp(iQAT_), (A40)
1P(Ra, 9K, Q) =n5(Ra, +9R,Q)=0 for i3, , ‘ ‘ (A41)
and ’
. 2
D(Ra, + = —p2(%a. +% —+x3 | R 1 i(14-2a%) . .
p1ia(Ra, £9R,Q) ' p;l(xa,_yR,Q) _k R TR R exp(zQAT_) , (A42)
D A — DA 49 — 3 R 1 i(1+2a2) . R
p23(§a3—yR"Q‘) +P32(Xay—yRaﬂ) k R_ kR _ + (kR_ )2 eXp(lQAT—) ’ (A43)
prE=pis=pi=pis=ps=0 . ’ . (A44)

In the above expressions, k = /c, while R _, a, and Ar_ are given by Egs. (A19), (A20), and (A22).
Two final relationships that will be mentioned here are

nD(&a,$R, - Q)=1D*(Ra,9R,Q) , ' . _ (A45)

pP(Ra,9R,--Q)=p]*(Ra,R,Q) . - (A46)
These relationships, whlch are eas1ly verified from Eqs (A37)— (A44), are the appropriate ones that must be satisfied
upon the demand that ]3T , B, , and £;- be real quantities. '

APPENDIX B: FORCE ON FLUCTUATING ELECTRIC DIPOLE IN ARBITRARY TRAJECTORY

As was done in Appendix A, the model assumed here for an electric dipole oscillator will be a + e positive point
charge, with mass 1, that oscillates inside a small distribution of negative charge, with net charge —e. This charge dis-
tribution will biz assumed to be constructed in such a way that all points of the negative-charge distribution possess the
same instantaneous inertial rest frame throughout the full evolution of their trajectories. For the purposes of this section,
the electric dipcle oscillator will not be restricted to a trajectory of uniform acceleration.

Let X(¢) be the trajectory of the center of the negative-charge distribution, as expressed in $ome arbitrary inertial
frame. Let X(f)-+Ax(¢) be the position of the oscillating positive charge. When the volume of negative charge and
| Ax| are made infinitesimally small, then the Lorentzjfi'or,ce on this system, due to electric and magnetic fields E(x,t)
and B(x,?), is approximately given by

F=e E(X+Ax,t)+—i~ %(X+Ax) ®B(X+Ax,t)]—e E(X,t)+% ‘%{— ®B(X,t)]
1 |dAx 14X
~e [(Ax-V)E | x+— ®B(X,1)+ ®[(Ax-V)B
X [ x,: ¢ dt ) d[ [(Ax- I %] (B1)
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In the instantaneous inertial rest frame of the charge
distribution, dX/dt=0, so the third term in Eq. (B1)

drops out. For this case, Eq. (B1) becomes of the same

form as the familiar expression
F=(pVE+LpeB, (B2)

for the Lorentz force on a stationary electric dipole, pro-
vided that the following limit applies: namely, that
| Ax| —0, e— o, and the volume of the negative-charge
distribution goes to zero such that the first moment of the
total charge distribution equals a finite value of eAx=p.

The first two terms of Eq. (B1) can be reexpressed to
yield

3 d e d
Fi(t)=e ¥ Ax; —E; +——[Ax®B(X,1)];
‘ jzdl T ox xw,: €9t x
_e {Ax@ _dl.v B }
¢ dt X(e),t Ji
e | dX
+: _dt-®[(AX'V)B,x(t),,] i . (B3)

In the instantaneous inertial rest frame of the negative-
charge distribution, the last two terms equal zero.

APPENDIX C: CORRELATION FUNCTIONS OF FIELDS

In this section, the following relationships will be shown to be true:

(Eai(?ROrTeO)E(Zrl:o+T¢)j(?(RO +R),Teo+Te) ) = <qu-:i(?RO>Te0)B(ZrI:0+T¢)j(?(RO +R),Te0+7e))

= [7 P Ra,9R,Qcos(0r,)d ()
(B%};i(?RO,TeD)E(ZTI:O+T¢)j(?(RO +R), Too+7e) ) = fow ggp(ﬁa,?R,Q)sin(ﬂre daQ , (C2)
where f,-fp and g,-JZ-P are related to the functions 173-" and pg" [see Egs. (A35)—(A44)] for an accelerated electric dipole os-
cillator by’
2mhr(Q2)
fB(Ra,9R,0)= —L— Im[75(%4,9R,0)] , (C3)
Q T =fia /2nck
2mhr*(Q)
g (Ra,9R, Q)= ———=| - Re[pd(%,,9R,0)], (c4)
Q T =tia /2mck
) %0 #Q 1 | #0 #0
_— hl— = | .
b @)= oot oer | =2 |2 e an—1 (C3)

It should be noted that the i, indices are reversed in order on the left- and right-hand sides of Eq. (C4), but they occur in
the same order on both sides of Eq. (C3). The definition given for 47%(Q) in Eq. (C5) generalizes the function #%(£) in

Eq. (24) to the case of a thermal plus zero-point spectrum.

In order to aid in establishing the validity of Eqgs. (C1) and (C3), a set of identities will first be proven. Let

a S o o N
B= e (C6a)
sinh(S7,)
b= BTe_ -, - e " (C6b)
a
where a is given by Eq. (A20). From Egs. (A19) and (A22),
AT_= % arcsinh[2a(1+a?)!?] . (o7))
Let I, be defined as the integral listed below. From this definition, three useful identities can be established:
L= [ coth | T2 lsin(QAr_Jeos(@r, )d0=L(1 4o | L (C8)
[+ 0 2B — e a ) 1 _—bz »
dl, - 0 g’ 1 b b2
[dAT_ J— fo coth 28 cos(QAT_)cos(Q7,)0d Q= — a (=D +2l4«a )(1__1)2)2 , (C9)
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- L, = fw coth kit sin(QAT )eos(Qr, )Q*dQ
dar 2| Yo 2B B )
~_2|E 3(1+oz2)‘/2 ——+(2a2+5)”—2+4(1+a2)—b4— (C10)
a (1—5?) (1—b2) (1—b%)
T
These identities may be verified by utilizing the following ® _ a
relationship, which may be obtained from standard in- f 0 dw wcos(wb)cgs(w) T B (1+a?)?? L.
tegral tables:?° < o ) dI
+ A (€17
f coth(b x)sin(a'x)dx =+~ b coth 2b' (Cc11) B B (1+a”) dAT_
fo dw w? cos(wb)sin(w)
Three more required relationships are “ 2
2
© — | a
fo dwcos(wb):;in(w)=?ilT2) , s == - (C12) =g( at) B dl,
o B (1+ 2)5/2 7 (14+a?? dAT_
f * dw w cos(wh)cos(w)=— L + 2° )
0 (1-b%) (1% . 21
a
c13) +1g |——= (C18)
( B | (14a**? | dA™
o« 2 .
f o dw w* cos(wb)sin(w) In order to demonstrate how Egs. (C1) and (C3) may be
i 5p2 ab* verified, consider first the correlation function for the
=_2 —+ T RPREE ) (C14) electric fields when [ =j =3. After a fair amount of alge-
(1—-b%)  (1-b%)*" (1-07) braic manipulations, the basic procedure of Ref. 21 results

The meaning of these integrals, as well as oth(;rs\ ;ﬁhat fol-

low in this section, should be interpreted by inserting an
effective cutoff into the integral, then evaluating the in-
tegral, and finally taking an appropriate limit to remove

in

(EZE 3 (YR, ) E Dy o 13(F(RoER), T+, ))

=I33+II33 > (019)
the cutoff. For example,
where
* dw cos(wb')sin{wc’) ©
fo ‘ _ Cdyy= —7:—4— fo dw cos(wb)(w? sinw +w cosw — sinw) ,
=-lim fw dw e~ cos(wb ' Jsin(we’) ‘
60, o (C20)
__ < — (c15) Hyu= fic 2p2) fwdw cos(bw)
(c12_bl2')' * B ‘7TR4 Y
2 .. .
Combining Egs. (C8)—(C10) and Egs. (C12)—(C14), X (wTsinuw 3w cosw —3sinw)
yields (C21)
fmdw cos(wb)sin(w) =& 12 1, (C16) and w =kR. Equation fC21) may be reexpressed by using
0 B (1+a?) a temporary cutoff and integrating by parts twice:
| ) .
2
3= _ﬁ;z— el—l>r(l;l+ f dwe™ l% cos(bw) |(w?sinw + 3w cosw — 3 sinw)
ﬁc;:‘* Ow dw cos(bw)(w? sinw —w cosw -+ sinw) . (C22)
Use of Egs. (C16)—(C18) then results in B
'r 03 ?RO:TeO)E('reo%vr )B(Y(RO +R) Te0+Te)> v
3
__fe ||_ L ||a 1 + dl. \q (1+2a2) o 1 €23)
7R* dar || B ] (14+e®)2 " dAr_ (B ] (1+a) ‘B (14|’
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which verifies Egs. (C1) and (C3) when i =j =3. [Compare Egs. (C23), (A39), (C1), (C3), and (C5) by using Eqs. (A19),
(A20), (Cé6a), and (C8)—(C10).] The remaining situations described by Eqs. (C1) and (C3) may be verified in a similar
way. _

Turning now to the verification of Eqgs. (C2) and (C4), the following identities are useful:

[ oo | TR ; __ |B |booshiBre) .
L= fo coth l 2B cos(QAa-_)sm(ere)dQ— > —pD) (C24)
dI, @ .
— = [ coth % sin(QAr_)sin(Qr,)Q d0
| ? 1 b?
=2 g (14-a?)172 [(l—bz) + b7 b cosh(Br,) , (C25)
d’I, w
[_ = J, coth [% cos(QAT_)sin(Qr, )00
B [GB4202)  (T+603) ., 4(1+aPb* y
=2 £ h ) c2
p” 1—b7) + (l—bz)zb -+ (1—b2) b cosh(Br,) {C26)
In analogy with Egs. (C12)—(C14), three more required relationships are
fow dw sin(wb)cos(w) = 1 1:22) » - (c27
fwdw w sin(wb)sin(w)=—2b L + b2 I, (C28)
0 (1—-b%)  (1—b?? ,
@ . 3 7b2 4b*
fo dw w2s1n(wb)co§(w)=2b [ T + 1—b77 + 1—b7) (C29)
Combining Egs. (C24)—(C29) yields
cosh(Br,) [” dw sin(wb)cos(w):%l,, (C30)
2
© dI.
cosh(Br,) [ dw w sin(wb)sin(w) = % (1+01l2)1 vl (C31)
2 3
2 [2 a
© B dI, B dI,
cosh(Br,) [ dw w?sin(wh)cos(w)= e |- — |- (C32)
0 : (1+a®P? | dAr_ | (14a?) | dAr_?

As an example of how Egs. (C2) and (C4) may be verified, consider the case when i =2, j =3. Earlier steps lead to the
first line below, while the second line follows by integrating by parts once and using a temporary cutoff:

7 AT, @ A
(B%:;z(?RO’TeO)E(ZTl:o+T¢)3(?(R0iR)’T¢0+T€))=— 1:1;4 cosh [ 2 ab fo dw cos(wb)(w? sinw + 3w cosw — 3 sinw)
. .
_ ﬁC art, « . .
=+ 7TR4aCOSh {Tc fo dw sin(wb)(w? cosw —w sinw) . (C33)

Use of Egs. (C31) and (C32) then verifies this case. The remaining situations described by Eqgs. (C2) and (C4) follow
similarly.
Severa! symmetry relationships may be readily deduced for the correlation functions in Eqgs. (C1) and (C2). The spatial
.symmetries follow from Eqgs. (A37)—(A44). In particular, the following ones are of use in this article:
+1
[ Ra, +9R,Q)= | _,

i=j .

i | ‘ | (C34)
Two final relationships, namely, Egs. (C35) and (C37), will be discussed here, as these identities are required for the

calculations of Sec. III B. From Eq. (C1), the following result can be verified almost immediately: '

]ng(ia, —9R,Q) for

[ ! a " * 1 ! o
<EE§(?R ,Te)a—é_z—E,Z_,‘l,}j(f,T,) >= fo dQ cos[ QU7 fre)]——a—fiﬁp(xa,?AR,Q) | AR =R"—R" - (C35)

O0AR

£=’y‘Rn



35 THERMAL EFFECTS OF ACCELERATION FOR A SPATIALLY ... ' 581

Consider the i =j =1 case. One can show that

(B2 R 7 B 6
e

el a&,

E=5R"

. 2
1 ' k -
)=_5»f d3kh2(Q) 1— [—kL] }kzsm

2C2 s ar, " '
- ksmh‘ e ]+k2(R —R'")

(C36)

When R” =R/, the integrand is an odd function of k,. Provided that i =j, this can be shown to be a common feature

for the correlation functions of Eq. (C35). Hence,
! ! a 1
(EZOR 7 S ER e

§=§R ”

since carrying out angular integrations will yield a value
of zero.

APPENDIX D: EVALUATION OF (4,)
IN EQ. (63)

The quantity 4, in Eq. (63) arises from the second
term in Eq. (19). Of the three vector components of
Ax, (¢,,) that appear in this term, Ay, (¢, ) and Az, (t,)
may be immediately replaced by & 45(7;) and & 45(7). The
relationship between ¢, and 7, is given by

1)

, L a, .,
ct, (Te)= é,,“('re)—l-j sinh :(Te—re)

The x position of the 4 oscillating particle is given by

2
Xur(tr,)= [Ear(rs)+ - |oosh | H(r =) |, (D2)

where 7, is again related to ¢, by Eq. (D1). The x posi-
tion of the equilibrium point of the A oscillator at time
t,, =T, is given by .

A-xA‘re(t'r,'. ) :=(XAT¢ _XA're) | t.

2

Eq 1_(7;)4-—0(1— cosh

<?
a

a., .
';(Te —Te)

a8ai ] l
2 .

Eai(Te)

cosh [%(T; —T,) l

~
o

140

Thus, the three components of Ax, (z; ) have now been

reexpressed in terms of & 41(7. ).
The distinction between 7, of Eq. (D1) and 7, of Eq.

(D4), where 7, and 7, are related to each other by Eq.

(D5), may now be ignored when reexpressing the remain-

>=0 for R"=R',

1+

(C37)

’ (D3)

c? a
" N (1
Xyr,(Te )=7 cosh ?(ﬂre —T,)

where 7./ is related to the time coordinate T, of the
equilibrium point by ‘

o c?
CT're (1)= 7 sinh (D4)

i('r'e'—ﬂ'e)] .
c

As illustrated in Fig. 2, the value of T (7¢) in Eq. (D4)
should be set equal to the value of z, (7.) in Eq. (D1).
Hence, 7, and 7, are related to each other by

2
ct .
— sinh
a

a
—(7 —7,)

sinh

(D5)

2
e ,
§A1(Te)+——a —‘cl (T —7e)

From Egs. (D3) and (D5), X4, can be reexpressed in
terms of the value of 7, that occurs in Eq. (D1). Hence,

2

a&  (1,)

1+ Lze sinh?
c .

]1/2

a
— (71, —7e)
c

ing quantities in the second term of Eq. (19) in terms of
the £ 4; coordinates. The reason for this is that 7, and 7 -
differ from each other only by terms of order a& Al/cze
and Ax,, has already been shown to be of first order ir;

€4
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Consequently, from Eq. (Dl), the following time
derivative occurring in Eq. (19) may be written as

d 4

d oy —Ze) 4l oy

dt-re L, =0 dtre =1, dr, =1,
where

’ " a .

dr, _ 1 140 §,241> (D8)
at, |, ag 4i(7.) ¢

Te=Te 1+_.._.___c2

Making the substitutions that have been indicated so
far, yields

~1+0[a§;1 ?R
c

A=

o |a

d '
Jd—'r,'_: E43(1e)B,

The fields B, ; may be reexpressed in terms of the fields
in the I, frame via the Lorentz transformations of Egs.

{(7) and (é). Making these substitutions, differentiating all
the obvious terms of cosh[(a/c)7,—7,)] and
sinh[(a/c)(r, —7,)], and then evaluating these terms at

!

Te =T,, yields

A,mld
cdr,

R ,
?_2—',7}

E4slTIB,,,

R )
—, T,

2

—§A1(T; )Bq_;3

(T,
+ [@T—) , (D10)

R
c2? ]eE'r‘Z [??a're

where the O(af,;/c?) terms in Eq. (D9) have been ig-
nored.
Upon taking the expectation value of 4,, the first two
terms of Eq. (D10) drop out, leaving
~R
<A2)z—i%(<§A1(Te)EiP2 >
).

Y 7Te

2

R
Y5 Te

+<§A1(TC)E7[.§ D)
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FIG. 2. Distinction between 7, and 7.

Sailre) ~R ,

— 7-' —
2’ eJ
cosh [%(fr’, -—T,)’

(D9)

Y'?,Te

7,3

In order to evaluate this expression, let quantities of or-
der aR /c? in Eqs. (62a) and (62b) be dropped as an initial
approximation. The two terms of Eq. (D11) can then be
calculated by following the steps of Sec. IIIB. When the
resonant approximation is employed in the unretarded van
der Waals situation, then the first term can be shown to
be negligible compared to the second one. This result
arises for nearly the same reason that Eq. (32) is negligible
compared to Eq. (35) under the same conditions.

Turning attention to the second term of Eq. (D11), one
can show that under resonant conditions this quantity is
approximately (aR/c?)? times the magnitude of the
second term of Eq. (63). The factor of (aR /c?)? arises
essentially from the ratio of

a 4 |aR R
—~ Ren? €7 2
cz o e aR

d 1 c?
2 Ren? —Rey
R " |ar/e «1 R

If the initial approximation of ignoring terms of order
aR /c? is reexamined and these terms are retained, then
one can trace through the calculations indicated above to
see that the contribution of these terms will also yield a fi-
nal result characterized by the factor of (aR /¢?)2
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